University of Illinois Chicago
Browse

A note on the transition from diffusion with the flow to diffusion against the flow, for first passage times in singularly perturbed drift-diffusion models

Download (988.24 kB)
journal contribution
posted on 2016-01-06, 00:00 authored by C. Knessl, H. Yao
We consider some singularly perturbed ODEs and PDEs that correspond to the mean first passage time T until a diffusion process exits a domain Omega in R-n. We analyze the limit of small diffusion relative to convection, and assume that in a part of Omega the convection field takes the process toward the exit boundary. In the remaining part the flow does not hit the exit boundary, instead taking the process toward a stable equilibrium point inside Omega. Thus Omega is divided into a part where the diffusion is with the flow and a complementary part where the diffusion is against the flow. We study such first passage problems asymptotically and, in particular, determine how T changes as we go between the two parts of the domain. We shall show that the mean first passage time may be exponentially large even in the part of Omega that is with the flow, and where a typical sample path of the process hits the exit boundary on much shorter time scales.

History

Publisher Statement

Knessl, C. and Yao, H. A note on the transition from diffusion with the flow to diffusion against the flow, for first passage times in singularly perturbed drift-diffusion models. Asymptotic Analysis. 2015. 91(3-4): 205-231. DOI: 10.3233/ASY-141259. © 2015 -IOS Press and the authors.

Publisher

IOS Press

issn

0921-7134

Issue date

2015-01-01

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC