University of Illinois Chicago
Browse

Preconditioning with Associated Blocking of Ca2+ Inflow Alleviates Hypoxia-Induced Damage to Pancreatic beta-Cells

Download (1.49 MB)
journal contribution
posted on 2014-03-18, 00:00 authored by Zuheng Ma, Noah Moruzzi, Sergiu-Bogdan Catrina, Ingrid Hals, Jose´ Oberholzer, Valdemar Grill, Anneli Bjorklund
Objective: Beta cells of pancreatic islets are susceptible to functional deficits and damage by hypoxia. Here we aimed to characterize such effects and to test for and pharmacological means to alleviate a negative impact of hypoxia. Methods and Design: Rat and human pancreatic islets were subjected to 5.5 h of hypoxia after which functional and viability parameters were measured subsequent to the hypoxic period and/or following a 22 h re-oxygenation period. Preconditioning with diazoxide or other agents was usually done during a 22 h period prior to hypoxia. Results: Insulin contents decreased by 23% after 5.5 h of hypoxia and by 61% after a re-oxygenation period. Preconditioning with diazoxide time-dependently alleviated these hypoxia effects in rat and human islets. Hypoxia reduced proinsulin biosynthesis (H-3-leucine incorporation into proinsulin) by 35%. Preconditioning counteracted this decrease by 91%. Preconditioning reduced hypoxia-induced necrosis by 40%, attenuated lowering of proteins of mitochondrial complexes I-IV and enhanced stimulation of HIF-1-alpha and phosphorylated AMPK proteins. Preconditioning by diazoxide was abolished by co-exposure to tolbutamide or elevated potassium (i.e. conditions which increase Ca2+ inflow). Preconditioning with nifedipine, a calcium channel blocker, partly reproduced effects of diazoxide. Both diazoxide and nifedipine moderately reduced basal glucose oxidation whereas glucose-induced oxygen consumption (tested with diazoxide) was unaffected. Preconditioning with diaxoxide enhanced insulin contents in transplants of rat islets to nondiabetic rats and lowered hyperglycemia vs. non-preconditioned islets in streptozotocin-diabetic rats. Preconditioning of human islet transplants lowered hyperglycemia in streptozotocin-diabetic nude mice. Conclusions: 1) Prior blocking of Ca2+ inflow associates with lesser hypoxia-induced damage, 2) preconditioning affects basal mitochondrial metabolism and accelerates activation of hypoxia-reactive and potentially protective factors, 3) results indicate that preconditioning by K+-ATP-channel openers has therapeutic potential for islet transplantations.

Funding

This study was supported by the Swedish Research Council, the Swedish Society of Medicine, Funds of Karolinska Institutet, the Norwegian Diabetes Association and an EFSD/MSD grant. This work was partially funded by the Chicago Diabetes Project and the University of Illinois College of Medicine. JO is supported by National Institutes of Health R01DK091526 and the Integrated Islet Distribution Program HHSN276200900006C.

History

Publisher Statement

© 2013 Ma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Publisher

PLoS One

Language

  • en_US

issn

1932-6203

Issue date

2013-07-01

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC