University of Illinois at Chicago
Browse
Lomonte_GRSL_Revised_2009_08_21.pdf (393.03 kB)

RF Tomography for Below-Ground Imaging of Extended Areas and Close-in Sensing

Download (393.03 kB)
journal contribution
posted on 2014-02-03, 00:00 authored by Lorenzo Lo Monte, Danilo Erricolo, Francesco Soldovieri, Michael C. Wicks
Three extensions to radio-frequency (RF) tomography for imaging of voids under wide areas of regard are presented. These extensions are motivated by three challenges. One challenge is the lateral wave, which propagates in proximity of the air–earth interface and represents the predominant radiation mechanism for wide-area surveillance, sensing of denied terrain, or close-in sensing. A second challenge is the direct-path coupling between transmitters (Txs) and receivers (Rxs), that affects the measurements. A third challenge is the generation of clutter by the unknown distribution of anomalies embedded in the ground. These challenges are addressed and solved using the following strategies: 1) A forward model for RF tomography that accounts for lateral waves expressed in closed form (for fast computation); 2) a strategy that reduces the direct-path coupling between any Tx–Rx pair; and 3) an improved inversion scheme that is robust with respect to noise, clutter, and high attenuation. A finite difference time domain simulation of a scenario representing close-in sensing of a denied area is performed, and reconstructed images obtained using the improved and the classical models of RF tomography are compared.

Funding

This work was supported in part by the Air Force Research Laboratory under Contract F33601-02-F-A581 and in part by the U.S. Department of Defense under Grant FA9550-05-1-0443.

History

Publisher Statement

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Publisher

Institute of Electrical and Electronics Engineers

Language

  • en_US

issn

1545-598X

Issue date

2010-07-01

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC