posted on 2021-07-09, 21:02authored byBahareh Abbasi, Ehsan Noohi, Sina Parastegari, Milos ZefranMilos Zefran
Object manipulation actions represent an important share of the Activities of
Daily Living (ADLs). In this work, we study how to enable service robots to use
human multi-modal data to understand object manipulation actions, and how they
can recognize such actions when humans perform them during human-robot
collaboration tasks. The multi-modal data in this study consists of videos,
hand motion data, applied forces as represented by the pressure patterns on the
hand, and measurements of the bending of the fingers, collected as human
subjects performed manipulation actions. We investigate two different
approaches. In the first one, we show that multi-modal signal (motion, finger
bending and hand pressure) generated by the action can be decomposed into a set
of primitives that can be seen as its building blocks. These primitives are
used to define 24 multi-modal primitive features. The primitive features can in
turn be used as an abstract representation of the multi-modal signal and
employed for action recognition. In the latter approach, the visual features
are extracted from the data using a pre-trained image classification deep
convolutional neural network. The visual features are subsequently used to
train the classifier. We also investigate whether adding data from other
modalities produces a statistically significant improvement in the classifier
performance. We show that both approaches produce a comparable performance.
This implies that image-based methods can successfully recognize human actions
during human-robot collaboration. On the other hand, in order to provide
training data for the robot so it can learn how to perform object manipulation
actions, multi-modal data provides a better alternative.
History
Citation
Abbasi, B., Noohi, E., Parastegari, S.Zefran, M. (2019). Understanding of Object Manipulation Actions Using Human Multi-Modal Sensory Data. CoRR, abs/1905.07012. Retrieved from http://arxiv.org/abs/1905.07012v2