Antioxidant Therapy for Atrial Fibrillation: Lost in Translation?

Ali A. Sovari, and Samuel C. Dudley, Jr.

From the Section of Cardiology and the Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois

Total word count: 1,981

Text word count: 1,277

References: 15

Corresponding author:
Dr. Samuel C. Dudley, Jr.
Section of Cardiology
University of Illinois at Chicago
840 S. Wood Street, MC 715
Chicago, IL 60612
Phone: (312) 996-9096
FAX: (312) 413-2948
E-mail: scdudley@uic.edu


Funding Support Acknowledgements: RO1 HL1024025, T32 HL072742, P01 HL058000, R01 HL106592, a VA MERIT grant, and an American Heart Association Midwest Affiliate Postdoctoral Fellowship # AHA10POST4450037

Data Sharing: No additional data.

Contributions: All authors have significantly contributed to the manuscript.
Abstract

Despite considerable evidence suggesting a central role for oxidative stress in pathogenesis of atrial fibrillation (AF), use of conventional reactive oxygen species (ROS) scavengers have not shown impressive results. ROS are a wide range of highly active molecules that can react quickly with their local surroundings. This characteristic may be part of the reason that general antioxidants have not been clinically effective. A probably more efficacious approach would be to inhibit the correctly identified major sources of ROS. Mitochondria and NADPH oxidase may be the most important sources of ROS in AF, and their inhibition may prove effective antiarrhythmic therapies.

Key words: Atrial fibrillation, oxidative stress, reactive oxygen species, antioxidants, mitochondria
Atrial fibrillation (AF) is the most common clinical arrhythmia and its incidence is rising. More than 15.9 million people in the United States will have AF by 2050 [1]. Current therapies for AF; antiarrhythmic drugs and catheter ablation have significant limitations. Most current antiarrhythmic drugs target one or a few of cardiomyocyte ion channels. Current drugs have considerable proarrhythmic and noncardiac adverse effects. In the treatment of AF, a lack of a significant difference in the outcome of a rhythm control strategy using current antiarrhythmic drugs and a rate control strategy points to the limited efficacy of these drugs. Catheter ablation is based on creation of scar tissue in the heart in order to prevent focal discharges from propagating or to block the reentrant circuits of AF. Ablation has somewhat debatable long-term success in management of AF. In addition, catheter ablation of AF is an expensive treatment that probably cannot meet the growing demand for AF therapy and is associated with significant complications. A major reason for the limited success with the aforementioned therapies may be the fact that neither of antiarrhythmic drugs nor catheter ablation address the upstream underlying pathophysiologies of AF. Current antiarrhythmic drugs block target ion channels while the ion channel abnormality is often downregulation as a result of upstream signaling events. Similarly, catheter ablation provides an anatomically fixed treatment for focal discharges and reentry circuits while the reasons for those abnormal electrical activities remain unaddressed and while the location of the arrhythmic substrates can change over time.

Pathophysiology of AF is complex and is not completely understood, but many studies suggest oxidative stress as a mediator of AF. An elevated level of ROS has been linked
with increasing age, heart failure, diabetes mellitus, coronary artery disease, obesity, and alcohol intoxication, all conditions associated with AF [2]. In addition, clinical studies have shown an association between oxidative stress markers and AF [3]. For example, MM-CK activity, which is a redox marker, is decreased, and immunodetectable 3-nitrotyrosine, a marker for the presence of peroxynitrite, is increased in right atrial appendage of patients with AF compared to those in normal sinus rhythm [3]. We have shown that derivatives of reactive oxidative metabolites (DROMs) and ratios of oxidized to reduced glutathione and cysteine are increased in the blood of patients with AF [4]. Many prooxidant genes are overexpressed, and many antioxidant genes are downregulated in AF [5]. Direct addition of oxidants to the heart support a causal role for oxidative stress in AF [6].

Several experimental studies have provided possible mechanisms for oxidative stress to cause AF. Oxidative stress increases the late Na⁺ current and the L-type Ca²⁺ current. AF causes leak of Ca²⁺ from sarcoplasmic reticulum (SR) and decreases peak Na⁺ current and sarcoplasmic/endoplasmic reticulum calcium uptake (SERCA)-mediated SR Ca²⁺ uptake [2]. In addition, ROS can decrease connexin43 and impairs gap junction function probably via activation of c-Src tyrosine kinase [7]. In summary, there are a constellation of ion abnormalities including abnormal intracellular Ca²⁺ handling, reduced repolarization reserves, decrease peak sodium current and weakened cardiomyocyte coupling. Moreover, ROS increase cardiac fibrosis by enhancing fibroblast proliferation and type I collagen gene expression [8], and fibrosis is a known cause of AF. Oxidative stress may also play a key role in pathogenesis of
thromboembolism in AF by affecting all three elements of Virchow triads in making thrombosis; stasis, endothelial injury and coagulopathy [2].

Despite the considerable evidence from clinical and experimental studies for a central role for ROS in many cardiovascular disorders including AF, clinical trials have not shown an impressive result with using general ROS scavengers [9]. Those results may be because of the nature of ROS molecules, possibly exerting their effects by quickly reacting with proteins and lipids before a general scavenger can neutralize them. Another issue is that oxidants can exist in multiple redox states and forms. For example, superoxide can easily convert to hydrogen peroxide, and hydrogen peroxide can convert to peroxynitrate and hydroxyl radical. A general scavenger can usually neutralize one or a few forms of ROS, but other forms of ROS remain to exert the arrhythmic effects of ROS.

A different therapeutic approach may be targeting the sources of excess ROS. Of the numerous cellular sources of ROS generation, mitochondria, the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and uncoupled nitric oxide synthase (NOS) are considered the major ROS production systems in the human heart. The major source of oxygen radical production in mitochondria is the electron transport chain. The NADPH oxidase is an enzyme that uses NADPH to reduce molecular oxygen and produces large amounts of superoxide radicals as its main product. The basic function of NOS is oxidizing the terminal guanidine nitrogen atom of L-arginine by
using electrons from NADPH to produce NO; however, uncoupled or dysfunctional NOS produce oxygen and nitrogen reactive species. Those sources of cardiac ROS are interrelated and often activation of one results in activation of the others. For example, mitochondrial function differentially modulates NADPH oxidase expression and activity, and the Nox4 isoform of NADPH oxidase exists in mitochondria [10]. In addition to cardiac cells, inflammatory cells such as macrophages and polymorphonuclear cells that are recruited to the heart during AF may be important sources of excess ROS causing arrhythmia.

Among all sources of ROS, mitochondria and NADPH oxidase seem the most attractive therapeutic targets for management of AF. NADPH oxidase activity has been shown to increase in AF [11]. The NADPH oxidase is upregulated in early stages of AF but not in chronic AF [12]. The NADPH oxidase is associated with development of postoperative AF [13]. Therefore, inhibition of the NADPH oxidase is could be an effective treatment for primary prevention of AF and for postoperative AF [14]. A large portion of cardiomyocytes are occupied by mitochondria, and they are major sources of cardiac ROS. We tested the effect of seven different antioxidant therapies on prevention of ventricular arrhythmia in an angiotensin II activation mouse model with increased levels of ROS [15]. ROS were highly compartmentalized in mitochondria and only a mitochondria-targeted antioxidant prevented ventricular arrhythmias. While promising, whether this result can be applied to AF remains to be tested.
In designing an antioxidant agent that inhibits sources of ROS, a few factors should be considered. Different sources of ROS can be activated under different pathologic conditions and at different stages of AF; therefore, an antioxidant against a specific source of ROS may be effective in the prevention of AF only under certain conditions. In addition, because of positive feedback loops among the sources of cardiac ROS, the simultaneous targeting of several important sources of ROS may be required to decrease ROS level effectively. Moreover, normal amounts of ROS are required for various physiologic signaling cascades, and too much suppression of ROS should be avoided. Finally, oxidative stress refers to an imbalance between production and neutralization resulting in excess amount of ROS, and activating natural antioxidant defense mechanisms of the cell is another potential therapeutic approach, which could be exploited.

In summary, treatment of AF requires a search for new modalities targeting upstream pathologies such as oxidative stress. Many experimental studies support a critical role for oxidative stress in the genesis of AF; however, clinical trials using general antioxidants have not shown the expected therapeutic result. A more effective antioxidant therapeutic approach may be targeting sources of ROS. Among cardiac sources of ROS, mitochondria and NADPH oxidase seem to be promising therapeutic targets for the management of AF. Clinical studies using NADPH oxidase inhibitors and mitochondria-targeted antioxidants are required to evaluate this hypothesis.
References


