posted on 2016-06-13, 00:00authored byWN Yu, V Nogueira, A Sobhakumari, KC Patra, PT Bhaskar, N Hay
Akt is frequently activated in human cancers. However, it is unknown whether systemic inhibition of a single Akt isoform could regress cancer progression in cancers that are not driven by Akt activation. We systemically deleted Akt1 after tumor onset in p53(-/-) mice, which develop tumors independently of Akt activation. Systemic Akt1 deletion regresses thymic lymphoma in p53(-/-) mice emulating p53 restoration. Furthermore, pharmacological inhibition of Akt selectively kills thymic lymphoma cells and not primary thymocytes. Mechanistically, Akt1 inhibition in p53(-/-) thymic lymphoma inhibits Skp2 expression and induces FasL, which is the primary cause of cell death. Skp2 exerts resistance to cell death by antagonizing the induction of FasL and reducing FAS expression, which is linked to cyclin D1 expression. The results established a paradigm whereby systemic Akt1 inhibition is sufficient to regress tumors that are not driven by Akt activation and a mechanism of cell survival by Skp2.
Funding
These studies were supported by NIH grants R01AG016927 and R01CA090764, and by VA Merit Award BX000733 to N.H..
History
Publisher Statement
NOTICE: This is the author’s version of a work that was accepted for publication in Cell Reports. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Cell Rep. 2015 July 28; 12(4): 610–621. DOI:10.1016/j.celrep.2015.06.057 .