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PREFACE

Preface contains information and instructions to assist the reader in the intended interpretation of this document.  

A paper by Art JJ, in1995  inspired this project by demonstrating the feasibility of melding diffusion, kinetics and 

electrical phenomena into a single predictive model of channel behavior.[51]

REVISION HISTORY

Event Date Description Location
Committee 4 points 12/13/12 Diffusion EQ, Terse Algorithm, Sim SUR, Validation test 5.1.10,  6.5,  9.18,  11.2.1:3, 

11.7.3.1,  12.3

KEY PHRASES

Affine transformations, allosteric modulation, basis for neural networks, binding kinetics, biocomputation, 

bioinformatics, biological computation, biological neural network, BNN, Brownian dynamics, cellular information 

processing, channel capacity, channel cluster, channel distribution, channel localization, channel rafts, channel 

receptor, chemical modulators, closed graph circuit, closed grid circuit, closed surface manifold, collision detection, 

compartmental model, computational statistics, computational thinking, concentration gradient drivers, conics, 

diffusion currents, distributed capacitance, electrodynamics, extracellular compartment, finite state machine, 

geodesics, geometric representation of neuron, graph theory, heterogeneous digital data, hybrid model, interactive 

computation, ion channel, ion pump, ion sequestration, Kolmogorov stochastics, linear systems theory, liquid state 

processor, manifolds, Markov chains, massive datasets, membranal biosystem, membranal proteins, membrane 

computing, microphysiology, molecular dynamics, molecular model, morphometrics, multi-scale modeling, 

nanoscale model, nearest neighbor algorithm, neighborhood projections, neural informatics, neural ionics, neural 

modeling, neural process, neurodynamics, neuron simulation, neuron topology, neurophysiology, neuroscience, 

nonlinear systems theory, open-form iterative equations, parameterization, partition of unity, portless network, 

probabilistic computer language, quantum statistics, resistive-capacitive grid, SDE, sequestration, simulation of 

complex stochastic systems, soft matter physics, spatiotemporal dynamics, spiking neural systems, stochastic 
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PREFACE (continued)

differential equation, stochastic dynamics, stochastic protein conformation, subcellular boundary-crossing processes, 

synaptic cleft model, tessellation, 3-D voltage gradient, transformative multidisciplinary research, two-dimensional 

propagation, vesicular release information veracity, whole cell model.

PREPARATORY REFERENCE TEXTS

Due to the interdisciplinary nature of the project, it may be helpful to the reader to note a core set of sources 

containing the general knowledge that support the synthesis of physics, biology and engineering into a coherent, 

consistent and optimal-to-mission, body of work.

1. Hille B, Ion Channels of Excitable Membranes, 2001.

2. Sakmann B, Neher E, Single Channel Recording, 1995.

3. Weiss T, Cellular Biophysics, 1996, 2 volumes

4. Papoulis A, Pillai S, Probability Random Variables and Stochastic Processes, 2005. 

5. Tuckwell H, Stochastic Processes in the Neurosciences, 1989.

6. Crank J, The Mathematics of Diffusion, 2004.

7. Halliday D, Resnick R, Krane K, Physics, 1998.

8. Voit E, Computational Analysis of Biochemical Systems, 2000.

9. House J, Principles of Chemical Kinetics, 2007.

10. Howard R, Dynamic Probabilistic Systems, 1971,

11. Chen C, Introduction to Linear System Theory, 1970.

12. Bhatti M, Fundamental Finite Element Analysis and Applications, 2005.

13. Choma J, Electrical Networks Theory and Analysis, 1991.

14. Griffiths, D,  Introduction to Electrodynamics,1999.

15. Noble B, Applied Linear Algebra, 1979.

16. Sperelakis N, Cell Physiology Sourcebook Molecular Approach, 2003.

17. Erleben K, et.al. Physics-Based Animation, 2005.
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PREFACE (continued)

The above collection, or their equivalents, spans the basic science employed in this project, and are not cited on a 

fact-by-fact basis.  Current advances beyond this basis are duly noted and cited in the bibliography. 

MULTIDISCIPLINARY MODEL

TABLE 1:   CONTRIBUTORS OF PREREQUISITE DATA
CONTRIBUTORS This is a multi-disciplinary project.  It is acknowledged that the workers in the  

following fields are contributors to the knowledge pool prerequisite to  
implementation of this model.

Physiologists The general information necessary for whole cell modeling of the information 
processing by neurons comes to us from neurophysiologists.  The data they 
generate must be culled, conditioned and normalized to appropriately fit the 
model data structures, constraints and scope.  e.g. Eric Kandel

Channelologists Within the field of physiology is channelology, a specialty providing research 
findings on cellular ion channels (Similar to the work of receptologists, 
vesicologists, and pumpologists).   Ion channels are the informationally most 
significant actor in the neuron.   They are the modulators, the primary 
component of the positive feedback loops that must be tamed (for stability), 
and are responsible for propagation of information along the neuronal 
processes.   e.g. Jon Art    Similar proteins include pumps (injecting energy into 
the system via concentration gradients), and receptors (the input devices to the 
whole system).

Physical Chemists Physical chemistry if foundational for the creation of voltage from ionic 
solutions, for diffusion, and for chemical kinetics and energetics of all 
molecular interactions and state changes, e.g. Fick, Nernst, Crank.

Physicists This model relies upon numerous physical constants and formulae. 
Temperature, force generation, conversion from potential to kinetic energy, 
conservation of momentum and charge, force fields, energy  flows.  Also 
Boltzmann, Planck, Einstein, Faraday,  Avogadro constants.  In particular, 
Electrodynamics and elastic collisions are extensively employed.

Circuits Analysts The voltage sources, the current sources, capacitance of the membrane and the 
resistance of the saline – all require circuit theory to convert to a mathematical 
representation for a 2-d closed surface grid of about 1 million elements.

Control Theorists Stability, limit cycles, positive and negative feedback loops and networks, 
instability analysis, nonlinear methods, oscillations, consistency, and error – are 
all considerations and metrics of how the model is designed and performs,  e.g. 
Lyapunov.

Computer Scientists Software architecture, data design, algorithms, numeric methods, and a plethora 
of Matlab ™ idiosyncrasies  all demand significant effort within the realm of 
computer science.   

Linear Algebrists All of the diffusion, stochastics, and circuits equations are converted into 
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PREFACE (continued)

matrix notation, and the solution is derived via matrix inversions.  Linear 
algebra makes for very efficient coding and supports rapid search algorithms. 

Statisticians Kinetics and probability distributions are in constant employment in the model 
of a neuron.  Stochastic Differential Equations are the heart of modeled 
behavior for receptors, channels, vesicles and pumps, and their binding sites. 
They are finite state machines, represented as functions in time.  There are 
significant sources and uses of thermal noise in biologic systems.  There are 
also huge variations in the instantiation of cell types.  Kolmogorov and Markov 
methods are used.

Topologists The shape of the neuron is exceedingly complex.   Simplification is necessary 
to render such data tractable to digital computers.  The theory of topology 
assists in condensing 3-d phenomena down to 2-d matrices, while preserving 
the essential relationships between the elements.  

While admitting extensive reliance upon the above fields, this list is also intended to set a reasonable boundary 

beyond which raised topics can be held as out of scope for this project.   

SYNTAX

SI units are the current standard for all scientific literature and academic dissertations.  Regarding biological 

phenomena, SI units shall be used herein.   However, within the realm of modeling all units are synthetic, even when 
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PREFACE (continued)

they purport to mimic some real measurable quantity.   Computational loads are sensitive to scale and to frequency 

of unit conversions.  To minimize computational load it is necessary to create modeling units optimal to the model's 

purpose.  These units are created in Chapter 3 Strategies.

The modeling activity described herein is conceived and executed in computer code languages, particularly Matlab 

and Octave.  The syntax of these languages is at variance with SI units and other conventions of the scientific 

literature.  Because the symbols of the narrative and computer code are quite intimate to each other, it would be 

tedious and confusing to maintain two completely separate and contradictory sets of rules for their use.  A singular 

set of rules is adopted herein which apply to both the coding and the narrative.  The following conventions are used 

consistently throughout this document.

1. Curly brackets  “{ }”  denote sets.  Straight brackets “[ ]”  denote vectors/matrices.

2. Comments appended to the right of a formula or equation are preceded by a  “%” . 

3. Return or New_Line is indicated by a semi colon “ ; ” .    EX   f=m*a;
Mathematical equations are typically, but not necessarily, terminated by a semi colon.   

4. Single names constructed of multiple words must be connected by  “_” .  
EX   new_name

5. Exponentiation is indicated by “^” .    EX   2^2 = two_squared;

6. Multiplication is indicated by “*”.  Never by x.   EX    ans = 2*2;

7. Matrix and Vector values are contained within “[ ]” .     EX   A = [ 1 2; 3 4 ];   

8. The size of a matrix is indicated by  “x” .    EX   A = [ 1 2; 3 4];   % A is 2x2

9. Concentrations are always preceded by “Conc”.   Never within [ ].   EX   ConcNa = 105;   % mM

10. Discrete Ranges from a to b are defined by  “a:b”.  Never a-b, never a...b.   EX   countC = 1:100;   

11. Ranges with step values other than 1 are defined by  “a:step:b”.   
EX  rangeD = 3:0.1:5;   % rangeD is 1x21

12. Continuous Domains from a to b are defined by “a .. b”  (two periods). 
EX   3.1415962 is_element_of  2..4;

13. Equations that are interrupted by a line break shall indicate such by the ellipsis “ ... “ .  
EX    e = m * ...    
c^2;

14. The operators AND, OR, NOR, NAND, XOR are in all capital letters.
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PREFACE (continued)

15. NOT is indicated by   ~         EX   -1 ~= 1;

16. When a value is approximate, use prefix  'approx' as a function.  Never ~.     
EX    pi = approx (3.1);          EX    F = approx(3.1,tol),  % where tol = plus_or_minus 0.05;

17. An estimated value is indicated by the prefix “est”.       EX    est(F) = 3.1;

18. Terms are defined using the symbol  :::       EX    up ::: following a radial ray away from its  center point

19. Typeface modifiers - such as bold, italics, font_size and font_change - are not recognized by the computer 
languages in use, and therefore are not used in the narrative, except within document headings. 
Unfortunately, this does not comply with the SI standard requiring all variable names being written in 
italics.

INTENDED USE

The computer program application described herein is a stand-alone application, with no interfaces to other 

hardware or software. It may be set up to automatically input morphometric data and actor distribution and/or 

kinetic data from other databases.  And it may require a multi-core machine to be practicable for realistic 

simulations.  Its output is quantitative, time-series data, optionally in movie form, to depict a reasonable visual 

representation of the neuronal structures and dynamic processes.  This output is not intended to drive any other 

hardware system.  It may drive clones of itself, that is, several models of neurons that may be wired into a local 

circuit.

The Usage sequence is straight-line linear (see fig. below).   A Data Design phase is necessary to normalize complex 

patterns available in the biological literature, which are selected, filtered, normalized for compatibility, and 

simplified so as to fit within the provided parameters of this model.  Molecular mechanisms must be scaled in space, 

time and quantity to render them tractable to current digital computational devices.  Additionally, each experimental 

design is driven by a specific query.  Parsimony and alignment to the query involves discovery, culling, cleaning, 

normalizing, and filling in gaps with hypothetical data ranging across the regions of interest.

Conceptually, the user engages the following sequence of events in a model RUN.
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PREFACE (continued)

FIGURE 1: USAGE SEQUENCE

USER CONTRIBUTORS

The multidisciplinary nature of this project warrants acknowledgment of the various talents employed.  The 

contributors list below indicates the fields of study from which numerous scholarly papers were consulted.  This list 

also serves as a reminder to the user that liaison to these fields will be necessary to master the potential of this sort of 

modeling.

User Any individual sufficiently versed in molecular neurophysiology and numeric 
programming, and desirous of building predictive, demonstrative, and/or verification 
models of neuronal behavior regarding information processing potentialities.

NOTES on Citations

Citations are pointers to the List of Cited Literature.  As pointers they should be as brief as possible to uniquely 

specify a single entry in that list.  The author has chosen the method of PubMed database numbers, because they are 

globally unique assignments to peer reviewed scientific literature related to the life sciences.  Books have a well 

established ISBN number with 3 or 4 dashes within a 10 or 13 digit number, easily distinguished from pubmed 

numbers.  Unfortunately, not all cited literature yet has a PubMed or ISBN number uniquely assigned to it.   For 

those articles and books an arbitrary number has been assigned (hopefully only temporarily).  These arbitrary 
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PREFACE (continued)

numbers always are prefixed by four 9's followed by four digits,  e.g. (99990001).   When it facilitates the flow of 

the narrative to indicate the author and year of the work, as in the historical review of the field, the convention of 

(Last FM, year) is used.  Alternative methods may list all the authors or use “et.al” to indicate more than one author. 

As used herein, the intention is for these to serve as pointers to the List of Cited Literature, not to pay homage or 

courtesies to the authors right there on the spot.  The List of Cited Literature gives full and proper credit, such that 

the pointers may remain as brief as possible. 

NOTES on Grammar

This topic involves extensive quantitative data, tables, equations and computer code.  Conventions are devised to 

minimize redundancies of representing both the conventional equation formatting and equations as computer code. 

For consistency, all equations will be presented only as computer code.   Numbers less than twelve are not converted 

to text but rather left as arabic numerals, unless the name of the number is intended.  The author does not subscribe 

to the convention of hanging quotation marks after the period unless the quote is of an entire sentence.  The 

organizational principals of parentheses are adhered to.
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ABBREVIATIONS

A2D analog to digital conversion

AA actor to actor interactions

aar spherical coordinates = [ angle1 angle2 radius ]

Aarz acceleration, cylindrical = [ angular rotation   divergent radius   axial linear ]

AB actor to particle interactions

acc set of accelerations

actor any active protein embedded in the lipid membrane  (channel, pump, receptor, vesicle)

afo as a function of

a/k/a also known as,  alias

allo actor binding to affect modulation of its kinetics

AN actor node assignments

ANN artificial neural network  (silicon/oxide based)

ap action potential, discrete propagation of information, decision

AP actor position = [ x y z,  dx dy dz ( orientation),  pole extents]

arg argument(s) of a function

arz cylindrical coordinates

AS assumption, as enumerated for software module

AT actor types

autocor auto-correlation

avg expected value, mean

avog Avogadro's number

ax pertaining to the axis of rotation

Axra acceleration, cylindrical  (axis position, radius, angle)

Axyz acceleration, Cartesian

basec basis coefficients

BC boundary conditions

basef basis function

bind coupling function

bio- indicates empirical data collected from a living sample (not simulated nor hypothesized) 

bl bond length

BNN biological neural network (water/carbon based)

boltz Boltzmann's constant

BP particle positions, velocities, accelerations =  [x y z dx dy dz ddx ddy ddz type]

BT particle types  (atomic# mass charge radius etc )
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ABBREVIATIONS (continued)

build population of all data structures within the model to effect all IC's, BC’s, and statics.

cart Cartesian coordinates

cdf cumulative distribution function, integration of pdf, used to generate instantiations

chan ion channel type

ci configurational integral

class group of software entities treated identically wrt data types and functions called 

co Coulomb operator

collar ceiling + floor membrane positions for a given particle, or for a given compartment

comp compartment.  Usually comp1= intracellular, comp2= extracellular, comp3 =sequestration

con cone-shaped compartment or subcompartment

conc concentration within a specified volume.  A vector across all particle types, not a scalar.

concIn concs in the intracellular comp1   e.g.  conc.all = [conc.na conc.k conc.ca conc.cl conc.an]

concOut concs in the extracellular comp2

concPeri concs in the perilymph comp3

CPU central processing unit, main chip type in a computer

cor correlation function

corn normalized correlation function

cov covariance function

covar coefficient of variation

cp chemical potential

CP compartment positions = [ x y z ]

CPU central processing unit, main chip type in a digital solid state silicon computer

CT compartment types

curl three dimensional net rotation of a fluid about a designated point, curl(v) = cross(del,v)

cyl cylindrical, especially cylindrical coordinates

d differential, especially first differential

dd second differential

D distribution of

D2A digital to analog conversion

DE dependency, as enumerated in each software module

deal divide a matrix into column vectors

del three dimensional gradient function,  del(t) = [dt/dx  dt/dy  dt/dz] .* [i   j  k]

dens density

densc charge density

densm mass density
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ABBREVIATIONS (continued)

densn density by quantity of particles, similar to conc

densp momentum density

densr particle volume density 

design formalization of all the biologic and physical data necessary to create a static model

diff difference equation

disk planar end of compartment or perforated disk intermediate platen surface of compartment

dist distribution instantiation

DIST file type containing one or more pdf's associated with Actors, Interactors, Variables

div three dimensional divergence function div(v) =  dot(del,v) = dvx/dx + dvy/dy + dvz/dz

dm change in particle mass

dra draw, as in construct plot points

dry lab analytic data collected from electronic simulations

dt time step or time slice for purposes of computational iterations of differential EQs

dx space step or volume slice for purposes of computational iterations 

dX distance between centers of particles  = [x2 y2 z2] - [x1 y1 z1]

e exp(1) = 2.7183…   (not an electron charge)

E electric field

ed dielectric constant    eo*er

edge graph connector between 2 nodes

EM electromagnetic force

eo permittivity dielectric constant for a vacuum

EP electrostatic potential

eps events per second

EQ equation

er relative permittivity

ergbar energy barrier, especially as a axial profile within an ion channel

ev model voltage/kelv

EX example

exop exchange operator

EXP experiment, particularly a software run designed to answer a biologic query

F force or force field

flops Floating point operations per second, as load on a CPU

fsm finite state machine

gen generate

gibb Gibb's free energy
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ABBREVIATIONS (continued)

Goblet Micron-scale whole cell model 

grad gradient

graphit generate plot

h header, column headings for a matrix, or row headings for a matrix

HAD Hybrid Analog Digital

hamil Hamiltonian

hc heat capacity

helm Helmholtz free energy

horz processes parallel to the membrane surface, parallel to the axis,  e.g. Ri, Ro, Xflux

HW hardware

ijk orthogonal unit vector, cartesian

iops Input output operations per second, as load on a CPU

I identity matrix

IC initial conditions

IN input

int integrate

interactor any particle in solution (ion, ligand, ...) which will diffuse and/or bind during simruns

INIT initialize the model by populating input data into the workspace.  First step in BUILD

im Imaginary values expected (used as part of a variable name)

IP information process,  information processor,  information processing

ix Index vector of a variable (used as part of a variable name)

Jz horizontal diffusion (parallel to the surface of the membrane)

Jr flux perpendicular to the membrane, especially through channels

k index value

KE kinetic energy

L size of a rectangular container or voxel = [dx dy dz]

lagran Lagrange multiplier

lambda space constant

laplac Laplacian  =  del2 t  =  d2t/dx2 + d2t/dy2 + d2t/dz2

lim limits

logi matrix of logical data type, consisting only of 0 and 1, or true and false, or yes and no

lookup input to output mapping via a table

lv latice vector

m mass

mag magnitude, radius, distance
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ABBREVIATIONS (continued)

M concerning membrane

MD molecular dynamics

memb lipid membrane traits, including thickness, capacitance, permeability, etc

metric metric matrix per distance type

mi mutual information

mo membrane orthogonal process

mob mobility

mobe electrical mobility

mobm mechanical mobility

mod ligand, interactor or force that modulates the state transition rules of an actor

mp membrane parallel process

mt membrane transverse process (perpendicular)

N concerning Nodes of a membrane

NaN not a number

NanoNeu Multi-scale Model combining Patch and Goblet

NIP pertaining to  Neuron Information Processing.  Throughput, not internal organization 

NIPS Neuron Information Processing Significance.   An inclusion criteria.

node locus of an Actor on a membrane,  pos(actor(N))

norm normal to a plane

NTF nonlinear transfer function

O gating function, as in open/close

OE operating environment, as enumerated for software module

om overlap matrix, or 2 or more matrices merged

opq euler angles

OUT output:  e.g. phenostate, released particles or observable voltage

P actor poles,  actor positions, particle positions

Paar position, spherical

pack packing density

pad fill in vacant elements in a matrix with default values

pair pairwise collisions or pairwise contractions

param parametric values

Patch Nano-scale cuboidal submodel, exemplars for large quantities of similar patches

pc partition coefficient

PC personal computer, 1 cpu, 1gbs speed w/ 1 gb memory (for benchmarking loads)

PDF probability distribution function
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ABBREVIATIONS (continued)

PE potential energy

perp perpendicular

pf partition function

pheno outwardly expressed state

plaid pattern of actor placements in the membrane, including polyads, interpolated gradations

plank Plank's constant

plu input or output plug(s)

pole Binding/unbinding allosteric sites on an actor.  Actors have a pole on each side of memb

pos position, may be cartesian (x,y,z),  cylindrical (r,a,z), or spherical (r,a1,a2)

pres hydraulic pressure

princ principle components, ranked

pt cartesian point

pump type of pump, cotransporter, exchanger, or ATPase, transporting ions across a membrane

PVA [position velocity acceleration]  vector (1x9) 

PVAMR [position velocity acceleration mass radius]  vector (1x11) 

Pxra position, cylindrical (axis position, radius, angle)

Pxyz position = [x y z]

q quantity

Q file containing one or more matrices of state transition rates

Qdt Function generating Q as a function of modulator values. Q = Qdt(mod1(t),mod2(t)..modn(t))

QED Quod erat demonstrandum;  that which is to be demonstrated or proved

QEF Quod erat faciendum; that which was to have been done

qm quatropole moment

qt quantity of time steps in simulation

RAM Random access memory of a digital solid state silicon computer

rand generate random number(s)

RC resistance - capacitance electric circuit

recep type of receptor specifically involved in neuronal information processing, metabotropic

rem remainder

report collected data from the run can be projected as a movie and graphed.

rgb color vector = [ red green blue]

rin pertaining to rings, points in rotation

rms root mean squared

rot rotate

rt dt*qt = run time
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ABBREVIATIONS (continued)

RT real time

run iterative time loop in the program to simulate dynamics.

S state matrix

SAM self assembling molecule

sc similarity coefficient

sd standard deviation

se statistical efficiency

sf substitution function

Sh parametrized shape

SI International System of units

simrun simulation software run, the act of executing full program according to parametric settings

sn serial number of a model element

SNR signal to noise ratio

so spatial orbital

sph sphere, spherical, especially spherical coordinates

sr swing radius

state molecular configuration, represented as finite state subject to transition probabilities

STP state transition probabilities

substructure a mathematical component (usually a matrix) of an actor representation

subunit a biophysical protein component of an actor

SUT system under test, as enumerated for software module

SW software

swit switching function

t time

tt period or interval

tau time constant

te instantaneous energy (at time t)

TE test environment, as enumerated for software module

this reserved word, referring to Norm Dyer’s work, so as to distinguish from others’ work

thk thickness

tor torus shape compartment or subcompartment; may be only quadrants of a torus

tri triangle

TYPE stationary intrinsic trait data of an Actor or Interactor   (not species)

Vaar velocity, spherical (angle, angle, radius)

van radial vane(s) to divide a round compartment into sectors
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ABBREVIATIONS (continued)

var variance

varf variance function

Varz velocity, cylindrical

vel velocity of an interactor, may be Cartesian (x,y,z) or polar (u,v,w)

vert refers to processes perpendicular to the membrane surface, radial, e.g. Gchan, Cm, Ipump

ves vesicular mechanism for releasing quanta of neurotransmitter into the synaptic cleft

vir virial

vol volume

vox voxel, unit of volume, especially as a pair centered on an actor, one above and one below

VV set of all velocities

Vxra velocity, cylindrical (axis position, radius, angle)

Vxyz velocity, cartesian

W momentum, linear = velocity*mass

wet lab analytic data collected from living cells

wrt with respect to

xloc translocation of a particle = [dx dy dz]

xls spreadsheet

xyz cartesian coordinates

z charge or partial charge on particle (valance)

zon pertaining to zones

One Letter code used in function naming

A actors = { recep/shuttle chan ves pump }
B particles, interactors = { ions polyatomic ions ligands messengers }
C cytological compartments  (not Rall compartments nor finite element compartments)
D 1) distribution 2) shuttle data
E charge, units are count of positrons
F force  field  (EM or concentration)
G conductivity (vector across all particle types, not a scalar)
H actor subunit
I current, units = count of net charges per unit time passing through a designated area 
J particle flux, units = count of particles per unit time passing through a designated area
K 1) constant,  2) capacitance
L logical (includes gating)
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ABBREVIATIONS (continued)

M membrane
N node
O molecular phenostates, gating function, transport function, also pivots
P 1) position  2) pole
Q transition matrix
R bind/dissociate kinetics matrix
S state (of actors or actor subunits)
T type
U 1) instantiations from distributions  2) traits
V voltages,
W 1)   Implicit entities,    2)  input signal as modulation values
X axis of rotation, on or projected to, length of the neuron
Y perpendicular to the axis, orthonormals
Z volumes, voxels

One Letter code used in Matrix & Argument Naming

A actor occupancies, current bindings (M), current state (Q)
B particle bindings, actor assignments
C CDFs 
D distances between particles and particles, particles and actors
E current charge locations = P*z 
F current force field due to charge, electrostatics
G conductivity profile, particle transport profile
H maps subunit types into an actor type
I current charge vectors, as grad, div, and curl
J delta concs  (transports)
K particles held in capacitance
L particles held in sequestration
M modulation combinations per actor type, with map to Qpage
N Floor and Ceiling  for particle reflections
O actor phenostates
P current particle positions, actor poles
Q transition probabilities
R affinity values for each binding sight, as altered by M state
S state time series
T

xix



ABBREVIATIONS (continued)

U distributions, PDF's
V current particle velocities (Boltzman distributed)
W current accelerations due to F
X contents of each voxel pair, over and under each actor
Y contents of each affinity hemisphere, over and under each actor
Z valence of each particle

Terms of Limited or Altered meaning

...noting newly defined terms and rare usages of known terms

actor a protein molecule capable if significant changes in state (conformation).  In particular, receptors, 
channels, vesicles and pumps are actors in this modeling framework.

capacitated  ions that are prevented from achieving charge space neutrality by a membrane barrier, and therefore 
collect near the membrane, attracted to opposite charges across the membrane.  Charges are effectively 
bound in the direction perpendicular to the membrane, but are relatively free to migrate parallel to the 
membrane surface.

channel unless otherwise specified, an ion channel consisting of protein subunits and embedded in a lipid 
membrane, and capable of opening a pore through the membrane to selectively allow particles to pass 
by force of concentration and voltage gradients.  Channels are usually modulatable by ligands and/or 
voltage.

distribution the statistical positions and densities of a specific actor type on a specific cell type.  Includes changes 
in distribution, turnover, regulation of distribution

element ion, ligand, membrane, receptor, channel, vesicle or pump.  Implicit elements include water, capacitor, 
resistor. Receptor includes second messenger structure.

engine portions of software dedicated to advancing simulated process, as opposed to software that manages 
data transfers, sorts, integrity, etc.  

exsert Tap into a system to realize and output signal; opposite of insert

instantiator a computational device consisting of a random number generator and a CDF, producing a stochastic 
output that conforms to statistical parameters.  (called Markov propagator function by others)

interactor see particle

kinetics probability transition matrix for the significant conformations of an actor as a kinetic scheme, per 
subunit of actor type, including all significant binding sites and their possible ligands, in various 
combinations.   This more closely matches the chemist's use of the term than the physicist's use of it.
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ABBREVIATIONS (continued)

membranal pertaining to an assembly of a lipid membrane immersed in saline solutions, with embedded receptors, 
channels, vesicles and pumps.  May refer to a membrane patch or a closed cell.

modeling mathematical models and artificial builds of elements and element assemblies; and runs, wherein 
processes act upon these elements  Meta-modeling refers to the designs of models and the iterative 
improvements to them.

modulator  any ligand binding to an actor type that would alter its probability transition matrix.  Each modulator 
has binding/unbinding probabilities specific to each actor type.  Also force gradients impinging on an 
actor which  alter its probability transition matrix.

number identification number or serial number, but not quantity. 

particle instantiated ion or ligand entities that are motile in water due to thermal energy, and reflect off 
container surfaces.  They may become bound to actors, transported across membranes, and/or 
experience drift due to the EM force.  Particles have mass, effective radius, and optionally have 
charge.  The word particle is used interchangeably with interactor.

platen for convenience, the model provides limited planar rings as part of the shape of the plasma lemma. 
This provides a surface suitable for synapses, without the need to address contours which significantly 
increase calculations of synaptic processes.

pump  ATPase, cotransporter, exchanger, or electrogenic transporter.  May transport ion, ligand or messenger 
particles in any combination.  May be driven by ATP or by concentration gradients. Has kinetic 
scheme that is modulatable, including binding/unbinding kinetics.

receptor  metabotropic receptors for neurotransmitters and particles that serve modulate ion channels.  A 
transmembrane switchable catalyst.  Ionotropic receptors are not included under this term.

responder given a signal, various actors in the vicinity may or may nor respond to that signal.  Those that respond 
in the earliest physiologic time are called first primary responders.  Those that respond on the echo of 
the primary responders are called the secondary responders.

stateful an actor with two or more significant states of utility in information processing

systemics  interactions between membranal elements, as expressed in cell behavior or multicell behavior, 
especially with feedback loops.  Includes poly-entity interactions, homeostasis, information 
processing, learning, role, and modes.  As distinguished from process, which involves the interactions 
between two or three elements, without feedback loops.

tonicity measured ion concentrations on both sides of an actor, particularly the micro environment (voxel pair) 
unique to that actor.  This includes charge imbalance.

tranche  v. to divvy up the whole in a non-obvious way into a set of abstractions, which as a group contain the 
necessary and sufficient information to reconstitute the whole.  n. one of the several pieces of the 
whole so divided.  This concept is borrowed from the financial community.  For example, a particle 
system may be tranched into its position data, its velocity data, its force data, and its container data, 
each of which may be processed alone for certain metrics. 

type unique molecular formula for an actor, therefore unique probability transition matrix, defining which 
subunits comprise it.  Characterizing that type, distinguishing it from all others.
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vesicle transducer of information from an intracellular Ca++ ion messenger input to a packet of messenger 
molecules deposited extracellularly as output.  Its informationally significant aspects are the particular 
contents resulting from the formation system, and  the speed and reliability of the vesicle release 
mechanism.

Other apparent abbreviations may be function names.  
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SUMMARY

Solid state electronics is reaching developmental limits with regard to miniaturization, clock speed, and heat 

dissipation.  Further advancement in hardware will require a new approach.   The miniaturization limitations are 

breached by exploitation of intramolecular order.   The clock speed limitation is breached by asynchronous 

massively parallel processes.  Heat dissipation is solved by avoiding energy consumptive processes, rather powering 

them by ambient thermal energy.   Liquid state information processors combine all of these benefits.  

A computer model is devised to represent, at the molecular level, information processing by membranal systems 

similar to that in neurons.  The model consists of membranes, mobile particles in aqueous medium, and stationary 

membranal proteins (multiple-state actors).   The membranes are three-dimensional closed surface whole cells, 

containing volumes of freely diffusing particles (ion species, neurotransmitter species, second messengers, ATP, 

etc.).  Each species of particle is represented as a large number (1E3 to 1E6, proportionate to in vivo concentrations 

of each) of individual particles with mass, charge, radii, position, and velocity.  Particle mobility enjoys diffusion, 

collisions, viscosity, and drift due to charge fields.   Particles collide, reflect, bind, absorb, and transport across 

membranes.  Linear momentum is conserved.  Particle mass and radii may be dynamically modified via solvation 

probabilities.   Several relevant characteristics of water are represented so as to replicate the collision paths of 

particles and maintain the Boltzmann velocity distribution of each species of particle as a function of mass and 

temperature.  Particles experience Brownian dynamics and drift under the influence of all charges in the system, 

fixed or mobile, as an N-body problem.   Particles colliding with a membrane are reflected or absorbed according to 

oil/water boundary kinetics.  Energy-bearing particles (e.g. ATP) may be individually transmuted to alternate forms 

(e.g. ADP) when binding to a pump or G-protein system.

Four classes of membranal proteins, those that exhibit  neuron information processing (NIP-significant) 

conformational changes, are represented:  metabotropic receptors, ion channels, vesicular release mechanisms, and 

ion pumps (these four types are collectively referred to as actors).  Ionotropic receptors are treated as ion channels 

with modulator binding sites.  All actors have the capacity to bind and unbind particles at various binding sites, 

instantiated stochastically, according to known kinetics as a function of modulation and molecular conformation. 

Actors each have the capacity to stochastically change conformations according to transition probabilities, as 
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dynamically modified by voltage and/or allosteric bindings.   Actors return instantiated conformations, updated 

binding affinities and transport actions as outputs (e.g. receptor release of messenger; channel conductances; pump 

staging, transporting or releasing; or vesicular release of neurotransmitters).    Each combination of modulation site 

bindings plus the impinging voltage warrants a change in the transition probability matrix.   These probabilities are 

instantiated each time step as a function of the prior state, and  particle concentrations in the actor's vicinity. 

Individual particles that are bound have their velocities set to zero until stochastically dissociated.  Transported 

particles are reassigned to the adjacent compartment, then resume a Boltzmann velocity.  

The neuronal membranes are represented as closed three dimensional surfaces, with thickness, given shapes that 

preserve the topological relationships between nearest neighbors of the membrane (generated from contours of 

revolution).  Actors are positioned and oriented embedded within, and permeating, the membranes.  Positions are 

selected statistically per probability distribution patterns equivalent to their spatial patterns in living neurons.  Actor 

position determines the electric conduction between nearest neighbors and the capacitive area surrounding each. 

Membranes serve as a dielectric barriers, maintaining charge separation.   

Digitally, in time steps of about  1E-4 s, the above processes are simulated across approximately 1E6 loci for 

simulated time duration of about 0.1 s.  The time-scale compass is 1E-4 s to 1E-1 s.  The space-scale compass is 1E-

10 m to 1E-5 m.  The quantity-scale compass is 1E1 to 1E5 (one model particle represents from 1 to 1E5 real world 

particles).  Due to the actions of pumps, channels, diffusion and drift, particles are redistributed each time step. 

Particle flux alters the local concentrations and charge distribution.  These determine Coulombic and Nernst voltages 

local to each channel and pump.  Voltage and concentration gradients between nodes, and thermal energy,  drive ion 

movement through somewhat resistive saline solution, and through selective and dynamically conductive ion 

channels.  Particles passing through ion channels become neutralized by opposite charges if available, else become 

capacitated at the membrane.  However, they eventually are pumped back across the membrane by ion pumps 

distributed in physiologically realistic patterns.   The aggregate effect of this parallel multitude of actions may 

generate wave fronts of graded responses or action potentials, which may decay or propagate along the membranal 

surface depending on gain.  These disturbances may cause calcium channels located near vesicles to allow Ca++ 
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ions into the neuron which proceed by constrained diffusion and bind to nearby vesicles.  This initiates the kinetics 

of neurotransmitter release into the synapses.   The specific mix and quantities of neurotransmitters in a vesicle are 

determined stochastically.  Additional pumps retrieve neurotransmitter and other messenger particles from the 

synaptic cleft, thus determining messenger half lives.  Ion pumps (cotransporters, exchangers and ATPases), and 

messenger pumps as well, have quantitative affinities for their substrates, demonstrating starvation and saturation 

kinetics.  They pump stochastically according to competing affinities and dynamic transition probabilities.  A limited 

quantity of chemical processes are supported, such that pumps may  convert ATP to ADP per cycle (or be driven by 

the Na+ concentration gradient).  The pumps must be adequate to maintain physiologic concentrations throughout 

physiologic channel opening patterns, except to the extent that fatigue is being modeled.  The incoming information 

to the neurons arrives as ligand particles, is transduced into the motion of four or more species of ions, which each 

affect their targets differently and are themselves affected by ion channels differently, causing ion channels to 

“resonate” to inherent patterns of molecular dynamics of their type.  

The above aspects are integrated into a software application serving as a neuron design workbench with a parametric 

domain spanning most neuron types.  Cuboidal patches may be excised from a whole cell model for a more rigorous 

study of molecular interactions.   Such patches support 1:1 particle representation, so as to justify the whole cell 

model which uses one particle to represent thousands of real world ions.  

Multi-scaling is supported so as to assemble the results from patches into whole cell models, and for assembling 

whole cells into local circuits.  Thus, channel physiology, pathology, therapies and hypothetical types can be 

simulated.

Three-dimensional charge flux is emergent.  Localized membrane capacitance of charge imbalance is emergent.  The 

zeta potential (fuzzy layer of thermally energetic charges near the membrane) is emergent.  The electrical grid 

implied by a two-dimensional fabric of saline resistances, membrane capacitances and dynamic, through-membrane 

conductances is emergent.   Input signal pattern recognition is emergent from single channel kinetics.  Action 

potential propagation is emergent from the channel refractory kinetics.  Propagation velocity is emergent from the 

membrane capacitance and actor spacings, and actor response times.   Antidromic dampening is emergent as a 
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function of actor refractory times.  Lateral and axial flux are emergent from asymmetrical placements of pumps and 

channels.  

Systemic behavior arises from the constellation of actors, and can achieve waves of characteristic opening/closing 

patterns, with resultant signaling via ion flux.    Therefore,  information flow is spatiotemporal, with temporal 

patterns found to be significant to actor behavior.  Patterned neuron firing sequences are emergent from channel type 

kinetics plus diffusive interactions between those types.  The constellation of actor type distributions and synaptic 

connectivity patterns determine the computational role.  Liquid state processors harness thermal energy for diffusion 

and stochastic gating, with only the pumps consuming significant energy, to do work against concentration and 

charge gradients.   The quantity of ions pumped need only be sufficient to drive a quantity of ions through the open 

channel to create a large enough disturbance of the capacitated charges along the membrane to stimulate adjacent 

channels.  No energy is consumed by the gating mechanisms, which are driven by ambient thermal energy.

The actors are found to act as pattern recognizers and as pattern generators.  This potential is rather easily harnessed 

into single molecule information processors.  Ironically, the computational load of a digital representation of such a 

model is huge.  The model of hybrid particle Markov processes captures the informational content of the molecular 

mechanisms of the neuron, allowing a much more detailed predictive model of neurons in the wide variety, in health 

and in various pathic states, and the development of the liquid state as a computational machine.

The membrane serves several valued roles, providing accurate capacitance, positional stability and order for the 

actor processes.   Membrane area voltages and concentrations exhibit significant non-homogeneity, which is crucial 

to their carrying of information.  The ions near the membrane are found to commute between actors not via 

diffusion, but rather by an efficient wave phenomena driven by the EM force and their own mass (together 

comprising a second order system).   

The published data on the four classes of membranal proteins is rarely complete, due to the relative difficulty of 

measuring hidden intramolecular states, as opposed to the outwardly expressed phenostates.  Internal consistency is 

robust, sufficient to found a science of liquid state molecular information processors, and support the design and 

development of single molecule information processors.
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1 INTRODUCTION

Neurons are distinct from other cell types by their capacity to process information, not merely for themselves, but as 

a service for the entire organism.  Neurophysiologists have established that it is the excitable membrane of the 

neuron which receives, processes and propagates this critical information through the cell.  Such information 

processing involves these three processes:  (1) particles, serving as charge carriers and messengers, commute in 

aqueous media, (2) protein molecules embedded in the membrane kinetically change their conformations, and (3) 

charge fields resulting from non-homogeneous distributions of ions induce currents and settle into capacitance.  The 

physics of each of these is well described in the literature.  

These processes combine to constitute the complex molecular systems along the membrane, from which the 

behavior of bio-computation is emergent.  Every computational device must consist of at least these two: well 

delineated elements, and well defined architecture for the connectivity between those elements.  The elements must 

intrinsically change state in response to inputs, and extrinsically communicate those states to other elements 

according to the connectivity architecture.  In service of these two aims, analysis prescribes the elements and 

synthesis prescribes the connectivity.  The particular types of elements may determine the type of computation to be 

performed.  Alternatively, the particular types of connections between the elements may determine the type of 

computation to be performed. 

How do we assemble the known elements of lipid membrane, ion channels and ion pumps into a model that exhibits 

bio-computational behavior?   The analytic work that has characterized these elements is extensive.  However, the 

synthetic work of defining the possible relationships, the connectivity between these elements, is underdeveloped. 

The synthetic work is well advanced within the field of computer science for silicon-based computation, but carbon-

based computation requires entirely different rules of connectivity.  The current challenge is to discover the rules of 

carbon-based synthesis, fully consistent with the known biology and physics, and sufficient to build operational 

computational devices.

1
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It is therefore proposed to construct a hybrid model based upon diffusion, kinetics, RC-grid1, and 3-dimensional 

shapes, which shall represent a neuron's information processing capability via large quantities of individual dynamic 

molecular events.  It shall have the capacity to implement various channel/pump distributions.  Such a model offers 

a work bench for studying the behaviors of channel/pump constellations.  

The utilities of such a model are intended to include:  

1. provide a simulation context for interpretation of neurophysiology data concerning receptors, channels and 
pumps

2. provide a design program for creating and testing simulated therapies for channelopathies and pump pathologies

3. further explore the computational potential of artificial neural networks, especially via the addition of 
modulation

4. founding the new field of molecular based liquid state processors 

The elements of such a model have been under study for many decades.  The neural membrane consists of a number 

of self organizing types of lipids.   Embedded within this membrane at various points are a number of types of 

proteins.  The proteins of greatest interest to information processing include the receptors, channels, pumps and 

vesicle release mechanisms.  Their occurrence and physiological roles have been explored over many species. 

Normalizing such findings for systemic compatibility is prerequisite to the assembly of such components into a 

model of computation.  The quantities and locations of ion channels suggest a massively parallel processor of 

spatiotemporal input patterns.   The complexity of spatial patterns and the depth of temporal patterns remain to be 

evaluated as to how these impact the output signal of the cell, and what then might be the dynamic range of the cell.

Within the theory of computation, general processors are conceived as suitable for all types of problems.  If neurons 

were fully generalized bio-processors, then there would only need to be one type.  However, there are many dozens 

of neuron classifications, and gradients between those types as well.  Why so many specialties?   Consider that 

silicon-based computers in general use have within them a CPU chip with approx. 100 million nearly identical 

“transistors” (gates) over 3 or 4 types.   Such transistors are, de facto, general in their processing potential.  But at 

the slightly larger scale of the CPU architecture, one finds those components are laid out across the chip in complex 

1 RC-grid:  refers to an electrical circuit consisting predominantly of resistors and capacitors.  In this case the 
capacitor is the lipid membrane, and there are two types of resistors, the saline and the variable resistance of ion 
channels.
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non-uniform arrangements.  The details of such order involve highly specialized functions.  Thus, even these most 

generic of processors, built up of AND, OR, NAND, XOR gates, require considerable specialized organization 

within.  The search for a theory of general computation continues, but real instances apparently require 

specializations.   The human desire for the general case is understandable.  Else each type requires it own discovery 

with little benefit from the study of other types.  Thus the search for common principles, common themes, common 

components and common processes from which processors can be built.  However, such generalities will not serve 

understanding of the many biological entities until they can be readily adapted to specific cases with only parametric 

adjustments.  This paper strives towards identifying general principles of carbon-based computation.  It also pursues 

a base set of parametric ranges, with each value set therefrom alone determining the embodiment of a useful 

processor.

A pragmatic approach is to convert the various aspects of algebraic completeness for a general processor into a list 

of tests, and then apply these tests individually to each of the bio-processors that comes along - and thereby rate each 

type for its processing potentials.  A caveat is that human notions of mathematical completeness may not be so 

complete when compared with the full flower of evolved nerve cell functions.  To wit, algebraic completeness, 

which is founded in digital logic (surprisingly, not the other way around), may hold little or no overlap with bio-

computational completeness, which operates stochastically and over a hybrid analog digital space.  

It is therefore prudent to avoid parsimonious modeling.  Simplifications are justified by our notions of logic, logic of 

a type which may not apply in this case.  Any fine detail of the various molecular mechanisms, the chemical 

reactions and the charge activities and/or patterns may later prove to be significant, though at first man's eyes did not 

perceive their causal relations.  The inclusion criteria must be: preserve the information, that which is held, 

processed and transmitted.  This sets the high priority, which may result in diminishing some of the physical, 

chemical, or even biological nuances, in favor of preserving the information flows.

Bio-computation is fundamentally different from the logical digital processing of common silicon computers. While 

all electronic devices move only electrons, bio-processors operate with 4 or more types of charged particle sharing 

the same conductor.  Most often these are Na, Cl, Ca, and K, but dozens of other ion types are present as well.   This 

presents immense complexity (and opportunity) compared to mere electrons.  Each of these ionic circuit types is not 

an independent problem, which would be challenging enough, but rather all are coupled to each other just as partial 
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voltages  integrate into a transmembrane potential.  Concentration gradients for each ion type, made dynamic by 

charge repulsions and attractions, lead to complex temporal-spatial patterns that simply do not exist at all with 

electron pools.  

Also present are dozens, if not hundreds, of messenger molecule types that bathe the logical devices of the bio-

processor.  Such modulators are instrumental in the neuron's ability to compensate for a changing environment, 

shifting modes for different processing tasks, or even re-centering drifting input patterns.  

Bio-processors also grow (evolve) through various developmental phases, changing their role during each. They 

self-maintain and self-repair.  They are not limited to step-by-step logical problems, and readily tackle problems 

requiring probabilistic decisions based upon incomplete information.  They can process analog problems as readily 

as discrete problems.  They sometimes invent new ways of problem solving.  Neurons may serve in sensory, 

regulatory or motor capacities, all based upon a fairly standard model: A cell that grows connections of chemical 

diffusion, responds with excitable membranes of ample ion channels and ion pumps, and results in the release of 

more chemicals for diffusion to the next cell.  Specialization then results from varying the parametric values of this 

plan.  

Electronic processors have no such counterparts to these ion types, modulator types, growth patterns, and modalities. 

Each one of these potentialities presents formidable challenges for those wishing to evaluate the greater information 

processing scope of bio-processors (upon which silicon-based electronic counter parts shed no light).    To preserve 

the yet uncharacterized phenomena for study, large-scale molecular systems models are needed.

Such characteristics of neurons attracted the attention of computer scientists, mathematicians and engineers who in 

turn gave birth to the field of “neural networks”, hereafter distinguished from living cells by referring to them as 

Artificial Neural Networks (ANNs).   The efforts of this field have been directed toward exploring connection 

patterns between large numbers of chosen simple elements - elements that typically sum and threshold.   Less well 

studied is the computational potential of each of those elements being connected.  In summary, the silicon processors 

are very developed in their connection theories, though modest in sophistication of their elements.  The study of 

(biological) carbon processors is very strong in analysis of many sophisticated elements, but yet underdeveloped in 

the logging and theorizing of connection patterns between those elements.  This paper attends to the Biological 
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Neural Networks (BNNs), by further exploring the expressions of each of the element type with respect to 

information processing potentials and the practical connection patterns between those elements.

1.1 PRIOR ART  

In 1943, Warren McCulloch and Walter Pitts published, “A logical calculus of the ideas immanent in nervous 

activity,” credited with launching  the field of neuronal modeling [2] .  To explore the consequences of distributed 

memory and distributed power sources, they applied linear systems theory to neural networks, recognizing that 

neurons compute statistically- not logically- and that a new mathematics was needed to develop this.  They derived 

values for a number of  neuron parameters, such as membrane capacitance, saline resistance, and background noise 

[3].  Over the subsequent 60 years, the process of modeling a neuron typically began with a considerable list of 

simplifications.  This was necessitated by two deficiencies - (1) early computers were quite modest in their 

throughput, and (2) there was immense amounts of work yet to be done in neurophysiology to characterize and 

mathematically represent the receptors, channels, pumps and vesicles.  Hundreds of workers chose to collapse the 

immense complexities of the cell by employing the four Hodgkin and Huxley equations, or even further collapse 

down to the two Fitzhugh-Nagamo equations.   In such renditions, all spatial information was purged, and therefore 

no effects of shape or channel distribution were considered.  The Hodgkin Huxley neural model recognizes only two 

active elements (one type of Na channel and one type of K channel) and two passive components (a constant voltage 

source and a single capacitor representing the cell membrane).   This is adequate to generate an output wave 

matching the shape of an action potential.

Another prolific form is the integrate and fire (I&F) model which consisted of an input sum with a time-wise bleed 

rate (thus the “leaky bucket” moniker), followed by steep sigmoid function (e.g. y = tanh(x)) serving as a threshold, 

above which  an output signal was sent; else not.   Such approaches are silent on the underlying physics and 

chemistry directly involved in the biological information processing functions, in favor of mathematically tractable 

minimal algorithms that yield output curves with a shape similar to the biological action potential.  

Heralded early workers in neurophysiology included Hodgkin and Huxley, who applied electrical circuits to the 

diffusion of aqueous ions inside and outside the squid axon, so as to indirectly observe some of the aggregate 

kinetics of the large protein molecules that were acting as current gates, i.e. the ion channels.   By methods that 
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would now be regarded as exponential curve fitting, they determined that the Na channels were comprised of 3 

identical subunits (“m”) plus 1 quite different subunit (“h”);  and that the K channels were comprised of four 

identical subunits (“n”).   ... also that the 3 Na subunits would respond to transmembrane voltage drops between 

0.060 V and 0.040 V so as to trigger a dramatic opening of the Na channels in 1E-3 s;  that the 4th Na channel 

subunit would follow this opening by rapidly closing the channel in 0.003 s;  and that the 4 K-channel subunits 

would respond to a voltage reaching 0.0 V by triggering a similar but slower opening of the K channel over 0.010 s, 

followed by a slower, but inevitable closing of the K channels over approximately 0.040 s.  These time durations 

vary somewhat with temperature and tonicities, but their relative positions hold.

The 4 (1953) Hodgkin-Huxley equations  (HH EQs) utilized are as follows:

dn/dt  = an(v) *(1-n) - bn(v)*n;
dm/dt = am(v)*(1-m) - bm(v)*m;
dh/dt  = ah(v) *(1-h) - bh(v)*h;
dv/dt = 1/C*(k*d2v/dx2 + G.k * n^4 * (v.k - v) + G.na * m^3 * h * (v.na -v) + I;

% a and b are the forward and backward rate constants for each of the subunit types. 
% the values of m,h,n are created by integrating their initial values and the results of the first 3 EQs
% the m and h curves sum to a Na “spike”
% The K channel consists of 4 subunits of type n
% The Na channel consists of 3 subunits designated type m and 1 subunit type h
% C = membrane capacitance;
% I = stimulus current, (disturbance)
% dv/dt  couples capacitance to the channels by ion diffusion.  
% k =  constant of diffusion
% these curves represent aggregate data for the channel types present in the axon

This equation set can be treated as representing a single node.  Such a node can then cloned into a series of nodes, 

coupled by saline resistors.  Such a ladder network can “propagate” signal from node to node as a wave front.  It can 

transmit, but not process, information.  Derived from studies of the squid axon [4], the primary function of which is 

to perform long distance transmission of uniformly shaped electrical spikes, this is not surprising.   The exponential 

curve fitting was justified by the first order chemical kinetics of channel subunit conformational changes, the 

solutions for which are exponentials.  The exponent parameters (floor, ceiling, time constant) were equivalent to 

chemical reaction rates, modulated, in this case by the transmembrane voltage.  

The HH EQs represent an aggregate of hundreds of ion channels as a homogeneous mixture present over a length of 

axon as excised from a squid and placed under space clamp (in a saline bath with a silver wire run up through the 

middle of the axon to which voltage is varied).   The equations are deterministic, therefore noiseless, so do not 
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present any variance.   They do not take into account the distance between channels, nor any dynamic changes in the 

tonicity of ions as may effect channels over their physiologic range.  They do not take into account the driving 

forces of concentration gradients nor the depletion of those gradients over the course of repeated channel openings. 

They do not account for the effects of ion pumps.  They do not account for other means of modulating ion channels 

such as phosphorylation, glycosylation, Mg, neurotransmitters, hormones, etc.   

Henry Tuckwell in 1989  noted that, “Because the Hodgkin-Huxley equations are difficult to analyze, a simpler 

system with only two components has been employed.”[5]   They became known as the Fitzhugh-Nagamo 

equations. [6]   They further reduced the computational load of the Hodgkin-Huxley equations:

Fitzhugh-Nagamo equations, as based upon the v,m,n,h from the Hodgkin Huxley equations;
dV(x,t)/dt = d2V/dx2 + (V*(1-V)*(V-a)) -W + I;    % where V= f(v,m);  W = f(n,h);  I = input current; 
dW(x,t)/dt = b*(V-d*W);                                     % a,b,d = constants between 0..1

These equations collapsed the  Hodgkin Huxley equations from 4 to 2, at the cost of sacrificing realistic units like 

voltage and rate constants.  These equations can also be treated as nodes, cloned and serialized to support a solitary 

traveling wave.   These equations produce a curve shape similar to the transmission of an action potential.  However, 

they do not constitute a computational device.  

These equation sets are worth mentioning because hundreds of scientific papers concerning the topic of how a 

neuron works have been based upon them.

1.1.1 PHYSICAL BASIS  

Ludwig Boltzmann (b.1844 d.1906) gave us the concept of entropy, and a treatment of time, tractable to the 

requirements of physics.  Entropy was originally viewed as waste heat.  But it came to be appreciated for the lowest 

energy state, the most relaxed conformer of a possible set of conformations.  This set of possibles came to be 

formalized as a probability distribution.  The concept of entropy predicts that the conformation requiring the least 

energy to achieve is the one with the highest probability of occurrence.   And so entropy has great utility in finding 

the common conformations of complex bio-chemical systems, indeed the entire distribution of products and 

byproducts.  It has served to broaden our vistas of chemistry, and that has led to a mathematics and stochastics of 

chemical systems.
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Boltzmann also worked out the velocities of particles for a given temperature and mass, as a gas or a liquid.  With 

his velocity distributions, virtual ions can be instantiated and later, after numerous collisions, checked for “sanity” 

(compliance to real world physics) against his profiles.   Such particles are available for free paths, collisions, 

reflections, binding and/or transport.  The collision rates of ions in saline with stationary channels and pumps can 

then be measured as a function of surface area.  Realistic diffusion rates through complex shapes become feasible by 

open form iterative methods.  At the molecular level, concentrations are the trivial result of particle counts within a 

unit volume.  Realistic interactions may be instantiated 3-dimensionally, where shape determines surfaces, volumes 

and nearest neighbors.   Temperature can be calculated backward through the Boltzmann distribution.

Perhaps more important to the purposes of this paper, Boltzmann's work fathered statistical mechanics, providing the 

mathematical basis for particle systems.  

Georg Cantor (b.1845 d.1918) developed a mathematics for treating infinities, paving the way for digital computer 

algorithms, where incidental division by zero is common enough.   He provided an essential set of concepts for 

converting analog data into digital, continuous into discrete.  This finds utility in formalizing the processes by which 

neurons convert analog events into discrete events, and discrete events into analog events.  He also developed a 

mathematics of set theory, so useful in classifications, especially where there are multiple layers of logic.  Set theory 

reached its limit with Kurt Godel (b.1906 -d.1978), who proved its incompleteness in the abstract.  While this 

disturbed many mathematicians, its real effect was to ground our abstractions, forcing them to be axiomatized from 

the real world.  Engineers have no problem with this. 

John von Neuman (b.1903-d.1957) furthered set theory for digital computation, developed cellular automata theory, 

game theory, and architect-ed the first electronic digital computer, the EDVAC, embodied as the ENIAC.   His 

automata theory, in particular, presaged some of the forms of discrete interactions within networks of pulse-

producing “neurons”.  It is a rules-based version of network, by which the state of any one node is determined by 

some function of the states of its nearest neighbors.  When liberated from its digital origins, automata theory can 

create games that perform similar to simple neural networks.  To perform as more robust networks the nearest 

neighbor rule must be liberalized to allow connections afar.[7]

Alan Turing (b.1912 d.1954) gave us the applied logic and other key foundations of the digital computer, and 

various logical tests for insuring computer sanity.  In particular, the Turing machine converts a temporal pattern into 
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a spatial pattern, processes it, then generates a new temporal pattern.  This conception of information processing is 

insightful regarding how ion channels might receive and process information, due to the the spatiotemporal 

complexities.

Claude Shannon (b.1916-d.2001) applied principles of entropy to the problems of communications, and founded a 

method of measuring uncertainty in information.  He devised optimal coding algorithms, a theory of communication 

and founded the field of information theory.  These milestones prepared the neural modeling field for quantitative 

studies of cells that compute.   His methods presupposed that information was digital (the bit).   They were later 

found to be equivalent to Boltzmann's statistical mechanics.  Thus information and entropy are different perspectives 

on the same phenomena.   Fred Rieke et.al. 1997 extended some of these concepts to continuous signal values.  A 

challenge remains to extend Shannon's principles so as to tolerate hybrid analog digital processes (HADs).[8]

Physicists speak of particles, which may possess intrinsic traits including radius, mass and charge; and extrinsic 

traits including position, velocity, acceleration, collisions, and bindings.   Particle systems are usually calculated in 

computers as matrices of data processed en block, by equations that express the various forms of coupling between 

the particles and their surround.  Diffusion is a name we give to the aggregate observations of particles in motion, 

colliding along the way.  Coupling is a name for the force fields acting upon all particles which possess mass and/or 

charge.  Physicists prefer to work with momentum instead of velocity;   with Lagrangian constraints instead of 

containers;  and with hyperbolic orbits instead of hard sphere collisions.  Regardless of the rendition, particle 

systems provide a detailed method of instantiating most or all of the events crucial to neuron information processing.

Erwin Schrodinger's time-dependent wave equation of 1926 (applicable to the motion of free particles)  addresses 

the conversion of all waves into digital information.  The process is sufficiently tedious, despite its theoretic 

potential to capture all wave-like properties of matter at scales ranging from subatomic particles to the entire 

universe.  It is not practical as a modeling algorithm.   The great attraction to consideration of wave phenomena is 

that waves are perfect carriers of information, in that there is no loss of information regardless of distance.  Consider 

listening to a Moscow radio station while in Chicago, to appreciate how robust is this effect.  What waves 

accomplish in continuous space-time with zero computation requires very large computational loads to predict in the 

digital realm (consider the charge and gravity fields as N-body problems, followed by Schrodinger’s wave equation 

applied to the permutations).   Although far fetched for the casual BNN modeler, the questions raised by the physics 
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of wave-particle dualities lead to insights as to how neurons might be exploiting the nanoscale world of ballistics 

and collisions.   Molecular models are reaching the point where nano effect become relevant.

Which relations between particles and waves are most relevant to neurons?  There was never a time nor a place 

when and where the molecular events of biology were exempt from being fully involved with wave effects, quantum 

effects, thermal energy effects, and charged particle force field effects.  Avoiding them was never an option.   Every 

quanta of energy impinging on an evolving biological entity must be dealt with in some fashion, and the most 

successful evidently dealt with them to great advantage.  So it is ill advised to dismiss the various atomic scale 

effects as though they have no bearing on how a neuron accomplishes its Neural Information Processing (NIP) 

mission.  

Because thermal motion is absolutely unavoidable, living systems do not ignore it but rather have evolved to utilize 

it as an energy source.   Messenger molecules are moved about by thermal motion, and this costs the cell nothing (no 

ATP, no sugar, no oxygen is consumed).  What the physicist regards as scattering, the neuron regards as its postal 

delivery system, getting the messages delivered on time.   Proteins are constantly bombarded by collisions due to 

thermal motion, causing them to stochastically change states - endlessly.  This phenomenon has been exploited by 

living cells such that certain proteins have become stochastic computers.   Until proven that a physical effect 

somehow cancels out to zero or else is not a high runner in the list of factors that determine output signals, it cannot 

be purged from a model purporting to represent the physical bases for its NIP functions.   None the less, most 

models in the literature have purged all of these matters out completely by dismissing them as noise.  Why?

Most modelers are confronted with A2D (analog to digital conversion) headaches.  There are many burdens to 

digitizing the continuous, simply because between each two digital points there are an infinity of continuous ones, 

and because continuity is differentiable (it has a slope or gradient).  For homogenous spaces or materials, the Fourier 

transform can convert the discrete into the continuous and vice versa.  The Gaussian curve proceeds through this 

transform unscathed, suggesting that white noise has no information at all - it is the zero of the information universe 

The Fourier implicitly acknowledges this fact, but a theory of information values being passed through the transform 

has not been offered.  One can intuit however that if the Gaussian is zero, then the further one distances from from 

it, the more information value it has.
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Development of radio transmission for television and audio signals led to the conclusion that noise is a bad thing. 

Great effort been made to filter it out and suppress it.  The same perspective continues for the development of solid 

state processing chips, where thermal noise (Johnson noise) threatens reliability.  It is somewhat understandable, 

therefore, that within science and engineering there may be some social inertia to overcome to get to the realization 

that:

 In biology, thermal noise is a ubiquitous energy source, not a nuisance.  

When the early deterministic models were found wanting, white noise was added to create variance.  Pink noise was 

added to frequency data (color weight proportional to an exponential decay).  Shot noise was used to imitate ions 

traveling through ion channels.   Of course, such addition did not restore the energy source for the system.  Nor did 

it restore the original energy content filtered out in the first place.  These are some of the efforts to treat model 

deficiencies in the aggregate.  Once we zoom in on the molecular processes there is no more opportunity to “inject 

noise”.  Instead, we must detect and resolve collisions.  We must stochastically bind and unbind the various possible 

encounters according to known probability distribution functions.  We must change molecular conformers according 

to known state transition probabilities.  These are not noise - they are the state of the system.  And the state of the 

system is its information.  The reason it is quiet, not noisy, inside of every living cell, is because all such “noise” is 

absorbed and harnessed.  It is converted to work.  Contrast that with man's machines where no such effort is made.

This problem continues.  When the noise had been purged out, we were left with sterile deterministic equations, 

having lost both their energy source and their real information.  Biological data was often “processed” by the 

application of preconceived mathematical constructs and tools.  These constructs were typically originated for other 

purposes.  Axon data was mapped onto the cable equation (originated for the transatlantic telephone cable).  Channel 

openings were mapped onto binomial statistical processes (Bernoulli distributions which originated with coin flips). 

The “whole cell” behavior was mapped onto an “integrate and fire” equation set, or a “leaky bucket” integrator. 

Such applications are, de facto, filtering processes, whereby the biology is filtered out, leaving only the singular 

preconceived analytic notion to remain, most often a first order differential equation.  Convenient, but not 

representative of NIP processes.

Physicists, chemists, and computer scientists have sometimes applied patterns found within their own field  to the 

higher levels of organization of living forms, displacing whatever mechanisms the living form actually employs for 
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itself.  Such has often been the nature of modeling.  What resulted from such efforts was usually closed form 

deterministic equations that continued to imitate the original, known lower level functions, but offered little 

capability for predicting the higher level behaviors of living cells.   With analytic approaches, there can be no 

emergent phenomena, and no information processing capability.   Physics and chemistry do indeed apply – at the 

appropriate levels of organization, especially in defining the elements.  But biology offers a number of higher levels 

of organization upon which physics and chemistry are silent.  This is accomplished via the patterns of connections to 

which the elements are prone.  This project strives to fully apply the relevant physics and chemistry as a basis, but is 

careful to enable the biology to emerge therefrom.

A telltale sign of a deterministic model is that repeated trials yield exactly the same result.  Digital computers are so 

deterministic that their random number generator will yield the exact same result every time.  So various tricks, like 

mixing the current clock reading into the starter equation, must be used to create  a different “seed” each time it is 

used.   This is worth pondering.  The digital computer needs an externally derived signal (the clock) to generate a 

random number.  That is pretty stubbornly deterministic!     Digital computers can indeed perform stochastic 

equations,  but it is not in their nature.   The cost is considerable.  What the real world (the continuous world) does 

trivially, such as rolling dice or hitting billiard balls,  requires an astronomical amount of digital computing to 

imitate accurately.2  Our deterministic neural networks (ANNs) are made to look individualized by variations in the 

training sequence (again, external source of variety must be provided).   With such a deficiency, how then can 

deterministic neural nets perform so powerfully?   And if biological neurons could have been constructed of much 

more simple elements and still perform so powerfully, then why didn't they so evolve?    These questions are the 

concern of this paper. 

1.1.2 MOLECULAR MODELS  

Molecular models are, in theory at least, capable of predicting wide ranging behaviors of, in this case, the living 

neurons they represent.  This is particularly valuable when in pursuit of a system's information processing potential. 

2 Digital computers can handle “ideal” conditions quite efficiently, but the real world is not ideal.  A billiard table 
with slightly worn and irregular felt, balls with slight inhomogeneities and scratches, give the digital computer 
great trouble in emulating, while the real world takes all such matters in stride, with no additional “calculations” 
necessary.
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Moving beyond the cable EQ, the simple Integrate and Fire models and the flat Hodgkin and Huxley equations, by 

1989 workers were assembling sets of parameters needed to model a stochastic neuron. [9]   A major effort began to 

tackle active, rather than merely passive, elements.   Nonlinearities, previously only represented by a step or ramp 

function, were being looked at kinetically.   The first individual ion channel current was recorded in 1976, by Neher 

and Sakmann, and they developed the patch clamp by 1982.[10]  By 2001, Bertil Hille assembled hundreds of 

papers on ion channels into an impressive volume covering the physics, genetics, electrics, kinetics, mechanisms, 

selectivity, dynamics, distributions, modulation and pharmacology of 43 classes of ion channels. [11]   This provides 

a base library of ion channel types and their performance characteristics sufficient to begin finite state machine 

models of ion channels.  If the receptors and pumps were as well described, then predictive whole cell models of 

specific neuron types could be constructed. 

Lindsay, in 2004 applied Maxwell's four equations as a basis for neuron modeling. [12]  This was most welcomed as 

it provided terra firma first principles from which any conceivable hybrid diffusive and kinetic model could be built. 

It was quickly admitted that the magnetic forces at that scale were too miniscule to carry forward, and eliminating 

them reduces the problem back to 2 equations (Gauss's law and Ampere's circuit law), looking like traditional 

electrostatics rather than electrodynamics when the magnetic component of the circuit law is small enough to be 

ignored.  

At last, the Hindmarsh-Rose neuronal model is sufficiently complex, kinetically, to exhibit multiple modalities in its 

response (burstiness vs single spikes).[13]   Though driven by SDEs, it does not take into account spatial 

relationships nor shape, nor channel density heterogeneity in pattern.  Models which exhibit modalities are entering 

the realm of emergent properties, so abundant in biological systems, and so absent in deterministic models.  

The investigation of modalities usually requires sweeping the domain space with a sensitivity analysis, monitoring 

output to detect qualitative changes.  In digital models modes are likely to be unstable, perhaps because they lack 

continuity; perhaps because they are not finely grained enough to follow the steeper nonlinearities.  Computer 

models often suffer instability problems even when they are simulating biological processes that in the real world 

are always stable.  Is this a digitization artifact, an incompleteness problem, or a misunderstanding of the 

fundamental physics?    Modeling must forever be sensitive to questions like these, posing them both to modelers 
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and to the biologists, in hopes of avoiding conceptual blind spots, finding resolutions, posing queries worthy of 

further research, and tuning the modeling methods towards producing high fidelity representations.

In 2003, Hucka produced a mark-up language (similar to .html) dedicated to neural simulations. [14]   In this paper, 

he develops the concepts of  particle types and channel types, and seeks to generate a spatial grid of output voltages 

for the membrane state.   While useful for depicting neurons on the internet, web postings might harness idle PC's 

into ad hoc super computers that can support more rigorous models, particularly more complex shapes and greater 

numbers of actors.  It is the matrix inversions, the large scale sorts, the euclidean distances requiring square roots, 

and the basis conversions that determine a dynamic model's computational load. 

Markov processes, by definition, are random processes which have no memory at the elemental level.  It will be 

shown later in this paper that receptors, channels, vesicles and pumps (collectively referred to as actors) may be 

quite accurately modeled by Markov processes, provided that the kinetic schemes yielded from wet lab work are of 

sufficient detail to the objectives of the model.   This is counter-intuitive, given that a nervous systems is the epitome 

of a system with memory.  However, a molecule in any one conformation has no memory of any of its past 

conformations.  An atom is fungible in that it is no different from any other atom of the same species, therefore it 

has no states nor memories that could distinguish it from any other.  In other words, all of its past is integrated into 

its current state and position.  This continues to be true at the higher organizational levels of the nervous system.  It 

has no access to the past, only to its own (admittedly complex) state.   Memories are states.  States are 

configurations.  Configurations are positions.  There is only knowledge of the current position, not of any past 

positions.   Markov processes employ forward rates and backward rates, analogous to chemical binding and 

unbinding, a useful fit for modeling biochemistry and conformational changes.  Andrey Kolmogorov (b.1903 - 

d.1987) elaborated upon this such that he could adjust the stochastic probabilities, correct to the chosen time slice. 

This is critically important in modeling.  Bio-data may be offered as events per second, but when modeling at a dt of 

1E-4 s the real probabilities are strikingly different from merely taking the per second data and multiplying by the dt 

value.  Such conversions will necessarily be utilized in this project model.

There are several shortcomings with reducing a complex molecule, such as an ion pump, into a kinetic scheme to be 

modeled as Markov process.   
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First, the number of possible conformations in a molecule of more than 10000 atoms is held by many workers to be 

astronomic.   To represent all conformations of a single type would require a full Molecular Dynamics simulation.  

Second, the intent of the “kinetic scheme” is to collapse the potentially immense number of conformations down to 

perhaps 10 to 30 significant states.  Conceptually, this is done by identifying the “high runners”,  those states with 

the greatest impact upon transport.  It is the nature of how such data is collected (two-step voltage clamps) that 

several different conformations might be “read” as the same state, simply because instrumentation cannot resolve 

between them.  Even when it can so resolve, if two or more state have the same effect upon transport then some 

workers may choose to bundle them together as one state.  Then there are the “low runners” apparently of little 

consequent which may be bundled together, even in large numbers, as “other” or “rest state”.  While it is generally 

sound to select only those states significant to the quest (e.g. transport effects), determining such information is 

tricky.  A very rare state might have profound effects when finally it arrives.   Only by exercising a model many 

times through its domain can the observer begin to gain purchase on what is missing or askew, due perhaps to 

leaving out some statistically “low runner” states.  This is especially true for rarely occurring states that tend to 

toggle.  That is, switch on, then stay on for a prolonged period.  Another possibility is that two seemingly similar 

states may be on different paths, exiting through quite different routes, resulting in different temporal patterns. 

Beware criteria that judges what is “significant”.  This paper explores the second and third order relationships 

between states, that predispose state changes to occur as paths and rhythms.

Wet lab work to derive kinetic schemes for the channels and pumps is constrained by the means of taking 

measurements.  In the event of a channel opening, a current is created by the flux of charged particles through the 

channel, and electrical currents can be measured down to as little as several charges moved several nanometers. 

Determining which ion types pass requires changing the bath water (Ringer's solutions).  Some techniques (referred 

to as measuring gating currents) detect parts of molecules shifting position  ... for example, the arm that opens and 

closes certain channel types.  Because the arm is constructed of amino acids, there are certain to be charges at the 

polar end.  In motion these may be detectible.   This technique may not always be adequate to determine the 

geometric consequences of every charge shift possible for the molecule, nor distinguish which shifts will be the 

most significant ones to the larger functional role of the actor.  When the channel is presumed to be a binary device 

(open or closed) it is easy to rationalize the collapse of the many states into the few.   But if it should be that the ion 
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channel state transitions are exploiting temporal patterns, then we must preserve as many of those states as is 

practicable until we can know what those patterns may be.  

Molecular Dynamics (MD) rises to help fill this void.  It is a new field which harnesses large computers to simulate 

the atoms and forces within and about a molecule sufficiently complete to determine tertiary and quaternary 

structure, and also the probabilities of each of its various conformations.  The atoms, bonds and energy relationships 

are processed dynamically to yield a movie of the molecule in action.  This rigorous approach is more fundamental 

than the kinetic schemes derived from the two-step voltage clamps, although MD can use well-reasoned kinetic 

schemes to validate its own models.  Indeed, MD's rigor is far too computational to be included in a whole cell 

model.  A single molecule of hormone colliding with a single receptor molecule can require weeks on a 256 core 

computer to do an MD simulation.   But, the results of such investigations are of great value to neuron modelers. 

MD can zoom in on a critical interaction to clarify its occurrence, behaviors and outcomes.  

By 2002, MD was doing software constructions of ion channels and began yielding the most detailed information 

available by any means. [15]   The workers in this case admitted that MD studies do not yet produce quantitative 

values about the channel pore binding sites, because the free energy of the aqueous environment may have effects 

via coupling from beyond the boundaries of the simulation.  MD can play a special role in helping select and 

characterize those chosen few “significant” states that comprise the kinetic schemes upon which the Markov 

processes operate.   

To recapitulate:  

Physics provides the rules for particle movement and interactions.  Chemistry provides the rules for binding and  

unbinding phenomena , and MD will eventually elucidate most of the quantitative data to capture the kinetic states  

of the actors.  

1.1.3 MODELING HISTORY  

 Within the realm of neurophysiological modeling there are several applications currently available: Genesis, and 

Neuron. GENESIS (GEneral NEural SImulation System) simulates sub-cellular neurons to networks, originated by 

Bower in 1988.  It is written in C language, and assembles prepared blocks of code into models.  It can simulate 
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spherical and cylindrical compartments.   In 1997, a software program named NEURON was introduced by Hines, 

Carnevale and Destexhe. [16]  Sponsored by workers at Yale University and Duke University, NEURON is currently 

perhaps the dominant form in the field.  Over 700 scholarly papers have been published as of this date, which cite 

Neuron as a tool employed to demonstrate or verify some neurophysiological process. [17]  None of these papers (to 

date) attempts a general analysis of liquid state informational processing of those molecular mechanisms employed 

by neurons.  Neuron is coded in C++ programming language, and typically runs on the UNIX operating system.  It 

produced graphs following the Hodgkin Huxley curves of an action potential and propagated them along the cable 

EQ.   In their software documents they define an ion channel as a current over voltage plot (I/V), i.e. a look-up table. 

This implies there were no time-dependent kinetics.  Such a two dimensional simplification does not account for 

modulation, subunit kinetics, energy barrier profiles, the temporal aspects of state changes and inactivation, nor for 

the rich behavior patterns and modes of the finite state machines that ion channel actually are.   By 1987, it was 

known that sodium channels were significantly more complex than the HH EQs  representations. [18][19][20] 

Certain intermediate state transitions were occurring independent of voltage, and thus a minimum 12-state kinetic 

model (Q-matrix) was deemed necessary, [21] and a 30-state model was proposed to account for the channel 

behaviors.[22]  The fact that ion channels are modulatable also requires a larger number of state space dimensions. 

The dimensionality of the state space increases by one for each allosteric binding site.  The vector length of each 

such dimension is equal to the quantity of possible binding types to the one allosteric site +1 (the +1 is for the empty 

condition).  Each modulator site constitutes an input port.  Additionally, the order of the system is increased 

multiplicatively by the number of time steps required to span all distinguishable input patterns by the system.  The 

set of all input channels, times the temporal order of patterns recognized determines the size of the system array 

necessary to model an ion channel, pump,  receptor or vesicle, as adequate to demonstrate its Neural Information 

Processing (NIP) capacity.  By contrast, a 2-d plot portrays only a 1-dimensional lookup table, with no NIP.

A restricted form of diffusion was added to NEURON in 2007 as equations, not as particles, wherein the 

concentrations are re-calculated each dt. [8]   The collaborative efforts of J Moore, M. Hines, T.  Carnevale et.al. (at 

Yale University and other universities) offer an ever increasing library of C++ routines to assist the neural science 

worker in the mathematical representation of hundreds of neuronal phenomena discovered in wet labs or 

hypothesized to exist in living systems.  This is a numerical methods approach to the neuron, not a molecular model, 

not a particle system model, not a kinetics model, not a 3-d diffusion model. It serves the need of modeling local 
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circuits (2 or more neurons connected into communications circuits) at the expense of simplifying many neuron 

functions down to data-mappings (curve-fits and table lookups) for computational speed.  

Current modeling efforts by others are dominated by closed form mathematical equations, by ad hoc models of 

singular specific phenomena. As features and scope are increased, supercomputers have become increasingly 

necessary.  

1.1.4 INSTANCES VS AGGREGATES  

Neural modeling has been motivated by wide ranging needs: : genetics, evolution, anatomy, development, 

proteomics, systems biology, cytology, pathology, pharmacology,physiology, molecular dynamics, statistical 

mechanics, bio-computation, computer science, mathematics, fluidics, and materials.  Each perspective will purge 

most of the bio-data so as to leave a parsimonious model which contributes to its respective goals.  For many, the 

various analytic techniques which reduce redundant elements to one, and complex processes to equations,  yield the 

answers sought.  But information processing often involves large numbers of similar units, being richly connected 

together as networks, each being subtly “tipped” to indicate its information value.  Most of the analytic techniques 

applied to neurons do not preserve those large numbers of similar units.  Rather than distinguishing between them, 

they are aggregated into “macro” behaviors.  The problem with analysis is that it cuts apart the connections and then 

purges the redundancies in search of essences.  If the outstanding trait of neurons is their ability to process 

information, then models which purge the molecular mechanisms that perform information processing are inherently 

self defeating.  

Simplification is the result of analysis. Analysis works by aggregating like kind events into singular mathematical 

expressions.  But any act of aggregation loses the information of the individual elements.  Thus, the study of 

informational systems must resist the temptation of doing analysis.  Rather, synthetic processes must be sought 

which support the emergent properties from large numbers of simpler elements.  As concerns information processing 

it is not advisable to model aggregates except for those types which must be present as substrate but do not 

participate in state changes, e.g. water, catalysts.  

Consider the absurdity of one running a computer program then claiming to have “gotten the answer” by reading the 

computer's temperature.   Or by adding all the output 1's and 0's into a single net sum.  For most operators, 
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information is lost when two or more values are merged into a single value.   It is the numerous unit values which 

are the essence of the information.   To extend the model the axon to include the rest of the neuron  (dendritic arbor, 

soma and initial segment), large numbers of states must be instantiated, and their interactions doing the information 

processing.  Only when state change sequences are demonstrated to occur identically, in parallel, and triggered by 

the same source, can redundancies be purged from a representative model without loss of veracity.  It is the intent of 

this paper to represent the neuron's fine grain instances of state change, those with any likelihood to impinge upon 

the output signal. 

   The behavior of a single ion channel is considerably different from that of the Hodgkin Huxley equations (HH 

EQs) output signal.  While the HH EQs produce exponential response curves, a single channel responds with either 

full open or full closed, as a somewhat chaotic step function.  The durations of openings and closings can span 1E1 s 

perhaps down to  1E-12 s.  The faster the flicker, the greater must be the force/mass of the gating mechanism. 

Channel activity is practically digital.  Given such generation of digital information, and given that ion channels are 

only known to communicate to each other through the saline between them,  there is a grand question as to how the 

saline passes such digital information between the channels.  Is the informational signal filtered?  Are there high loss 

rates? Is the channel digital signal converted back to analog?  How saline connects the ion channels by conveying 

information is a key query of this paper. 

Warren McCulloch and Walters Pitts offered a digital perspective on neurons.  They proposed simple AND and OR 

gates as representative of excitatory and inhibitory actions.  Then the Hebbian synapse was defined by Donald O 

Hebb in 1949, now known as the Hebbian learning rule.  This allowed learning to take place, such that the excitatory 

and inhibitory synapses would change their weights as a function of feedback per the “correctness” of their output. 

Put otherwise, synaptic gains were adjusted by the error signal.  Such error signals required “recurrence”, that is 

backwardly traveling signals, from the output region to the various input and intermediate elements.  This 

architecture also implies a hybrid of analog and digital operations.  To wit, the analog sums the many inputs, first 

weighing them according to their Hebbian values.  Then a digital process occurs which evaluates the sum by 

comparing it to a threshold value.  Above the threshold warrants an action potential propagation, else silence or low 

basal firing rates.  (For neuron types without action potentials, the prior sum is passed as a “graded potential”.)   The 

output signal is then measured by some success criteria.  An error signal is calculated.  The error is feed back to 

those synapses most active in the processing of that signal.  To the extent that the answer was “wrong” all those 
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synapses can be proportionately diminished in weight.  To the extent that the answer is “correct” all those synapses 

can be proportionately increased in weight. With repeated trials the system gets progressively better at its 

performance, even across a large number of distinct problems.  However, such connectivities have the characteristic 

that the most recent experiences tends to overwrite the older experiences.  Thus memory is not fully persistent, but 

rather fades with usage.

Many early bio-computation workers treated the whole cell as a sum and threshold device.  We now know that each 

cell consists of hundreds of thousands of ion channels, and each ion channel is a sum and threshold device.  One cell 

is therefore a massive computer, built of a network of approx 1E5 channels, all “connected” to their nearest 

neighbors by membrane capacitance and saline resistance.  Such errors of scale are common place throughout 

science, gradually corrected as our wet lab instrumentation improves to discern finer detail.  Network theory, like 

many sciences, is moving toward the molecular realm, and in so doing discovering new possibilities.  Because of 

this history, some of the prior art concerns whole cell studies, and some of it multicell studies.  As the resolution was 

not too keen in the beginning, some things that were originally applied as multicell would now be applied as sub-

cellular phenomena.  This is a bit confusing, so please note that all efforts herein are to build a whole cell model, and 

that some of the relevant concepts thereto may have been originated at larger scales.

We must distinguish between Artificial Neural Networks (ANNs, silicon based) and Biological Neural Networks 

(BNNs, carbon based).  By 1990, ANNs were making rapid advances, paralleling the advances of conventional 

digital computers and super-computers.  ANNs consisted of 2 to 5 layers of elements whose major connectivity was 

fan-in and fan out between layers.  This is neither a vertical nor horizontal architecture, but rather diagonal.  AAN 

designers often considered the HH EQs as too computationally burdensome for large scale networks, but they were 

sometimes employed in smaller scale experiments. [23]  This is somewhat ironic because the BNN modelers were 

going in precisely the opposite direction, opening the HH EQs up into numerous single unit stochastic processes, 

greatly increasing the computational burden.  It is indeed an intellectual challenge to explain how the ANNs 

achieved such stellar successes with such extremely simple “neurons” (sum and sigmoid nonlinearity) while the 

BNNs were proving to be immensely more complicated devices.   It is a concern of this paper to pursue an 

information theoretic explanation that objectively and quantitatively distinguishes the performance and 

computational potential of BNN's from ANNs, so as to quench some of the misconceived crossover assumptions.
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The first proposed solution to the over-simplification trend was to cut the unitary intracellular compartment into 

many cylinders, resulting in somewhat arbitrary discretization by Rall. [24]  This discretization allowed a more 

detailed representation of the several chosen cylinders by mathematically collapsing each into a node.  It facilitated 

some accounting for shape and bifurcations.  The nodes were then coupled by an extracellular resistor and an 

intracellular resistor.  They could then be solved as current and/or voltage coupled equations (node or mesh).  This 

approach to modeling was an early form of the finite element method.  Although in practice this approach cuts the 

neuron into parts creating unrealistic compartments, in effect it served to increase our resolution of the workings of 

the neuron because prior to such a technique,  workers were treating the neuron as single node.

A subsequent strategy was to take the HH EQs or Fitzhugh-Nagamo equations and add noise back into the model 

Plesser, [25] and Tuckwell. [5]  This strategy is the strange consequence of having first squeezed every stochastic 

process out of the system, so as to 'fit' into deterministic first order exponentials, and then regretting it.  This 

approach produced output that “looked” more like the original noisy data but recaptured nothing of the original 

utility of that 'variance' in the neural processing of stimulus to response.  Painting noise over a deterministic 

equation does not compute anything, any more than replacing a 8-bit CPU with an 8-bit noise generator would 

compute the same “answers”.   The signal variance (historically referred to as “noise”) is the means by which a 

small group of neurons operating in parallel can convert an analog signal into digital pulse coding.  They can do this 

in such a robust fashion that the quantity of neurons can be increased or decreased with little change in the quality of 

the response.  Such a robust elemental group may also act as a fine discriminator – sometimes called 'intelligence' 

because decisions are being made according to some criteria.  When one is in search of the information flows 

through a neuron, be cognizant that models that replace the acting discriminator with a white noise generator 

completely miss this point.

1.2 CARBON VS SILICON  

Because so much of science and technology today is framed within what is feasible in silicon computers, and 

because the digital computer has become the metaphor of first resort, let's begin with a comparison between silicon 

digital processors and carbon associative processors.  This is intended to provide a checklist of the ways bio-
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computation is not analogous to the domestic computer, in hopes of avoiding the various temptations to assume they 

are.
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TRAIT/FEATURE SILICON CARBON

Modulus Cartesian Fan-in, Fan-out

Quantity I/O Channel Equal arrays Large input, small output arrays

State Solid Liquid

Connectors Point to point (wire), point to many (bus) Many to many: baths, continuous membrane

Connector materials numerous individual copper or silver wires Common saline bath

Gates Transistors, typically 2 states Ion channels,  approx 30 significant states

Gate types AND OR NAND XOR 43+ channel types

Charge carrier Electrons Ions: Na, K, Cl, Ca,.....up to  approx 128

Power source External battery (or power utility) Well distributed ATP molecules

Power storage Battery, capacitor Concentration gradient, voltage gradient

Capacitors Discrete, one per gate Continuous, as complex closed membrane

Inductors None None

Resistors Minimized, point to point Saline, point to bath, general signal damper

Clock Master clock synchronized all Asynchronous, but resonance occurs

Gating heat Significant heat generation, mandatory Zero heat generation in gating

Conductor heat Significant heat in copper resistance Zero heat generation in diffusion

Battery charges About 90% efficient Ion pumps are about 80% efficient

Error rate Very low < 1E-12 High rates of error <1E-1. Redundancy 
reduces this problem.

Availability of resources Memory + logic = 95% For any one problem only a small % ,< 5%, 
will be “on task”

Memory transfers Resource bottleneck, expense in time and 
heat

Molecular repositioning, incremental

Residual knowledge Zero, although OS and Apps save form. complete, but constantly fading with 
overwrites

Representational scheme Arbitrary assignment and flow control persistent spatiotemporal mappings

Representational logic Boolean discrete Pattern resonance and pattern generation

Modulation None Dozens of modulation messengers in the bath

Modalities None Multiples mode of operation set by 
modulators
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TRAIT/FEATURE SILICON CARBON

Initiator External instruction set Bootstrapping

Time to program minutes 21 years

General approach Brute force, costs much energy Ride the free thermal energy sources

Structural elements Persistent for life of product May require steady replacement (costs 
energy)

Environmental Risks Overheating, programming errors Soft tissue damage, infections, denaturing

Centralized control Established via hierarchy None

Pumps Battery charger Thousands of distributed ion pumps, create a 
power topology with hills and lateral flows

Power as a carrier Power is kept clean, free from extraneous 
signals

Power is highly multi-tasked, with many 
space-sharing varieties of gradients.  There is 
also a logic of relations between these.

Redundancy Low, because precision is already high High redundancy (8 to 32) per accuracy 
required

Multiplexing Time sharing allows many signals on 1 wire Overlapping frequencies = Spectral data. 
Also, multiple charge carriers with 
independent signals.

Dimensionality [ x  y  z  t  binary_state ]  = 5 dimensions [ions  mods statespace] =  approx 100 
dimensions

Nonlinearities Strictly digital Adjustable response curves,  subtract to 
sharpen

Auditability Very good.  Core dumps reveal all, but 
temporal sequence may not be complete.

Very poor.  There is no way to read the inner 
processes, nor to capture them as a log.

Resiliency Extremely fragile, prone to crashes with total 
loss of function and total loss of memory

Extremely resilient, can go 100 years with no 
crashes

Power to computation 
ratio

35 watts to  power: 3.5E8 binary gates * 2E9 
clock = 1e16 ops/watt

15 watts to power: 1E11 neurons  * 1E5 
channels * 1E4 clock = 1.5e19 ops/watt

Completeness Always incomplete: requiring outside 
initiator, programmer, maintainer, upgrader, 
corrector, and output evaluator.

Complete and autonomous.  Self evolving. 
Self regenerating.  Self developing. Self 
repairing. Self programming. Self evaluating.

TABLE 2: TRAITS OF CARBON-BASED AND SILICON-BASED COMPUTERS

Despite the equivalence between carbon and silicon on the periodic table of elements, these two exhibit only a few 

similarities and many differences.  Both can bond 4 ways in a tetrahedral shape.  The silicon atom is more than twice 
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the size of the carbon atom (1.46 :: 0.91) E-10 m, thus their “fit” into various molecular configurations with oxygen, 

hydrogen and nitrogen are very different.  Carbon will sustain single, double and triple bonds.  Silicon will only 

sustain single bonds.  Both will support very long chains, into the 1000's.  Carbon most easily forms chains of    -C-

C-, while silicon most easily forms chains of -Si-O-Si-O- .  This hints at a second chemical difference:  Silicon has a 

much higher affinity for oxygen.  CO2 is a gas due to the double bonds, but SiO2 is sand, because of the single 

bonds the oxygen affinity is so strong that it pulls other nearby oxygens into a lattice.  

Living systems exploit numerous chemical reactions at “near balance”, that state of equilibrium where trivial forces 

can shift its reactants to one side of the equation or the other.  Weak bonds are necessary to facilitate these low 

energy shifts.  In such a system, strong affinities act as poisons.  They never let go, such as with chlorine attaching to 

hemoglobin.  Because of high affinities, a lot of silicon chemistry takes place at high temperatures (350C to 1500C) 

and elevated pressures.  All traits considered, silicon is useful in the solid state, but much less so in liquid forms; and 

carbon participates in thousands of chemicals in the liquid state at room temperature, much less so in solid forms.  

1.2.1 SILICON PROCESSORS  

A silicon CPU (central processing unit) has an array of input channels, and an equal-sized array of output channels, 

laid out on a Cartesian grid.  The concept of orthogonality spawns its architectural modulus, and therefore structural 

relationships are the primary relationship.  The solid state is necessary so as to hold this structure.  The CPU consists 

predominantly of gates, capacitors and conductors.  Resistors and inductors are minimized in use.   The gates are 

transistors, acting as AND, OR, NAND, XOR logical devices.  The capacitors are distributed, one per transistor, 

serving as short term memory.  The connectors are copper, silver, or aluminum wires. Most are point to point.  A few 

are buses, one point to many points.  The buses distribute at the beginning and collect at the end.

The digital chip has a centralized power source that distributes current to every gate.  It has a master clock that 

synchronizes all processes. The clock speed, currently at about 2E9 Hz, is increased by increasing the power input, 

and by reducing element size.  Every computation generates heat, inherent to the flipping of bits, not an option. 

Heat dissipation is a major consideration in CPU design.  Digital gates are strictly logical, in that any bit can be 

arbitrarily assigned any consequent.  Memory is separate from logic. Therefore, transfers to and from memory 

require large data buses, and are a major bottleneck in operations.  All or most of the memory is completely cleared 
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after each problem cycle to make room for the next problem.  It therefore approaches each problem in complete 

naivete, and completely submissive to its next instruction set.  Signals are conducted internally via small diameter 

wires oriented point to point.  Capacitors are discrete and well distributed.   As a system it is most efficient when 

large blocks of data are sized to fill the gate array, and then uniform deterministic equations are performed 

simultaneously across that block of data.  

The digital chip can produce exact solutions to deterministic problems. Anything more complex than addition 

requires a hierarchy of logical control to manage the problem in CPU space over the course to solution. Complex or 

large problems must be converted into temporal sequences by “algorithms”.  There are different levels of command 

language, and different levels of priorities (interrupts).  Therefore, all bits are not created equal. 

The digital system is excruciatingly sensitive to single bit errors.  A single bit can cause a shift to an entirely 

different instruction set, and quite often a single wrong bit causes the entire computer to seize (become incapable of 

proceeding) and then require a complete reprogramming from startup.     The digital chip is completely dependent 

upon software instructions to define the problem and the means to a solution.  Therefore, the so called 'computer' is 

only a partial of the problem-solving system.  To complete the system human programmers are needed.  In this 

sense, computers are mere dependents, not at all autonomous.  They offer logical leverage to their carbon-based 

owners/ controllers/ beneficiaries.

Electronics involves a singular type of very low mass, high charge particle.  Electronic current travels near the speed 

of light through metals.  Inertial effects rise to significance in inductors, otherwise are negligible.

1.2.2 CARBON PROCESSORS  

A single neuron processes an immense amount of information:  spatial, phase, weighted, patterned, and chromatic. 

A biological (carbon-based) processor has an input array consisting of thousands of connections, and output array 

unequal in size to the input array, laid out as a layered graph, not fully connected.  Its output array is typically 

simpler than its input array, as a neuron does not typically generate many completely independent output channels 

the way a silicon processor does.  There are exceptions, however. 
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The neuron has multiple types of charge carriers freely intermixed, and similarly many types of modulators, also 

freely diffusing.  It consists of predominantly of gates, capacitors and conductors. The gates are complex proteins of 

many types distributed non-uniformly and non-randomly.  Ionics employs charged particles with mass equal to 

22000..35000 times the mass of an electron.  In some situations, this mass is great enough that inertia becomes a 

significant factor in creating oscillations and waves.

The neuron has many mechanisms to generate patterns within single molecules.    All activity is asynchronous in 

that there is no master clock, but patterns in time and space are highly correlated none-the-less due to resonance and 

radiating waves.  The equivalent clock speed would be about 1E4 Hz, that is 5 orders of magnitude slower. 

However, every element is in constant motion - there is no silencing of elements as a majority are at any one time in 

the digital computer. Memory is widely distributed. Power is widely distributed, and most of its is “free” thermal 

energy that is not consumed.  

The carbon-based liquid state processor is a hybrid analog digital processor that does not employ instruction sets not 

software programming.  It learns by repeated trials, wherein successful trials trigger modulators which alter the 

synaptic weightings, and unsuccessful trials trigger the release of other modulators which alter the synaptic 

weightings in opposite fashion.  Bits are generally equal, in the sense that the loss of any few of them has little 

impact upon the outcomes.  As a result, it is exceedingly robust, able to recover quickly from almost any kind of 

error.  No outside programmer is required, so it stands as a complete, autonomous machine.  All memory is retained, 

not cleared between problems.  However, the newest memories are added to the old, in such a way that the old are 

gradually diluted down by the new.  This implies that every new problem is always introduced to the residual 

patterns of the old, and must in some way be solved as a subset of the whole of its experience.  On the one hand 

every problem immediately benefits from all prior experience.  On the other hand, it is very unlikely that any one 

problem will have access to the full resources of the processor, as most of the memory is likely to be irrelevant.  This 

is a rather serious limitation, shrinking the efficiency of resource utilization down to a modest percentage of the 

whole.   

Furthermore, the carbon based processor does not produce exact solutions.  All solutions are approximate.  Higher 

precision is usually possible by continuing the processing for a longer period of time in an iterative fashion 

(regeneration).  This is an interesting processor trait, that a solution is always available, poor at first, but improving 
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with iterations. 3 Thus, the quality of the solution is automatically adjusted to the time allowed, without change in 

algorithm to do so.   This has other implications: it can solve problems that are incompletely defined and/or for 

which there is inadequate information available.  The quality of the solution varies with the completeness of the 

problem and sufficiency of the data available.  

The carbon processor can also create new patterns and ideas.  Because of the persistence of all experiential memory 

and treating every new problem as an overlay thereof, problem interruptions and problem multitasking are also 

easily accommodated without loss.  

For completeness it is noted that the system is not a stand alone faculty, but is embedded in a respiratory, circulatory, 

digestive, excretory, musculo-skeletal, sensing reproducing system, all integrated in highly coupled fashion.. 

The signals within digital machines typically have values between + or - 5 V.  Biological electrical signals often 

range from -0.100 V to +0.020 V.  Sometimes more.  But biological signals are also carried by chemicals, which 

greatly add to the dimensionality of the signaling domain, and thus to the information capacity4.  Let a container of 

volume 1 nm^3 contain a variable quantity of particles of 0.1 nm radius, from 0 to 125  (ignoring water).  It is then 

occupied at a density somewhere between a vacuum to a densely packed volume.  If all occupant particles were of 

the same type, then the total number of possible values = 126.  Information value is a little less than  10 bits (2^7 = 

128).   If in that same cube, those particles could be any combination of 8 different types (of the same size), then 

what is the information value of that space?   It is a multichoose combination problem, where r types of objects are 

taken n at a time, r =8, n= 125.    The standard formula for combinations:  q =  n!/(r!(n-r)!)  does not work in this 

case, but  the multichoose function converts  n to  m = (n+r-1).  Then one can proceed to execute the combination:  q 

= m!/(r!*(m-r)!) ;      Each of the 125 positions may be occupied by one of the following:     ( 0 1 2 3 4 5 6 7 8 ). 

The quantity of combinations (ignoring order) is 1.84E12.  The information value is > 40 bits (2^40 = 1.1E12). 

There is a lot of information available in particle combinations that is simply not there for single type charge carrier 

systems!  Electrons have nothing to offer in equivalence to such degrees of freedom.  

3 Such iterations are reminiscent of digital algorithms for ODEs.  The commonality is their solving for 
differentials.

4 Within information theory, the term channel capacity is defined as the maximum quantity of bits/second that a 
transmission line can carry.  Attempts to load more than this will result in data loss.  For purposes of this paper, 
channel capacity is renamed “information capacity” to avoid confusion with the many ion channel traits.
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   With channels and pumps, there is no centralized control.  That is, power is distributed, state is distributed, 

memory is distributed, and capacitance is distributed.  Learning occurs via synaptic growth or atrophy, and/or by 

altering the quantities and placements of replacement actors.  Note that the actors are replaced on a weekly basis 

regardless, as a regular part of maintenance and renewal.  Therefore, to modulate this process to bring about a shift 

in the distribution of actors is “inexpensive” for the cell.  

The energy source for diffusion is “free” in that no cellular energy source need be expended.  Transport across the 

membrane is not free however, because if there are concentration and voltage gradients across the membrane: 

transport up-gradient requires the expenditure of energy, and transport down-gradient expends that energy. 

Therefore channels always move ions down-gradient (conc + volt), and pumps are required to move them back up 

the gradient.  Noteworthy is that a lot of pumping goes on via co-transporters and counter-transporters (exchangers) 

whereby the energy source to “pump” one ion type up-gradient is a trade-off, linked to down-gradient transport of 

another ion type.  Such transporters can be driven “backwards” whenever the gradient ratios cross 1. 

In addition to the membrane and its protein actors, there are also the two saline solutions, one on either side of the 

membrane.  While the role of saline is roughly analogous to that of a man-made wire or resistor,  it is a multiport 

resistor, the extent of which is determined by the shape of the extracellular fluid in the upper case, and the shape of 

the intracellular fluid in the lower case.  As a contiguous volume conductor, it is quite unlike a point to point copper 

wire.   Nor is it like a buss bar, due to ionic mass, which expresses as lag, which tends to isolate each region from all 

the others.  Diffusion loses information.  Furthermore, the use of multiple ion types whose movement constitutes 

current in those resistors, creates a greater dimensionality of the domain, and must operate significantly different 

from copper wires.  The nature of these differences can to be investigated such that behaviors are mapped into 

contributions to the information processing role of the cell, if any.

The ion pumps are roughly analogous to man-made batteries, and often depicted that way in schematics.   When not 

modulated by voltage, they are current sources.  A better analogy is that the pump is like a battery charger, because 

each pump requires a power source, and that power source can vary, thus limiting or modulating the pump 

performance.  The battery is the membrane capacitance, as it is “charged up” by the pumps.  The ATPase pumps are 

driven by binding ATP, and unbinding ADP.  Other types of pumps perform co-transport and/or counter-transport 

according to a logic of ratios.  Electrogenic pumps cause the membrane to store up potential energy as capacitance 
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charge as well as concentration gradient.  Electro-neutral pumps consume much less energy because they are not 

fighting the EM force.  The ion pumps are finely distributed, and those distribution patterns can induce complex 

axial current patterns by generating current sources at various distances away from where the ion channels will 

complete the circuit.  

Ion pumps also are logical devices, in that they require ratios of transport between the ion types.  For example, one 

type of pump binds 3 Na on the inside, 2 K on the outside, and 1 ATP on the inside.  The conversion of 1 ATP to 

ADP provides the energy to move the 3 Na outside and the 2 K inside in a single pump cycle.  Another pump may 

bind 3 Na outside and 1 Ca inside, and employ the Na gradient to drive the cycle, and in so doing pump one Ca out. 

These pumping ratio rules make for an informationally rich “power source”.   Not only do they vary each of the ion 

species concentrations, but they are interlocked in their function in curious ways.  The systemic consequences of 

pump-induced changes in the ion ratios can be investigated for their impacts upon the information processing 

function of the cell, if any. Perhaps they are modulatory.  Perhaps they can cause modality shifts.  Perhaps they alter 

the resonance and damping characteristics of the waves of information carried in the ions.   

The neuronal membrane is roughly analogous to a man made capacitor.  However the membrane has several 

significantly different aspects to it.  The membrane is one large shared contiguous capacitor covering the entire cell. 

This would be an impossible arrangement in an electron system, because essentially every node would be short-

circuited to every other node through the capacitor.   The neuron works with ions rather than electrons, and ions 

have mass.   This mass, at least 22000 times greater, must make its way to the membrane and along the membrane 

before it can influence its neighbors physically,  Ions radiate in concentric circles to generate “horizontal” signal and 

current.  Thus all nodes are separated, not electrically, but in time, by how long it takes to radiate ions to nearest 

neighbors.  There would be immense “crosstalk” of overlapping signals except that each signal is muted by distance, 

by water collisions, by thermal energies, and by capacitive attraction across the membrane to oppositely charged 

particles.  Such a liquid capacitor allows the charges to “bounce” along the membrane to such a height that the so-

called zeta potential is created.  These traits can be investigated for their characteristic behaviors vis-a-vis solid state 

capacitors, and for their impact upon the information processing role of the neuron.

Thermal noise is the nemesis of solid state processors, but is a vital energy source for liquid state processors.   More 

than an energy source,  it is also equivalent to the value of zero in deterministic systems.  That is, white noise equals 
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no information (complete uncertainty whether the value is 0 or 1).  Zero is a bit and 1 is a bit, so both have equally 

significant information value.5  

Although the neuron does consume energy to pump Na ions against the gradient, the major information processing 

events ride on free thermal energy.  It is free because it is not consumed, therefore does not need any replenishment. 

The liquid state is able to harness the ambient thermal energy to effect movement of messengers from point to point, 

and the harnessing of thermal energy to effect state changes in the large molecule conformations.   No, this does not 

violate the laws of thermodynamics.

Perhaps the most distinguishing feature of liquid state processors is their ability to exploit the random impacts of 

thermal energy.   For neurons, thermal energy is well harnessed as a stochastic process that drives the two most 

critical processes of its information processing mechanism.  

Consider that 10 identical deterministic elements (e.g. in a PC computer) will all respond to a given signal in exactly 

the same way.  Thus their redundancy adds no additional information. They are best not allowed to act redundantly 

but rather  each assigned to individual tasks.   However, 10 identical stochastic processors will each respond 

differently to the same stimulus, tending to “fill in” the probability distribution curve.  As a group, they create as 

pattern match value to each particular input pattern.  It becomes possible that as a group, they can discriminate 

steeply to subtle changes in the input, and thereby distinguish between several different patterns in the input. 

Although such complicated responses are theoretically possible with a deterministic processor, that processor would 

need to be specifically programmed for such increasing the number of elements as the pattern increased in 

complexity, and concurrently needs more memory to store sought patterns and the logic for switching between 

patterns.  The stochastic counterparts are much simpler to assemble and get working because their genetic history 

has accumulated into the program what determines their pattern resonances.  When a small group of them are placed 

in parallel, they can perform sophisticated tasks with no programming.  Modifications to that program are 

incremental, or possibly qualitative, via modulator bindings.  If one of the group should be lost, the remainder 

5 If 1's are more rarely used than 0's, then 1's have a higher information value (iv), but the overall value of the code 
drops somewhat due to inefficient use of letters.   For example, if 1's are used 0.1 fraction of the time and 0's 
used 0.9 fraction of the time, then:   iv(1) = -0.1*log2(.1) = 0.152;   iv(0) = -0.9*log2(0.9)1. Barch, D., 
Characterization of activity oscillations in an excitable membrane model and their potential functionality for  
neuronal computations. Neurocomputing, 2000. 32: p. 25. = 3.322;     By this asymmetry, the iv of the running 
code drops from 1 bit per letter to an average of 0.469 bits per letter.
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continue working almost as well, with no obvious change in the response patterns, just somewhat  more graininess. 

This is highly robust.

Ion channel transport is driven by (concentration + partial voltage) gradients across the membrane.   Their pore 

selectivity results in a set of conductances for each particle type.  Their opening and closing behavior is modulated 

by a wide variety of environmental factors.  These may be chemical, as with allosteric binding sites, or by the 

molecular torsion imposed upon them by force-fields, as with voltage sensitive channels.  There are only 2 candidate 

forces, gravity and EM, and at the nano-level gravity is miniscule. 

For these and other reasons, we do not yet have a precise abstraction of the equivalence between information 

processing of a neuron and that of silicon-based artificial processors.  The brain is a liquid state information 

processor.  It can process at least 1.2E16 flops per watt of power.  Heath 2000,[26] calculated that the theoretical 

limit for chemical information processors (liquid state) = approx 1E18 bits/second/watt.   Neurons however, must 

expend energy in development and maintenance of the living cell.  There may be a lengthy period of support 

necessary to get to the point of solving significant problems.  Current solid state information processors can process 

about 8.2 teraflops at the power consumption rate of 20000 watts, per SciCortex product specifications, 2009.  That 

is 4.1E8 flops per watt of power consumption.   Thus, liquid state processors enjoy an estimated advantage of 

3.05E7 times greater computation per watt than solid state processors!  There are speculative factors in this 

calculation, and others have concluded as low as a 1E3 advantage to the liquid state.

Within solids, structure comes free, but movement costs energy.  

Within liquids, movement comes free, but structure costs energy.  

It costs less energy to hold the ion channels in their place on the membrane in the liquid system than it does to move 

the electrons from gate to gate in the solid state system.  The total energy put into a liquid state system is 

considerably less than into an equivalent solid state machine.  Therefore the liquid state operates at ambient 

temperature, while the solid state builds up self-destructive heat that must be dissipated via a large thermal 

conduction system.
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1.2.3 ARTIFICIAL NEURAL NETWORKS   

Let's consider some of the major forms of “neural networks”.  Each is a large scale graph of nodes and edges, 

following certain connectivity schematics.  The Perceptron, Hebbian synapse nets, Widrow-Hoff, Grossberg, 

Hopfield, back-propagation, and adaptive resonance networks were out-growths of the concept of the  Artificial 

Neural Network (ANN) as “sum and threshold” transistors wired together in regular patterns (fan in and fan out).

[27]   All exploit associative processing, which is a non-rules based method of learning and problem solving.   They 

are able to tackle difficult problems with a strategy that varies the mapping weights from input domains to output 

ranges according to some measure of success.  Each of these is de facto a specialist, because each is better at certain 

forms of problems than others as an accident of its architecture in some way “aligning to” the nature of the problem 

to be solved.  They can all deal with arbitrariness quite easily, e.g. a random input combination associated to a 

random output configuration.  One can also add a random signal to a training signal, and with repetitions, the neural 

net will still learn the training signal.  Where most or all types have trouble is when two inputs are very similar, but 

the expected outputs are far apart.  

Consider the lunch table game of flicking a finger to knock a bottle cap across the table as close to the far edge as 

possible without falling off.   This means that stopping at 99.9% of the table length is a very high score, but 100.1% 

earns a zero. Digital computers have no trouble at all with this problem (y = 1/(1-x) would give ).  But neural nets 

persist with very high error rates even after lengthy training.  The situation for them was finally improved by adding 

a transform to pre-process the problem. The key is to move the input values of successes and failures farther apart. 

Given the right transform the problem is once again easy.  But selecting the right transform required outside 

intervention.  And so a pre-processing unit had to be designed that could create or select an optimal transform based 

upon the problem type.   This finally led to the concept of “self organizing maps”  whereby essentially a neural 

network could learn how to learn.  This can be summarized as second order learning, as annexed onto the original 

first order learning.  And for more complex problems, third order learning may be the solution.  Eventually, you will 

have grown some frontal lobes!

