journal.pone.0026191.pdf (1.15 MB)
Download file

Regulation of DNA Repair Mechanism in Human Glioma Xenograft Cells both In Vitro and In Vivo in Nude Mice

Download (1.15 MB)
journal contribution
posted on 15.08.2012, 00:00 authored by Shivani Ponnala, Krishna Kumar Veeravalli, Chandramu Chetty, Dzung H. Dinh, Jasti S. Rao
Background: Glioblastoma Multiforme (GBM) is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR) are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Nonhomologous end joining (NHEJ) repair mechanism plays a major role in double strand break (DSB) repair in mammalian cells. Methodology/Principal Findings: Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU) and MMP9- cathepsin B (pMC) shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls. Conclusion/Significance: Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemoresistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from clinical stand point.

Funding

This research was supported by a grant from National Institute of Neurological Disorders and Stroke (N.I.N.D.S), NS047699 (to JSR). The funders had no rule in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

History

Publisher Statement

Copyright © 2011 Ponnala et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. DOI: 10.1371/journal.pone.0026191

Publisher

Public Library of Science

Language

en_US

issn

1932-6203

Issue date

14/10/2011

Usage metrics

Categories

Keywords

Exports