University of Illinois at Chicago
Browse
- No file added yet -

Assisting Service Providers In Peer-to-peer Marketplaces: Maximizing Gain Over Flexible Attributes.

journal contribution
posted on 2021-08-19, 18:29 authored by Abolfazl AsudehAbolfazl Asudeh, Azade Nazi, Nick Koudas, Gautam Das
Peer to peer marketplaces such as AirBnB enable transactional exchange of services directly between people. In such platforms, those providing a service (hosts in AirBnB) are faced with various choices. For example in AirBnB, although some amenities in a property (attributes of the property) are fixed, others are relatively flexible and can be provided without significant effort. Providing an amenity is usually associated with a cost. Naturally different sets of amenities may have a different "gains" for a host. Consequently, given a limited budget, deciding which amenities (attributes) to offer is challenging. In this paper, we formally introduce and define the problem of Gain Maximization over Flexible Attributes (GMFA). We first prove that the problem is NP-hard and show that identifying an approximate algorithm with a constant approximate ratio is unlikely. We then provide a practically efficient exact algorithm to the GMFA problem for the general class of monotonic gain functions, which quantify the benefit of sets of attributes. As the next part of our contribution, we focus on the design of a practical gain function for GMFA. We introduce the notion of frequent-item based count (FBC), which utilizes the existing tuples in the database to define the notion of gain, and propose an efficient algorithm for computing it. We present the results of a comprehensive experimental evaluation of the proposed techniques on real dataset from AirBnB and demonstrate the practical relevance and utility of our proposal.

History

Citation

Asudeh, A., Nazi, A., Koudas, N.Das, G. (2017). Assisting Service Providers In Peer-to-peer Marketplaces: Maximizing Gain Over Flexible Attributes. CoRR, abs/1705.03028. Retrieved from http://arxiv.org/abs/1705.03028v2

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC