INDIGO Home University of Illinois at Urbana-Champaign logo uic building uic pavilion uic student center

Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model

Show simple item record

Bookmark or cite this item: http://hdl.handle.net/10027/8513

Files in this item

File Description Format
PDF 587470.pdf (163KB) (no description provided) PDF
Title: Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model
Author(s): Bharadwaj, Shruthi; Vishnubhotla, Ramana; Shan, Sun; Chauhan, Chinmay; Cho, Michael; Glover, Sarah
Abstract: Polyethylene glycol (PEG) has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging.We found that highermolecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.
Issue Date: 2011
Publisher: Hindawi Publishing Corporation
Citation Info: Bharadwaj, S., Vishnubhotla, R., Shan, S., Chauhan, C., Cho, M., & Glover, S. C. 2011. Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model. Journal of Biomedicine and Biotechnology. DOI: 10.1155/2011/587470
Type: Article
Description: Copyright © 2011 Shruthi Bharadwaj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. DOI: 10.1155/2011/587470
URI: http://hdl.handle.net/10027/8513
ISSN: 1110-7243
Sponsor: The University of Illinois GILD and the National Institutes of Health (1 RO1 CA113975-A2) funded this work.
Date Available in INDIGO: 2012-08-16
 

This item appears in the following Collection(s)

Show simple item record

Statistics

Country Code Views
China 223
United States of America 133
United Kingdom 5
Russian Federation 2
Germany 1

Browse

My Account

Information

Access Key