posted on 2017-04-02, 00:00authored byA.A. Yazdi, A. Popma, W. Wong, T. Nguyen, Y.Y. Pan, J. Xu
In the past few years, 3D printing technology has witnessed an explosive growth, penetrating various aspects of our lives. Current best-in-class 3D printers can fabricate micrometer scale objects, which has made fabrication of microfluidic devices possible. The highest achievable resolution is already at nanometer scale, which is continuing to drop. Since geometric complexity is not a concern for 3D printing, novel 3D microfluidics and lab-on-a-chip systems that are otherwise impossible to produce with traditional 2D microfabrication technology have started to emerge in recent years. In this review, we first introduce the basics of 3D printing technology for the microfluidic community and then summarize its emerging applications in creating novel microfluidic devices. We foresee widespread utilization of 3D printing for future developments in microfluidic engineering and lab-on-a-chip technology.
Funding
University of Illinois at Chicago Curriculum and Instruction Grant.