- No file added yet -
Thermal rectification in a fluid reservoir
journal contribution
posted on 2012-08-21, 00:00 authored by Sohail Murad, Ishwar K. PuriAn organized nonuniform mass distribution in solids leads to a monotonically varying thermal conductivity in a nanomaterial so that the heat flux is directionally dependent. We investigate through molecular dynamics simulations if the influence of an organized mass distribution in a fluid also leads to thermal rectification. Heat transfer is monitored in a water reservoir placed
between two (hot and cold) silicon walls. The distribution of the fluid in the reservoirs is organized by applying an external force to each water molecule in a specified direction, creating a density gradient. This external force is smaller than the intermolecular forces in water, in most cases by much more than an order of magnitude. The simulations reveal that mass graded fluid-containing nanosystems can be engineered to possess an asymmetric axial thermal conductance that leads to greater heat flow in the direction of decreasing mass density. The rectification improves as the thermal conductivity is enhanced by increasing the fluid density adjacent to a hot wall, since doing so decreases the inter facial resistance and increases the heat flux. © 2012 American Institute of Physics.
History
Publisher Statement
© 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters (Murad, S. & Puri, I. K. 2012. Thermal rectification in a fluid reservoir. Applied Physics Letters, 100(12).) and may be found at http://apl.aip.org/resource/1/applab/v100/i12/p121901_s1. DOI: 10.1063/1.3696022Publisher
American Institute of PhysicsLanguage
- en_US
issn
0003-6951Issue date
2012-03-01Usage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC