RakeshSMRevised.pdf (2.95 MB)

Drop Impacts on Electrospun Nanofiber Membranes

Download (2.95 MB)
journal contribution
posted on 06.12.2013, 00:00 by R.P. Sahu, S. Sinha-Ray, A.L. Yarin, B. Pourdeyhimi
This work reports a systematic study of drop impacts of polar and non-polar liquids onto different electrospun nanofiber membranes (of 8-10 μm thickness and pore sizes of 3-6 μm) with an increasing degree of hydrophobicity. The liquids studied were water, FC 7500 (Fluorinert fluid) and hexane. The nanofibers used were electrospun from Polyacrylonitrile (PAN), Nylon 6/6, Polycaprolactone (PCL) and Teflon. It was found that for any liquid/fiber pair there exist a threshold impact velocity (~1.5-3 m/s) above which water penetrates membranes irrespective of their hydrophobicity. The other liquids (FC 7500 and hexane) penetrate the membranes even easier. The low surface tension liquid, FC 7500, left the rear side of sufficiently thin membranes as a millipede-like system of tiny jets protruding through a number of pores. For such high surface tension liquid as water, jets immediately merged into a single bigger jet, which formed secondary spherical drops due to capillary instability. No mechanical damage to the nanofiber mats after liquid perforation was observed. A theoretical estimate of the critical membrane thickness sufficient for complete viscous dissipation of the kinetic energy of penetrating liquid is given and corroborated by the experimental data.


The current work is supported by the Nonwovens Cooperative Research Center (NCRC).


Publisher Statement

This is a copy of an article published in Soft Matter © 2012 Royal Society of Chemistry. DOI: 10.1039/c2sm06744g


Royal Society of Chemistry





Issue date


Usage metrics