University of Illinois Chicago
Browse

Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes

Download (1.45 MB)
journal contribution
posted on 2012-03-09, 00:00 authored by Anita L. Manogaran, Joo Y. Hong, Joan Hufana, Jens Tyedmers, Susan Lindquist, Susan W. Liebman
Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI+] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of the prion form of the Rnq1 protein, [PIN+]. When fused to GFP and overexpressed in [ps2] [PIN+] cells, Sup35 forms fluorescent rings, and cells with these rings bud off [PSI+] daughters. We investigated the effects of over 400 gene deletions on this de novo induction of [PSI+]. Two classes of gene deletions were identified. Class I deletions (bug1D, bem1D, arf1D, and hog1D) reduced the efficiency of [PSI+] induction, but formed rings normally. Class II deletions (las17D, vps5D, and sac6D) inhibited both [PSI+] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes Huntington’s disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps.

Funding

This work was supported by the National Institutes of Health (NIH) grant GM56350 to SWL, NIH NSRA F32 postdoctoral fellowship GM072340 to ALM, and the Howard Hughes Medical Institute and NIH grant GM25874 to SL.

History

Publisher Statement

© 2011 Manogaran et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The original version is available through the Public Library of Science at DOI: 10.1371/journal.pgen.1001386.

Publisher

Public Library of Science

Language

  • en_US

issn

1553-7390

Issue date

2011-05-01

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC