University of Illinois Chicago
Browse

On the Complexity of Newman’s Community Finding Approach for Biological and Social Networks

Download (327.13 kB)
journal contribution
posted on 2013-12-03, 00:00 authored by Bhaskar DasGupta, Devendra Desai
Given a graph of interactions, a module (also called a community or cluster) is a subset of nodes whose fitness is a function of the statistical significance of the pairwise interactions of nodes in the module. The topic of this paper is a model-based community finding approach, commonly referred to as modularity clustering, that was originally proposed by Newman (Leicht and Newman, 2008 [25]) and has subsequently been extremely popular in practice (e.g., see Agarwal and Kempe, 2008 [1], Guimer'a et al., 2007 [20], Newman, 2006 [28], Newman and Girvan, 2004 [30], Ravasz et al., 2002 [32]). Various heuristic methods are currently employed for finding the optimal solution. However, as observed in Agarwal and Kempe (2008)[1], the exact computational complexity of this approach is still largely unknown. To this end, we initiate a systematic study of the computational complexity of modularity clustering. Due to the specific quadratic nature of the modularity function, it is necessary to study its value on sparse graphs and dense graphs separately. Our main results include a (1 + epsilon)-inapproximability for dense graphs and a logarithmic approximation for sparse graphs. We make use of several combinatorial properties of modularity to get these results. These are the first non-trivial approximability results beyond the NP-hardness results in Brandes et al. (2007) [10]. (c) 2012 Elsevier Inc. All rights reserved.

History

Publisher Statement

NOTICE: This is the author’s version of a work that was accepted for publication in Journal of Computer and System Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Computer and System Sciences, Vol 79, Issue 1, (2013) DOI: 10.1016/j.jcss.2012.04.003

Publisher

Elsevier

Language

  • en_US

issn

0022-0000

Issue date

2013-02-01

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC