EARLY, NON-CILIARY ROLE FOR MICROTUBULE PROTEINS IN LEFT-RIGHT PATTERNING IS CONSERVED ACROSS KINGDOMS.pdf (488.53 kB)
Download file

Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms

Download (488.53 kB)
journal contribution
posted on 15.04.2014, 00:00 authored by Maria Lobikin, Gang Wang, Jing-Song Xu, Yi-Wen Hsieh, Chiou-Fen Chuang, Joan M. Lemire, Michael Levin
Many types of embryos’ bodyplans exhibit consistently-oriented laterality of the heart, viscera, and brain. Errors of left-right patterning present an important class of human birth defects, and considerable controversy exists about the nature and evolutionary conservation of the molecular mechanisms that allow embryos to reliably orient the left-right axis. Here we show that the same mutations in the cytoskeletal protein tubulin that alter asymmetry in plants also affect very early steps of left-right patterning in nematode and frog embryos, as well as chirality of human cells in culture. In the frog embryo, tubulin α and tubulin γ-associated protein are required for the differential distribution of maternal proteins to the left or right blastomere at the first cell division. Our data reveal a remarkable molecular conservation of mechanisms initiating left-right asymmetry. The origin of laterality is cytoplasmic, ancient, and highly conserved across kingdoms – a fundamental feature of the cytoskeleton that underlies chirality in cells and multicellular organisms.

Funding

ML gratefully acknowledges funding support from the NIH (R01-GM077425) and the American Heart Association (Established Investigator Grant 0740088N). Y.-W.H. was supported by a NIH Training Grant of Organogenesis; C.-F.C was supported by a Whitehall Foundation Research Award and an Alfred P. Sloan Research Fellowship

History

Publisher Statement

This is a copy of an article published in the Proceedings of the National Academy of Sciences © 2012 National Academy of Sciences. The final publication is available at www.pnas.org/ doi: 10.1073/pnas.1202659109

Publisher

National Academy of Sciences

Language

en_US

issn

0027-8424

Issue date

31/07/2012

Usage metrics

Categories

Keywords

Exports