posted on 2019-04-18, 00:00authored byYoungjoon Hong, Matthew Otten, Misun Min, Stephen K. Gray, David P. Nicholls
In this letter, we consider the question of designing insulator/metal thermovoltaic structures with periodically corrugated interfaces that give optimal performance based on the metric of useful power density. Using a Monte Carlo approach in a robust, rapid, and high-accuracy numerical simulation strategy, we have identified such interface shapes. We searched among the class of sinusoids and found that a flat-interface configuration could be significantly improved in transverse magnetic polarization. More specifically, we found that (i) the performance improves with increasing corrugation amplitude (ii) up to a maximum, (iii) the shape of the corrugation is largely irrelevant, and (iv) the period of the corrugation should be chosen in connection to the bandgap energy of the photovoltaic cell. For the latter, we provide a simple expression as a starting point for practitioners interested in fabricating such structures.
Funding
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357, and the National Science Foundation through grant No. DMS-1522548 (D.P.N.). Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357.
History
Publisher Statement
Copyright @ AIP Publishing
Citation
Hong, Y., Otten, M., Min, M., Gray, S. K., & Nicholls, D. P. (2019). Periodic corrugations to increase efficiency of thermophotovoltaic emitting structures. Applied Physics Letters, 114(5). doi:10.1063/1.5080548