University of Illinois at Chicago
Browse

Development and validation of a yeast high-throughput screen for inhibitors of A{beta}42 oligomerization

Download (977.71 kB)
journal contribution
posted on 2012-08-16, 00:00 authored by Sei-Kyoung Park, Scott D. Pegan, Andrew D. Mesecar, Lisa M. Jungbauer, Mary Jo LaDu, Susan W. Liebman
Recent reports point to small soluble oligomers, rather than insoluble fibrils, of amyloid β (Aβ), as the primary toxic species in Alzheimer’s disease. Previously, we developed a low-throughput assay in yeast that is capable of detecting small Aβ42 oligomer formation. Specifically, Aβ42 fused to the functional release factor domain of yeast translational termination factor, Sup35p, formed sodium dodecyl sulfate (SDS)-stable low-n oligomers in living yeast, which impaired release factor activity. As a result, the assay for oligomer formation uses yeast growth to indicate restored release factor activity and presumably reduced oligomer formation. We now describe our translation of this assay into a high-throughput screen (HTS) for anti-oligomeric compounds. By doing so, we also identified two presumptive anti-oligomeric compounds from a sub-library of 12,800 drug-like small molecules. Subsequent biochemical analysis confirmed their anti-oligomeric activity, suggesting that this form of HTS is an efficient, sensitive and cost-effective approach to identify new inhibitors of Aβ42 oligomerization.

Funding

This work was supported by grants to S.W.L. from the Alzheimer’s Association (IIRG-06-25468 and IIRG-10-173736) and the NIH (R21 AG02881). The authors are grateful to Dennis Selkoe (Harvard Medical School, Boston, MA) for kindly providing RS-0406 and to David Scopes (Senexis Limited, UK) for kindly providing SEN304 and SEN1269.

History

Publisher Statement

© 2011. Published by The Company of Biologists Ltd This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0), which permits unrestricted non-commercial use, distribution and reproduction in any medium provided that the original work is properly cited and all further distributions of the work or adaptation are subject to the same Creative Commons License terms. DOI: 10.1242/dmm.007963.

Publisher

Company of Biologists

Language

  • en_US

issn

1754-8403

Issue date

2011-08-02

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC