University of Illinois Chicago
Browse

TRANSVERSE NONCOMMUTATIVE GEOMETRY OF FOLIATIONS

Download (510.96 kB)
journal contribution
posted on 2018-11-07, 00:00 authored by Moulay-Tahar Benameur, James L. Heitsch
We define an L2-signature for proper actions on spaces of leaves of transversely oriented foliations with bounded geometry. This is achieved by using the Connes fibration to reduce the problem to the case of Riemannian bifoliations where we show that any transversely elliptic first order operator in an appropriate Beals-Greiner calculus, satisfying the usual axioms, gives rise to a semi-finite spectral triple over the crossed product algebra of the foliation by the action, and hence a periodic cyclic cohomology class through the Connes-Chern character. The Connes-Moscovici hypoelliptic signature operator yields an example of such a triple and gives the differential definition of our “L2-signature”. For Galois coverings of bounded geometry foliations, we also define an Atiyah-Connes semi-finite spectral triple which generalizes to Riemannian bifoliations the Atiyah approach to the L2-index theorem. The compatibility of the two spectral triples with respect to Morita equivalence is proven, and by using an Atiyah-type theorem proven in [BH17], we deduce some integrality results for Riemannian foliations with torsion-free monodromy groupoids.

History

Citation

Benameur, M. T., & Heitsch, J. L. (2018). Transverse noncommutative geometry of foliations. Journal of Geometry and Physics, 134, 161-194. doi:10.1016/j.geomphys.2018.08.011

Publisher

Elsevier

Language

  • en_US

issn

0393-0440

Issue date

2018-09-07

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC