1471-2105-14-227.pdf (1.75 MB)
0/0

A fast weak motif-finding algorithm based on community detection in graphs

Download (1.75 MB)
journal contribution
posted on 09.01.2014 by Caiyan Jia, Matthew B Carson, Jian Yu
Background: Identification of transcription factor binding sites (also called 'motif discovery') in DNA sequences is a basic step in understanding genetic regulation. Although many successful programs have been developed, the problem is far from being solved on account of diversity in gene expression/regulation and the low specificity of binding sites. State-of-the-art algorithms have their own constraints (e. g., high time or space complexity for finding long motifs, low precision in identification of weak motifs, or the OOPS constraint: one occurrence of the motif instance per sequence) which limit their scope of application. Results: In this paper, we present a novel and fast algorithm we call TFBSGroup. It is based on community detection from a graph and is used to discover long and weak (l,d) motifs under the ZOMOPS constraint (zero, one or multiple occurrence(s) of the motif instance(s) per sequence), where l is the length of a motif and d is the maximum number of mutations between a motif instance and the motif itself. Firstly, TFBSGroup transforms the (l, d) motif search in sequences to focus on the discovery of dense subgraphs within a graph. It identifies these subgraphs using a fast community detection method for obtaining coarse-grained candidate motifs. Next, it greedily refines these candidate motifs towards the true motif within their own communities. Empirical studies on synthetic (l, d) samples have shown that TFBSGroup is very efficient (e. g., it can find true (18, 6), (24, 8) motifs within 30 seconds). More importantly, the algorithm has succeeded in rapidly identifying motifs in a large data set of prokaryotic promoters generated from the Escherichia coli database RegulonDB. The algorithm has also accurately identified motifs in ChIP-seq data sets for 12 mouse transcription factors involved in ES cell pluripotency and self-renewal. Conclusions: Our novel heuristic algorithm, TFBSGroup, is able to quickly identify nearly exact matches for long and weak (l, d) motifs in DNA sequences under the ZOMOPS constraint. It is also capable of finding motifs in real applications. The source code for TFBSGroup can be obtained from http://bioinformatics.bioengr.uic.edu/TFBSGroup/.

Funding

This work was supported in part by the National Nature Science Foundation of China (Grant No. 60905029, 61105055, and 81230086), the Beijing Natural Science Foundation (Grant No. 4112046), and the Fundamental Research Funds for the Central Universities.

History

Publisher Statement

© 2013 Jia et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Publisher

BioMed Central

Language

en_US

issn

1471-2105

Issue date

01/07/2013

Exports

Categories

Exports