posted on 2013-12-03, 00:00authored byLu Juiang, Xiqiang Lui, Zujian Chen, Yi Jin, Caroline E. Heidbreder, Antonia Kolokythas, Anxun Wang, Yang Dai, Xiaofeng Zhou
miR-7 (microRNA-7) has been characterized as a tumour suppressor in several human cancers. It targets a number of proto-oncogenes that contribute to cell proliferation and survival. However, the mechanism(s) by which miR-7 suppresses tumorigenesis in TSCC (tongue squamous cell carcinoma) is unknown. The present bioinformatics analysis revealed that IGF1R (insulin-like growth factor 1 receptor) mRNA is a potential target for miR-7. Ectopic transfection of miR-7 led to a significant reduction in IGF1R at both the mRNA and protein levels in TSCC cells. Knockdown of miR-7 in TSCC cells enhanced IGF1R expression. Direct targeting of miR-7 to three candidate binding sequences located in the 3'-untranslated region of IGF1R mRNA was confirmed using luciferase-reporter-gene assays. The miR-7-mediated down-regulation of IGF1R expression attenuated the IGF1 (insulin-like growth factor 1)-induced activation of Akt (protein kinase B) in TSCC cell lines, which in turn resulted in a reduction in cell proliferation and cell-cycle arrest, and an enhanced apoptotic rate. Taken together, the present results demonstrated that miR-7 regulates the IGF1R/Akt signalling pathway by post-transcriptional regulation of IGF1R. Our results indicate that miR-7 plays an important role in TSCC and may serve as a novel therapeutic target for TSCC patients.
Funding
This work was supported in part by the National Institutes of Health Public Health Service
[grant numbers K22DE014847, RO1CA139596 and RO3CA135992] and the Prevent
Cancer Foundation (to X.Z.).
History
Publisher Statement
The final version of record is available at http://www.biochemj.org/bj/default.htm