Pages from Final accepted draft.pdf (440.87 kB)
Download file

Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis

Download (440.87 kB)
journal contribution
posted on 19.02.2014, 00:00 by Krishnamurthy Ramaswamy, Joseph S.K.
The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and protein or protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-protein) and 48% (BmHAT protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis.

Funding

This study was supported by NIH grant AI064745.

History

Publisher Statement

NOTICE: This is the author’s version of a work that was accepted for publication in Vaccine. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Vaccine, Vol 31, Issue 33, 2013 DOI:10.1016/j.vaccine.2013.05.077

Publisher

Elsevier Inc.

Language

en_US

issn

1873-2518

Issue date

01/07/2013

Usage metrics

Categories

Exports