10027/20514 MW Lee MW Lee S An S An KY Song KY Song BN Joshi BN Joshi HS Jo HS Jo Salem S. Al-Deyab Salem S. Al-Deyab SS Yoon SS Yoon AL Yarin AL Yarin Polyacrylonitrile nanofibers with added zeolitic imidazolate frameworks (ZIF-7) to enhance mechanical and thermal stability University of Illinois at Chicago 2016 untagged 2016-12-05 00:00:00 Journal contribution https://indigo.uic.edu/articles/journal_contribution/Polyacrylonitrile_nanofibers_with_added_zeolitic_imidazolate_frameworks_ZIF-7_to_enhance_mechanical_and_thermal_stability/10958141 Zeolitic imidazolate framework 7/polyacrylonitrile (ZIF-7/PAN) nanofiber mat of high porosity and surface area can be used as a flexible fibrous filtration membrane that is subjected to various modes of mechanical loading resulting in stresses and strains. Therefore, the stress-strain relation of ZIF-7/PAN nanofiber mats in the elastic and plastic regimes of deformation is of significant importance for numerous practical applications, including hydrogen storage, carbon dioxide capture, and molecular sensing. Here, we demonstrated the fabrication of ZIF-7/PAN nanofiber mats via electrospinning and report their mechanical properties measured in tensile tests covering the elastic and plastic domains. The effect of the mat fabrication temperature on the mechanical properties is elucidated. We showed the superior mechanical strength and thermal stability of the compound ZIF-7/PAN nanofiber mats in comparison with that of pure PAN nanofiber mats. Material characterization including scanning electron microscope, energy-dispersive X-ray spectroscopy, tensile tests, differential scanning calorimetry, and Fourier transform infrared spectroscopy revealed the enhanced chemical bonds of the ZIF-7/PAN complex.