University of Illinois Chicago
Browse

Acute dissociation of lamprey reticulospinal axons to enable recording from the release face membrane of individual functional presynaptic terminals.

Download (405.63 kB)
journal contribution
posted on 2016-05-16, 00:00 authored by S. Ramachandran, Simon Alford
Synaptic transmission is an extremely rapid process. Action potential driven influx of Ca(2+) into the presynaptic terminal, through voltage-gated calcium channels (VGCCs) located in the release face membrane, is the trigger for vesicle fusion and neurotransmitter release. Crucial to the rapidity of synaptic transmission is the spatial and temporal synchrony between the arrival of the action potential, VGCCs and the neurotransmitter release machinery. The ability to directly record Ca(2+) currents from the release face membrane of individual presynaptic terminals is imperative for a precise understanding of the relationship between presynaptic Ca(2+) and neurotransmitter release. Access to the presynaptic release face membrane for electrophysiological recording is not available in most preparations and presynaptic Ca(2+) entry has been characterized using imaging techniques and macroscopic current measurements--techniques that do not have sufficient temporal resolution to visualize Ca(2+) entry. The characterization of VGCCs directly at single presynaptic terminals has not been possible in central synapses and has thus far been successfully achieved only in the calyx-type synapse of the chick ciliary ganglion and in rat calyces. We have successfully addressed this problem in the giant reticulospinal synapse of the lamprey spinal cord by developing an acutely dissociated preparation of the spinal cord that yields isolated reticulospinal axons with functional presynaptic terminals devoid of postsynaptic structures. We can fluorescently label and identify individual presynaptic terminals and target them for recording. Using this preparation, we have characterized VGCCs directly at the release face of individual presynaptic terminals using immunohistochemistry and electrophysiology approaches. Ca(2+) currents have been recorded directly at the release face membrane of individual presynaptic terminals, the first such recording to be carried out at central synapses.

Funding

This work has been supported by NINDS, RO1NS52699 and MH84874 to SA.

History

Publisher Statement

This is a copy of an article published in the Journal of Visualized Experiments © 2014 Journal of Visualized Experiments Publications.

Publisher

Journal of Visualized Experiments

Issue date

2014-10-01