Impairment of neurovascular coupling in Type 1 Diabetes Mellitus in rats is prevented by pancreatic islet transplantation and reversed by a semi-selective PKC inhibitor
posted on 2017-03-27, 00:00authored byF. Vetri, M.R.G. Qir, H.L. Xu, J. Oberholzer, C. Paisansathan
We hypothesized that chronic hyperglycemia has a detrimental effect on neurovascular coupling in the brain and that this may be linked to protein kinase C (PKC)-mediated phosphorylation. Therefore, in a rat model of streptozotocin-induced chronic type 1 diabetes mellitus (T1DM), and in nondiabetic (ND) controls, we monitored pial arteriole diameter changes during sciatic nerve stimulation and topical applications of the large-conductance Ca2+-operated K+ channel (BKCa) opener, NS-1619, or the K+ inward rectifier (Kir) channel agonist, K+. In the T1DM vs. ND rats, the dilatory response associated with sciatic nerve stimulation was decreased by ∼30%, whereas pial arteriolar dilations to NS-1619 and K+ were largely suppressed. These responses were completely restored by the acute topical application of a PKC antagonist, calphostin C. Moreover, the suffusion of a PKC activator, phorbol 12,13-dibutyrate, in ND rats was able to reproduce the vascular reactivity impairments found in T1DM rats. Assay of PKC activity in brain samples from T1DM vs. ND rats revealed a significant gain in activity only in specimens harvested from the pial and superficial glia limitans tissue, but not in bulk cortical gray matter. Altogether, these findings suggest that the T1DM-associated impairment of neurovascular coupling may be mechanistically linked to a readily reversible PKC-mediated depression of BKCa and Kir channel activity.
History
Publisher Statement
NOTICE: This is the author’s version of a work that was accepted for publication in Brain Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Brain Research. 2017. 1655: 48-54. DOI: 10.1016/j.brainres.2016.11.012.