Synchronous Measuring Techniques in Parallel to MRE: Study of Pressure, Pre-Tension, and Surface Dynamics

2016-10-18T00:00:00Z (GMT) by Spencer T. Brinker
The contents of this dissertation include investigations in Magnetic Resonance Elastography (MRE) using a preclinical 9.4 Tesla small animal Magnetic Resonance Imaging (MRI) system along with synthetic materials that mimic the mechanical properties of soft human tissue. MRE is used for studying the mechanical behavior of soft tissue particularly applicable to medical applications. Wave motion induced by a mechanical driver is measured with MRI to acquire internal displacement fields over time and space within a material media. Complex shear modulus of the media is calculated from the response of mechanical wave transmission through the material. Changes in soft tissue stiffness is associated with disease progression and thus, is why assessing tissue mechanical properties with MRE has powerful diagnostic potential due to the noninvasive procedure of MRI. The experiments performed in this dissertation used elastic phantoms and specimens to observe the influence of pre-stress on MRE derived mechanical properties while additional mechanical measurements from other related material testing methods were synchronously collected alongside MRI scanning. An organ simulating phantom was used to explore changes in MRE stiffness in response to gas and liquid cyclic pressure loading. MRE stiffness increased with pressure and hysteresis was observed in cyclic pressure loading. The results suggest MRE is applicable to pressure related disease assessment. In addition, an interconnected porosity pressure phantom was constructed for future porous media investigations. A custom system was also built to demonstrate concurrent tensile testing during MRE for investigating homogeneous soft material media undergoing pre-tension. Stiffness increased with uniaxial tensile stress and strain. The tension and stiffness relationship explored can be related to the stress analysis of voluntary muscle. The results also offer prospective experimental strategies for community wide standards on MRE calibration methods. Lastly, a novel platform was developed for synchronous acquisition of Scanning Laser Doppler Vibrometry (SLDV) and MRE for examining surface wave dynamics related to internal media wave propagation in soft material experiencing sinusoidal mechanical excitation. The results indicate that optical displacement measurements of media on the surface are similar in nature to internal displacement measured from MRE. It is concluded that optical and MRI based elastography yield similar values of complex shear modulus. Lastly, a novel platform was developed for synchronous acquisition of Scanning Laser Doppler Vibrometry (SLDV) and MRE for examining surface wave dynamics related to internal media wave propagation in soft material experiencing sinusoidal mechanical excitation. The results indicate that optical displacement measurements of media on the surface are similar in nature to internal displacement measured from MRE. It is concluded that optical and MRI based elastography yield similar values of complex shear modulus.