University of Illinois Chicago
Browse

ITD Double-Edge Diffraction for Complex Source Beam Illumination

Download (869.2 kB)
journal contribution
posted on 2014-02-03, 00:00 authored by Alberto Toccafondi, Stefano M. Canta, Danilo Erricolo
A new high-frequency incremental theory of diffraction (ITD) formulation for the double diffraction by metallic wedges when illuminated by complex source points (CSP) is provided. The main motivation is the extension of the class of problems that can be studied using asymptotic (i.e., ray-based and incremental) methods by providing a double diffraction description for CSP, which are considered because they are efficient to analyze electrically large structures. The new formulation provides an accurate asymptotic description of the interaction between two edges in an arbitrary configuration, including slope diffraction contributions. Advantages of the ITD formulation for CSP illumination include avoiding the typical ray-caustic impairments of the GTD/UTD ray techniques and not requiring ray tracing in complex space. Numerical results are presented and compared to a Method-of-Moments analysis to demonstrate the accuracy of the solution.

Funding

This work was supported in part by AFOSR Grant FA9550-05-1-0443 and AFOSR Grant FA9550-12-1-0174.

History

Publisher Statement

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Publisher

Institute of Electrical and Electronics Engineers

Language

  • en_US

issn

0018-926X

Issue date

2013-05-01

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC