University of Illinois at Chicago
Browse
- No file added yet -

Communication: A tractable design for a thermal transistor.

Download (857.22 kB)
journal contribution
posted on 2016-01-27, 00:00 authored by S. Murad, I.K. Puri
We propose a conceptual design for a logic device that is the thermal analog of a transistor. It has fixed hot (emitter) and cold (collector) temperatures, and a gate controls the heat current. Thermal logic could be applied for thermal digital computing, enhance energy conservation, facilitate thermal rheostats, and enable the transport of phononic data. We demonstrate such a device using molecular dynamics simulations that consider thermal transport across hot and cold solid Si regions that seal water within them. Changes in the hot side, or emitter, heat current are linear with respect to varying gate temperature but the corresponding variation in the collector current is nonlinear. This nonlinear variation in collector current defines the ON and OFF states of the device. In its OFF state, the thermal conductivity of the device is positive. In the ON state, however, more heat is extracted through the cold terminal than is provided at the hot terminal due to the intervention of the base terminal. This makes it possible to alter the transport factor by varying the gate conditions. When the device is ON, the transport factor is greater than unity, i.e., more heat is rejected at the collector than is supplied to the emitter.

Funding

This research was supported by grants from the National Science Foundation (CBET 1246536/1246611/1263707).

History

Publisher Statement

This is the copy of an article published in the Journal of Chemical Physics © 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4826316

Publisher

American Institute of Physics

issn

0021-9606

Issue date

2013-10-21

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC