INDIGO Home University of Illinois at Urbana-Champaign logo uic building uic pavilion uic student center

A Novel, In-Solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain

Show simple item record

Bookmark or cite this item: http://hdl.handle.net/10027/8291

Files in this item

File Description Format
PDF MCP Ms. (2).pdf (2MB) (no description provided) PDF
Title: A Novel, In-Solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain
Alternative Title: Running Title: In-solution separation and cardiac light chain phosphorylation
Author(s): Scruggs, Sarah B.; Reisdorph, Rick; Armstrong, Mike L.; Warren, Chad M.; Reisdorph, Nichole; Solaro, R. John; Buttrick, Buttrick
Abstract: The molecular conformation of the cardiac myosin motor is modulated by inter-molecular interactions among the heavy chain, the light chains, myosin binding protein-C (MyBP-C) and titin, and is governed by post-translational modifications (PTMs). In-gel digestion followed by liquid chromatography mass spectrometry (LC/MS/MS) has classically been applied to identify cardiac sarcomeric PTMs; however, this approach is limited by protein size, pI, and difficulties in peptide extraction. We report a solution-based workflow for global separation of endogenous cardiac sarcomeric proteins with a focus on the regulatory light chain (RLC) in which specific sites of phosphorylation have been unclear. Sub-cellular fractionation followed by OFFGEL electrophoresis (OGE) resulted in isolation of endogenous charge variants of sarcomeric proteins, including regulatory and essential light chains, myosin heavy chain (MHC), and MyBPC of the thick filament. Further purification of RLC using reverse phase (RP) -HPLC separation and UV detection enriched for RLC PTMs at the intact protein level, and provided a stoichiometric and quantitative assessment of endogenous RLC charge variants. Digestion and subsequent LC/MS/MS unequivocally identified that the endogenous charge variants of cardiac RLC focused in unique OGE fractions were un-phosphorylated (78.8%), singly- (18.1%) and doubly-phosphorylated (3.1%) RLC. The novel aspects of this study are: 1) milligram amounts of endogenous cardiac sarcomeric sub-proteome were focused with resolution comparable to 2DE, 2) separation and quantification of post-translationally modified variants was achieved at the intact protein level, 3) separation of intact high molecular weight thick filament proteins was achieved in-solution, 4) endogenous charge variants of RLC were separated; a novel doublyphosphorylated form was identified in mouse, and singly-phosphorylated, singly-deamidated, and deamidated/phosphorylated forms were identified and quantified in human non-failing and failing heart samples, thus demonstrating the clinical utility of the method.
Issue Date: 2010-05
Publisher: American Society for Biochemistry and Molecular Biology
Citation Info: Scruggs, S. B., Reisdorph, R., Armstrong, M. L., Warren, C. M., Reisdorph, N., Solaro, R. J., & Buttrick, P. M. 2010. A Novel, In-solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain. Molecular & Cellular Proteomics, 9(9): 1804-1818. DOI: 10.1074/mcp.M110.000075
Type: Article
Description: This research was originally published in Molecular and Cellular Proteomics. Sarah B. Scruggs, Rick Reisdorph, Mike L. Armstrong, Chad M. Warren1, Nichole Reisdorph, R. John Solaro, Peter M. Buttrick. A Novel, In-Solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain. Molecular and Cellular Proteomics. 2010. 9:1804-1818. © the American Society for Biochemistry and Molecular Biology DOI: 10.1074/mcp.M110.000075
URI: http://hdl.handle.net/10027/8291
ISSN: 1535-9476
Sponsor: We acknowledge the Proteomics and Mass Spectrometry Facility at National Jewish Health and the University of Illinois at Chicago (UIC) Chicago Biomedical Consortium and Research Resources Center (CBC-RRC) for assistance. The CBC-RRC was established by a grant from The Searle Funds at the Chicago Community Trust to the Chicago Biomedical Consortium.
Date Available in INDIGO: 2012-04-30
 

This item appears in the following Collection(s)

Show simple item record

Statistics

Country Code Views
United States of America 147
China 38
United Kingdom 9
Netherlands 5
Germany 4

Browse

My Account

Information

Access Key