University of Illinois Chicago
Browse

Urinary Copper Elevation in a Mouse Model of Wilson’s Disease Is a Regulated Process to Specifically Decrease the Hepatic Copper Load

Download (550.46 kB)
journal contribution
posted on 2013-10-25, 00:00 authored by Lawrence W. Gray, Fangyu Peng, Shannon A. Molloy, Venkata S. Pendyala, Abigael Muchenditsi, Otto Muzik, Jaekwon Lee, Jack H. Kaplan, Svetlana Lutsenko
Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson’s disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b2/2 mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b2/2 livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr12/2 knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD.

Funding

This work was supported by the National Institutes of Health grants 5F31DK084730 to LWG, 5R01DK079209 to JL, and 5P01GM067166 to SL and JHK. The mass-spectrometry work was done at the Metal Ion Core (Oregon Health and Science University), supported by NIH instrumentation grant S10-RR025512

History

Publisher Statement

2012 Gray et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The original version is available through Public Library of Science at DOI: 10.1371/journal.pone.0038327 .

Publisher

Public Library of Science

Language

  • en_US

issn

1932-6203

Issue date

2012-06-01

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC