Selecting the best items in a dataset is a common task in data exploration.
However, the concept of "best" lies in the eyes of the beholder: different
users may consider different attributes more important, and hence arrive at
different rankings. Nevertheless, one can remove "dominated" items and create a
"representative" subset of the data set, comprising the "best items" in it. A
Pareto-optimal representative is guaranteed to contain the best item of each
possible ranking, but it can be almost as big as the full data. Representative
can be found if we relax the requirement to include the best item for every
possible user, and instead just limit the users' "regret". Existing work
defines regret as the loss in score by limiting consideration to the
representative instead of the full data set, for any chosen ranking function.
However, the score is often not a meaningful number and users may not
understand its absolute value. Sometimes small ranges in score can include
large fractions of the data set. In contrast, users do understand the notion of
rank ordering. Therefore, alternatively, we consider the position of the items
in the ranked list for defining the regret and propose the {\em rank-regret
representative} as the minimal subset of the data containing at least one of
the top-$k$ of any possible ranking function. This problem is NP-complete. We
use the geometric interpretation of items to bound their ranks on ranges of
functions and to utilize combinatorial geometry notions for developing
effective and efficient approximation algorithms for the problem. Experiments
on real datasets demonstrate that we can efficiently find small subsets with
small rank-regrets.
History
Citation
Asudeh, A., Nazi, A., Zhang, N., Das, G.Jagadish, H. V. (2018). RRR: Rank-Regret Representative. CoRR, abs/1802.10303. Retrieved from http://arxiv.org/abs/1802.10303v2