Targeting the HGF-cMET Axis in Hepatocellular Carcinoma

2014-01-03T00:00:00Z (GMT) by Neeta K. Venepalli Laura Goff
Under normal physiological conditions, the hepatocyte growth factor (HGF) and its receptor, the MET transmembrane tyrosine kinase (cMET), are involved in embryogenesis, morphogenesis, and wound healing. The HGF-cMET axis promotes cell survival, proliferation, migration, and invasion via modulation of epithelial-mesenchymal interactions. Hepatocellular cancer (HCC) is the third most common cause of worldwide cancer-related mortality; advanced disease is associated with a paucity of therapeutic options and a five-year survival rate of only 10%. Dysregulation of the HGF-cMET pathway is implicated in HCC carcinogenesis and progression through activation of multiple signaling pathways; therefore, cMET inhibition is a promising therapeutic strategy for HCC treatment. The authors review HGF-cMET structure and function in normal tissue and in HCC, cMET inhibition in HCC, and future strategies for biomarker identification.

Categories

Keyword(s)

License

In Copyright