University of Illinois Chicago
Browse

Small Molecules Targeted to a Non-Catalytic ‘‘RVxF’’ Binding Site of Protein Phosphatase-1 Inhibit HIV-1

Download (2.97 MB)
journal contribution
posted on 2012-10-02, 00:00 authored by Tatiana Ammosova, Maxim Platonov, Venkat R. K. Yedavalli, Yuri Obukhov, Victor R. Gordeuk, Kuan-Teh Jeang, Dmytro Kovalskyy, Sergei Nekhai
HIV-1 Tat protein recruits host cell factors including CDK9/cyclin T1 to HIV-1 TAR RNA and thereby induces HIV-1 transcription. An interaction with host Ser/Thr protein phosphatase-1 (PP1) is critical for this function of Tat. PP1 binds to a Tat sequence, Q35VCF38, which resembles the PP1-binding ‘‘RVxF’’ motif present on PP1-binding regulatory subunits. We showed that expression of PP1 binding peptide, a central domain of Nuclear Inhibitor of PP1, disrupted the interaction of HIV-1 Tat with PP1 and inhibited HIV-1 transcription and replication. Here, we report small molecule compounds that target the ‘‘RVxF’’-binding cavity of PP1 to disrupt the interaction of PP1 with Tat and inhibit HIV-1 replication. Using the crystal structure of PP1, we virtually screened 300,000 compounds and identified 262 small molecules that were predicted to bind the ‘‘RVxF’’-accommodating cavity of PP1. These compounds were then assayed for inhibition of HIV-1 transcription in CEM T cells. One of the compounds, 1H4, inhibited HIV-1 transcription and replication at non-cytotoxic concentrations. 1H4 prevented PP1-mediated dephosphorylation of a substrate peptide containing an RVxF sequence in vitro. 1H4 also disrupted the association of PP1 with Tat in cultured cells without having an effect on the interaction of PP1 with the cellular regulators, NIPP1 and PNUTS, or on the cellular proteome. Finally, 1H4 prevented the translocation of PP1 to the nucleus. Taken together, our study shows that HIV- inhibition can be achieved through using small molecules to target a non-catalytic site of PP1. This proof-of-principle study can serve as a starting point for the development of novel antiviral drugs that target the interface of HIV-1 viral proteins with their host partners.

Funding

This project was supported by Civilian Research and Development Foundation [Grant UKB2-2927-KV-07] (to SN and DK), National Institutes of Health (NIH) Research grants [Grant 2 R25 HL003679-08] (to VRG) funded by the National Heart, Lung, and Blood Institute and The Office of Research on Minority Health [Grant 2MO1 RR10284] (to VRG), [Grant 1SC1GM082325-01] (to SN); [Grant K25GM097501] (to YO); by Howard University Seed Grant (to SN) and RCMI-NIH grant [Grant RCMI-NIH 2G12RR003048] (to SN) from the Research Centers in Minority Institutions (RCMI) Program (Division of Research Infrastructure, National Center for Research Resources, NIH).

History

Publisher Statement

© 2012 Ammosova et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. doi: 10.1371/journal.pone.0039481 unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Publisher

Public Library of Science

Language

  • en_US

issn

1932-6203

Issue date

2012-01-01

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC