University of Illinois at Chicago
Browse
- No file added yet -

Network-Based and Binless Frequency Analyses

Download (937.27 kB)
journal contribution
posted on 2016-05-02, 00:00 authored by S Derrible, N. Ahmad
We introduce and develop a new network-based and binless methodology to perform frequency analyses and produce histograms. In contrast with traditional frequency analysis techniques that use fixed intervals to bin values, we place a range ±ζ around each individual value in a data set and count the number of values within that range, which allows us to compare every single value of a data set with one another. In essence, the methodology is identical to the construction of a network, where two values are connected if they lie within a given a range (±ζ). The value with the highest degree (i.e., most connections) is therefore assimilated to the mode of the distribution. To select an optimal range, we look at the stability of the proportion of nodes in the largest cluster. The methodology is validated by sampling 12 typical distributions, and it is applied to a number of real-world data sets with both spatial and temporal components. The methodology can be applied to any data set and provides a robust means to uncover meaningful patterns and trends. A free python script and a tutorial are also made available to facilitate the application of the method.

Funding

This research was supported, in part, by NSF Award CCF- 1331800, by the University of Illinois at Chicago Institute for Environmental Science and Policy (IESP) Pre-Doctoral Fellowship, and by the Department of Civil and Materials Engineering at the University of Illinois at Chicago.

History

Publisher Statement

This is a copy of an article published in PLoS ONE © 2015 Public Library of Science Publications.

Publisher

PLoS One

issn

1932-6203

Issue date

2015-11-03

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC