University of Illinois at Chicago
Browse
JIANG-DISSERTATION-2017.pdf (13.04 MB)

A Surface-based Volume Haptics Approach and Applications in Surgical Simulation

Download (13.04 MB)
thesis
posted on 2018-02-08, 00:00 authored by Jie Jiang
Volume haptics algorithms are widely studied to provide multi-sensory feedback during data exploration. Efficient haptics rendering of consistent surface topology from a structured volumetric data set is desired by applications but has not been thoroughly explored. We presented a proxy-based volume haptics approach inspired by a fast voxel traversal algorithm that delivers efficient and robust surface representation. The technique has the flexibility to work either as an independent volume haptics rendering module or as an extension to incorporate volume haptics into polygonal-based haptics modules. The volume haptics approach is efficient at handling large volume data set and it scales decently with voxel density. This technique enables us to develop virtual reality based surgical simulations with comprehensive procedures. With the reliable surface-based volume haptics module, we developed cranial and spinal surgical simulations involving bone removal and extensive contact interactions. Our applications leverages the advantages of virtual reality based simulators over traditional training methods.

History

Advisor

Banerjee, Prashant

Chair

Banerjee, Prashant

Department

Mechanical and Industrial Engineering

Degree Grantor

University of Illinois at Chicago

Degree Level

  • Doctoral

Committee Member

Scott, Michael Luciano, Cristian Rizzi, Silvio Roitberg, Ben

Submitted date

December 2017

Issue date

2017-11-07

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC