depth-iberoam-rev0929.pdf (526.16 kB)

Depth of cohomology support loci for quasi-projective varieties via orbifold pencils.

Download (526.16 kB)
journal contribution
posted on 07.01.2016, 00:00 by A.E. Bartolo, J.I. Cogolludo-Agustin, A. Libgober
We describe several relations between homological invariant of characters of fundamental groups of smooth projective varieties called depth and maps onto orbicurves. This extends previously studied relations between families of local systems and holomorphic maps onto hyperbolic curves. Firstly we derive existence of characters of the depth bounded below by the number of independent orbifold pencils and conversly deduces for some class of characters existence of the several independent pencils which number is equal to the depth of the character. Secondly, we give a new relation between depth of characters of the fundamental group and solutions of Diophantine equation over field of rational functions related to the Pell equation. Finally we give a Hodge theoretical characterization of essential coordinate characters of the fundamental groups of the complements to plane curves i.e. characters existence of which cannot be detected by considering homology of branched abelian covers. cover.


Partially supported by the Spanish Ministry of Education MTM2010-21740-C02-02. The third author was partially supported by NSF grant.


Publisher Statement

This is a copy of an article published in the Revista Matemática Iberoamericana© 2014


European Mathematical Society



Issue date


Usage metrics