cm-2016-04181mR2_Revised.pdf (773.74 kB)
Download fileInvestigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites
journal contribution
posted on 20.06.2018, 00:00 authored by Tanghong Yi, Wei Chen, Lei Cheng, Ryan D. Bayliss, Feng Lin, Michael R. Plews, Dennis Nordlund, Marca M. Doeff, Kristin A. Persson, Jordi CabanaReversible intercalation reactions provide the basis for modern battery electrodes. Despite decades of exploration of electrode materials, the potential for materials in the non-oxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials AxK1-xFeF3 (A = Li, Na). Starting with KFeF3, approximately 75% of K+ ions were subsequently replaced by Li+ and Na+ through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopy confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe2+/3+ redox couple. A computational study by density functional theory (DFT) showed agreement with the structural and electrochemical data obtained experimentally, suggesting the possibility of fluoride-based materials as potential intercalation electrodes. This study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.