University of Illinois Chicago
Browse

Latent Neural Differential Equations for Video Generation

journal contribution
posted on 2021-08-16, 16:05 authored by Cade Gordon, Natalie PardeNatalie Parde
Generative Adversarial Networks have recently shown promise for video generation, building off of the success of image generation while also addressing a new challenge: time. Although time was analyzed in some early work, the literature has not adequately grown with temporal modeling developments. We study the effects of Neural Differential Equations to model the temporal dynamics of video generation. The paradigm of Neural Differential Equations presents many theoretical strengths including the first continuous representation of time within video generation. In order to address the effects of Neural Differential Equations, we investigate how changes in temporal models affect generated video quality. Our results give support to the usage of Neural Differential Equations as a simple replacement for older temporal generators. While keeping run times similar and decreasing parameter count, we produce a new state-of-the-art model in 64$\times$64 pixel unconditional video generation, with an Inception Score of 15.20.

History

Citation

Gordon, C.Parde, N. (2020). Latent Neural Differential Equations for Video Generation. Retrieved from http://arxiv.org/abs/2011.03864v3

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC