posted on 2013-10-25, 00:00authored byMingyu Li, Lisette A. Maddison, Zachary Crees, Wenbiao Chen
β-Cells of the islet of Langerhans produce insulin to maintain glucose homeostasis. Self-replication of β-cells is the predominant mode of postnatal β-cell production in mammals, with about 20% of rodent β cells dividing in a 24-hour period. However, replicating β-cells are rare in adults. Induction of self-replication of existing β-cells is a potential treatment for diabetes. In zebrafish larvae, β-cells rarely self-replicate, even under conditions that favor β-cell genesis such overnutrition and β-cell ablation. It is not clear why larval β-cells are refractory to replication. In this study, we tested the hypothesis that insufficient activity of cyclin-dependent kinase 4 may be responsible for the low replication rate by ectopically expressing in β-cells a mutant CDK4 (CDK4(R24C)) that is insensitive to inhibition by cyclin-dependent kinase inhibitors. Our data show that expression of CDK4(R24C) in β-cells enhanced β-cell replication. CDK4(R24C) also dampened compensatory β-cell neogenesis in larvae and improved glucose tolerance in adult zebrafish. Our data indicate that CDK4 inhibition contributes to the limited β-cell replication in larval zebrafish. To our knowledge, this is the first example of genetically induced β-cell replication in zebrafish.
Funding
This work was
supported by the Vanderbilt Diabetes Research and Training
Centers and DK088686