University of Illinois at Chicago
Metal impurity-assisted formation.pdf (2.84 MB)

Metal impurity-assisted formation of nanocone arrays on Si by low energy ion-beam irradiation.

Download (2.84 MB)
journal contribution
posted on 2017-11-16, 00:00 authored by KS Lloyd, IL Bolotin, M Schmeling, L Hanley, IV Veryovkin
Fabrication of nanocone arrays on Si surfaces was demonstrated using grazing incidence irradiation with 1 keV Ar+ ions concurrently sputtering the surface and depositing metal impurity atoms on it. Among three materials compared as co-sputtering targets Si, Cu and stainless steel, only the steel was found to assist the growth of dense arrays of nanocones at ion fluences between 1018 and 1019 ions/cm2 . The structural characterization of samples irradiated with these ion fluences using Scanning Electron Microscopy and Atomic Force Microscopy revealed that regions far away from co-sputtering targets are covered with nanoripples, and that nanocones popped-up out of the rippled surfaces when moving closer to co-sputtering targets, with their density gradually increasing and reaching saturation in the regions close to these targets. The characterization of the samples’ chemical composition with Total Reflection X-ray Fluorescence Spectrometry and X-ray Photoelectron Spectroscopy revealed that the concentration of metal impurities originating from stainless steel (Fe, Cr and Ni) was relatively high in the regions with high density of nanocones (Fe reaching a few atomic percent) and much lower (factor of 10 or so) in the region of nanoripples. Total Reflection Xray Fluorescence Spectrometry measurements showed that higher concentrations of these impurities are accumulated under the surface in both regions. X-ray Photoelectron Spectroscopy experiments showed no direct evidence of metal silicide formation occurring on one region only (nanocones or nanoripples) and thus showed that this process could not be the driver of nanocone array formation. Also, these measurements indicated enhancement in oxide formation on regions covered by nanocones. Overall, the results of this study suggest that the difference in concentration of metal impurities in the thin near-surface layer forming under ion irradiation might be responsible for the differences in surface structures.


This work was supported by the U.S. National Science Foundation (DMR-1206175) and the University of Illinois at Chicago.


Publisher Statement

This is the author’s version of a work that was accepted for publication in Surface Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Surface Science. 2016. 652: 334-343. DOI: 10.1016/j.susc.2016.03.016.





Issue date


Usage metrics


    No categories selected


    Ref. manager