accpolytopes.pdf (234.12 kB)
Download fileSequences of Lct-Polytopes
journal contribution
posted on 2012-03-06, 00:00 authored by A. Libgober, M. MustataTo r ideals on a germ of smooth variety X one attaches a rational polytope in Rr + (the LCT-polytope) that generalizes the notion of log canonical threshold in the case of one ideal. We study these polytopes, and prove a strong form of the Ascending Chain Condition in this setting: we show that if a sequence (Pm)m1 of LCT-polytopes in Rr + converges to a compact subset Q in the Hausdorff metric, then Q = T mm0 Pm for some m0, and Q is an LCT-polytope.
Funding
The first author was patially supported by NSF grant DMS-0705050. The second author was partially supported by NSF grant DMS-0758454 and a Packard Fellowship.
History
Publisher Statement
© 2011 by INT Press Boston, INC, Mathematical Research Letters. Post print version of article may differ from published version.Publisher
INT Press Boston, INCLanguage
- en_US