posted on 2012-08-15, 00:00authored byShivani Ponnala, Krishna Kumar Veeravalli, Chandramu Chetty, Dzung H. Dinh, Jasti S. Rao
Background: Glioblastoma Multiforme (GBM) is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic
mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR) are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Nonhomologous end joining (NHEJ) repair mechanism plays a major role in double strand break (DSB) repair in mammalian
cells. Methodology/Principal Findings: Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ
repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU) and MMP9- cathepsin B (pMC) shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells,
thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet
tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that
EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls. Conclusion/Significance: Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation
and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemoresistant
cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from clinical stand point.
Funding
This research was supported by a grant from National Institute of Neurological Disorders and Stroke (N.I.N.D.S), NS047699 (to JSR). The funders had no rule in study design, data collection and analysis, decision to publish, or preparation of the manuscript.