To relate this to the realm of how biology operates neural networks, we can consider the complexity depth of the 

problem, and therefore the requisite complexity depth of the neural network to solve it.  Layers of neural tissue, 

replete with their wiring schematics, certainly add to the complexity depth.   A non-rigorous measure of the 
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complexity of a nervous system might be the minimum number of synapses that must be traversed from the sensors 

to the muscles.  For completeness, it is also necessary to consider the width of the layers (how many neurons in each 

layer).  The widest layer defines the nominal width of the overall system.  Then there is also a connection density, 

between 0 and 1, where 1 = each neuron is connected to every other neuron.  There are other measures, e.g. 

recurrence (feeding back error signals to earlier layers).  Each system has a maximum digestible chunk size.  A 

10x10 grid, 3 layers deep could handle a pattern of 3 frames of 100 pixels each, where the 3 frames capture the 

temporal nature of the pattern to the second order.   (One frame is still, so it is of the zeroth order.  Two frames allow 

calculating the difference.  Three frames allow calculating the acceleration.)

Because nervous systems evolved from molecules to larger entities, constantly bathed in thermal energy, stochastics 

is a necessary inclusion in models of their behavior.  Processing steps must be considered as probabilities in time, 

across a profile of alternative probabilities.  In 1986, William O'Neill created a stochastic neuron model. [28]  He 

retained measured membrane capacitance and replaced the three parallel conductances of Na, K and Cl through the 

membrane with a threshold element.  The model  provided random inputs to an integrate and fire model with a 

threshold of randomly fluctuating value, and a reset that occurs at a randomly varying time.  

In 2004, Morgan presented a series of differential EQs for whole cell modeling.  His stated purpose was to include 

cell growth and cell division into the model. [29]   Synaptic weighting is effected via neuronal growth and retraction. 

These are important real cell features that effect learning. This might be added as a feature in neuron computation 

models, but at the present only about 1 s of simulated time is tractable, not enough for realistic growth processes. 

Migliore, in 2005, brought complex shapes (e.g. that of a pyramidal cell) into a NEURON program and compared 

passive dendrites to active dendrites.[30][31]   He was also able to administer two stimuli at widely spaced injection 

points (soma + axonal bouton,  dendrite + soma), demonstrating spatial response patterns for each configuration.  He 

simulated membrane with uniform channel densities and also graded channel density.  A membrane with two 

channel types was simulated using a double exponential time course for the aggregates. Both channels and ions were 

treated in aggregate.

As late as 2008, Terman was making efforts to collapse the entire neuron into a discrete  (digital electronic) 

information processor, declaring equivalence under certain very restricted circumstances.[32]   This may have some 

utility in industry, but does not serve biology, as all of life's variables were collapsed to constants, flattening the 
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dynamics.  As a result this model can only “solve” the same equivalent problem over and over.   It does not exploit 

the multidimensional potential of biological approaches to information processing.  

An attempt was made to employ large scale computers to model neurons by Loeb and Schaff in 2001, which takes 

on a biological systems approach.[33]  This particular model is more cytoplasmic than membranal, therefore side 

steps the information processing aspects of the membrane.  But it is noteworthy for its General Systems Theory 

application, which is excellent at emulating multichannel, highly-coupled, analog problems.  It is very efficient at 

linear equations, progressively slower on the nonlinear equations.  High order nonlinear equations can be made to 

emulate discrete processes quite well, and so the potential is there for simulating a hybrid system.  (Hybrid Analog 

Digital models will be further discussed below.)   Traditionally, linear systems treatments have not embedded any 

stochastic processes within them, although noise was often used as external drivers or signal sources.  However, the 

line between PDEs (partial differential equations  - the engine of linear systems) and SDEs (stochastic differential 

equations - which ultimately are calculated as though they were PDEs)  is fading.  We can expect that soon linear 

systems theory will fully embrace stochastics, fully integrated into the large matrix inversions that solve the first 

order differentials, solving them seamlessly with no special treatment at all vis-a-vis the PDEs.  

Artificial Neural Networks, as a formal discipline, has drifted independent of the study of biology.  It has been 

driven by the utility of problem solving machines as applied to commercially attractive problems.   To the extent that 

neural network architectures are mathematically sound, each presents a query to those workers pursuing biological 

computation: Could biology work this way?   

The current mismatch between commercial neural networks and what we know about biological networks is so great 

that we cannot compare the neuron of an ANN to the neuron of a BNN.  An ANN “neuron has one summer or 

integrator, and one threshold function, such as y = tanh(x).  The BNN has a shaped phase array that resonates to 

spatial-temporal patterns, has variable diodic qualities that meter back-propagation, and employ a variety of filtering 

processes that cancel out many patterns, while amplifying others.  The BNN has approximately 1 million pattern 

recognition devices each of which may recognize several different patterns and response with yet different patterns. 

Each of which is modulatable in many ways (multidimensional).  The communications between these are not limited 

to electrons, but rather by many species of ions and messenger molecules, again greatly increasing the degrees of 

freedom.  The BNN neuron is many orders of magnitude more complex, extensively utilizes stochastic processes, 
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and is of factorially greater information potential.  We will have to compare a single BNN neuron to an entire 

network of ANN neurons to approach some comparable stance between them.  The mis-calibration between the two 

nominal “neurons” is significant.

1.2.4 BIOLOGICAL NEURAL NETWORKS   

Biological Neural Networks (BNNs) have many millions of years head start over the ANNs.  They serve as the 

mentor and the gold standard for the ANNs.  We can start with the concepts biology contributes to science in its own 

right, meta to physics and chemistry.   Biology recognizes patterns of organization that perform entirely new 

behaviors, and indeed more complex behaviors than predicted by physics or chemistry.  All living cells make 

extensive use of feedback loops, for homeostasis, for adaption, for learning and for responding.  The neuron, for 

example, is solving numerous environmental problems.  Groups of neurons are radically altering the environment, as 

well.   Biological processors are evolved assemblies of particular patterns, selected for their performance in response 

to very specific survival advantages. Such selective pressures presumably yield variations in each species, each cell 

type within the species, each stage in development, and reorganization of cells to changing environments.  

The sophistication of interaction with the environment is much higher in biology.  Among other things, this implies 

two critical processes: the ability to derive information from the various aspects of the environment; and the ability 

to generate new behaviors that respond to environmental stimuli.  The complexity of information so derived is 

dependent upon the complexity of the nervous system.  In between sensing information and motor outputs must 

some form of mapping information patterns from input to output, not one-to-one but many-to-many.   When various 

experiential patterns can be recorded, they may utilized in combination to generate new patterns for output trials. 

The nature of how environmental patterns are recorded, held, over-written and combined determine the 

“personality” of the organism.  

A useful frame of reference might be that each living cell does computations to decide what to do next.  Presumably, 

this is based upon an anticipation of what the environment will do next.  What then is a computation? 

Mathematicians have extensively studies digital computation.  There are unary operators, such as looking up the log 

of a number, or the sine of an angle.  There are binary operators, such as addition, division, or exponentiation. 

Trinaries exist, but they can usually be broken down into two binaries.  There are counterparts to these in chemistry. 
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A zeroth-order reaction is analogous to an unary operator.  A first-order reaction is analogous to a binary.  A second-

order reaction is analogous to a trinary.   Thankfully, much of chemistry behaves as first order binaries, and thus the 

ubiquity of the exponential response curve.  It is noteworthy, however, that second order systems are capable of 

oscillations, and indeed chemical systems have been defined and built that oscillate.   From a modeling point of view 

it is desirable to avoid constraining the system from exhibiting the zeroth, first, or second order reactions and their 

effects.  A good particle system will be capable of emergent oscillations when ever second order effects emerge from 

mass-force interactions.

Human study of how biologic organisms compute tackles an immense complexity, because every cell type is quite 

rich in its computational activities, and these are quite varied across the cell types.   Researchers have been engaging 

in drastic simplification measures over almost 100 years in efforts to understand how the neuron works.   Most of 

these efforts can be classified as analytic, to the extent that phenomena were aggregated and homogenized into 

continuous deterministic equations.  Analytic solutions to liquid diffusion problems and molecular kinetic problems 

strive to treat the particles collectively.  They often assume homogeneities of:  substance, size, speed, spacing, and 

time.  Such homogeneities provide the substructure, but it is precisely the inhomogeneities that are the information 

of the system.  To the extent that an analytic effort presumes homogeneity, it defines a system without information 

content in it.   

The real world system, minus the analytic representation of that system, equals the information content of that  

system.

One could begin, conceptually, with a complete molecular-based model of a general neuron, then narrow the input 

domain to that of a specific type of neuron, then narrow the state space to only those states that are utilized by such 

an input domain, and finally limit the output range to only that used by the reduced state space.  This would be the 

linear systems approach.  By assuming that the entire arrangement of things could be mapped onto a Cartesian grid, 

and then reduced to eigenvectors, such an elimination strategy is valid.   

Off the Cartesian grid, in a network (also called a graph) of nonlinear elements, eigenvectors may not exist.  In a 

system where slight rearrangements of ion channels on the membrane can alter the mathematical function of the cell 

requires modal analysis.  In a system as nonlinear as the neuron, linear approximations and piecemeal 

approximations are inadequate and misleading.   
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The matter of frequency analysis is often raised.  Anywhere there are masses and forces, oscillations will occur 

unless damped by friction.  Frequencies are the results of mass, force, distance and interference.  They are therefore 

indicative of, or symptomatic of, the entity that generated them.  From an informational point of view, it is the 

changes in frequency that are significant.  A molecule in one state may vibrate in a characteristic manner.  Then a 

change in state will most probably change its characteristic frequencies.  Fourier transforms are excellent at 

capturing the steady state frequencies of a system, but lose much of their accuracy in dynamic systems.  To solve 

this problem, wavelet analysis was invented. It offers Gaussian envelopes in time for frequency sampling, so that 

consecutive wavelets can be compared, so as to detect changes in time in the underlying system.  All of this is 

indirect to the mechanisms of how the system works.   A frequency is one value representing 4 values: mass, force, 

space and friction.  Information has been lost because the frequency value cannot be returned to these 4 values. 

Only if 3 of the 4 remain constant and are known can the frequency be back calculated to the 4th.  This makes a 

point.  Why bother with the degenerate information of frequency data when one has access to the underlying entities 

and the necessary and sufficient values to model their behavior?  Indeed, frequency is but an emergent behavior of a 

mass-force system.  It is therefore prudent to focus on modeling the particles and forces.

The most complete model of a thing is the thing itself.  And in the case of the neuron, NIP functions will require 

representation of a charge barrier, individual ion,s and individual channels which gate ionic flow through the 

membrane.  Neural modeling can be furthered by conceptualizing the information processing ramifications of 

massively parallel quantities of the involved physical processes, as they occur in living neurons.   The literature 

reveals that the vertical flows are quickly grasped, but that horizontal flows are often ignored.  Consider that the 

retina consists of 5 layers of neuron types (there are also several dozen subtypes).  The connection patterns between 

the layers have been traced.  But the initial processing of the retina, known to include edge detection, motion 

detection, angle detection, and others, are accomplished horizontally, via the connections between peers within a 

layer.  When the basal states of peers are delicately balanced, a signal of lateral contrasts and/or temporal dynamics 

can cause a strong ripple throughout the net, or trigger useful patterns, subsequently linked to specific responses. 

Studies of the “purpose” of the retina can guide the search for mechanisms within each of the constituent cells.  For 

example, the search for directional sensitivity led to the detection of a particular cell type (amacrine starburst) with a 

particular distribution of chloride pumps that set up an axial current of ions which in turn determined directional 

sensitivity.[34]  Here again, the patterns first detected at a multicell level have found purchase at the molecular level. 
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In stochastic systems there is likely to be significant redundancy.  If  information theory can properly define the 

purposes of the system, then statistics can measure the amount of redundancy.   In modeling, redundancy is 

computationally expensive, and it is desirable to purge redundancy to the point of holding the desired precision. 

This is sometimes referred to as finding the point of diminishing returns.  However, we cannot suppose that we 

know all the functions and “purposes” of the neuron signals.  We, therefore, must error on the side of greater 

redundancy, rather than risk (unknowingly) losing critical functionality.   To the extent that information theory may 

be successfully applied to hybrid analog digital systems (HADs), this problem can be settled, and models can be 

optimized to the minimum redundancy that preserves function.  

1.3 APPROACH  

Modeling compels one to consider a number of abstract concepts:   continuity vs discrete;  infinite vs finite;  closed 

form vs open form differential equation systems;  deterministic vs probabilistic universes;  degree of 

incompleteness;  inherent uncertainty;  reversibility vs irreversibility; entropy in cytological systems;  asynchronous 

biologic events vs synchronous digital computer clock events;  stationarity vs steady parametric drift (concerning 

both development and evolution);  false classifications and semantics;  noise vs thermal energy sources;  molecular 

dynamics vs kinetic schemes.  Every attempt at simulating a living system within a computer runs into these, 

explicitly or implicitly.  A conscious effort will be made to address these on their merits, across the alternatives, 

valued and ranked for appropriateness to the standard of NIP-relevance.

Three of the concept threads that paved the way for the study of cells that compute:

heat > entropy > probability > communications > information theory

number line > continuity > infinities > discontinuities > discrete math > logic > turing machines

linear algebra > general systems theory > control theory > optimal control > systems identification > 
nonlinear systems > stochastic systems

Several workers, e.g. Voit EO, 2000, refer to the evolution of reductionist models as “reconstructionist” models.[35] 

Mathematically, this is equivalent to moving from linear systems theory to stochastic partial differential equations 

(SDEs).  But no sooner were SDEs employed to simulate neurons than workers expressed a need of “simplification” 

so as to handle the immense quantities of elements and their process step iterations.
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Hodgkin and Huxley, in 1953 inspired an application of chemical reaction kinetics to large molecule conformational 

changes.  This implied that a molecule was reacting with itself, yet the forward and backward reaction rates still 

held.  Studies of ion channels in the lobster giant axon led the way because the channel state changes were 

detectable via electric currents passing through the channels when open.  As detection methods progressed, such 

kinetic approaches extended to pumps and receptors, wherein the movement of an “arm” of the molecule was 

detectable so long as it had a charge on it (so called “gating charge”).  Since the early 1990's , workers have been 

attempting to identify the critical  pieces necessary to comprise a whole cell model of neuronal function, [36] and 

collecting sets of parametric values suitable for such a model.[37] 

1.3.1 PARTICLE SYSTEMS  

It is recognized that the natural world generates great variety though abundant types of molecules, very large 

quantities of those types, and superabundant possible interactions between them.   The velocities of these molecules 

ensure extremely high rates of collisions, thus engaging in very intimate interaction rates.  A single molecule of O2 

at Standard Temperature and Pressure (STP) experiences approx. 5e9 collisions /s.  Each one of these collisions is a 

presentation for chemical interaction.  At that transaction rate, in a mixture of  1000 different molecular types, 

chances are that a single particle will have interacted with 99.5% of all other types within 1E-6 s. (results of 

simulations)  That is, de facto, a very high level of coupling.   In liquids, the collision rate is much higher, about 

1E14 collisions /s.  However, due to the close packing distances, the chances of hitting the same nearest neighbors 

repeatedly are much higher than hitting something new.   It can be calculated or simulated the statistical collision 

rates for various mixes, taking into account temperature, masses, and radii.  It is these extremely high interaction 

rates that allow us to conceive of “high affinity” receptors.  To bring about this effect, we need only design receptors 

to bind a somewhat greater percentage of these high hit rates.  No genuine “affinity” (i.e. force) is needed.  Note 

however, that water is a complex solvent, creating several types of transient structures, which tend to reduce novelty 

in collisions.

The continuity equations break down near the resolution of molecules, at about 10 nm.  Below that, a particle model 

is required to predict outcomes of interactions.  Particle models are agnostic with respect to shape, elasticity, 

diffusion and drift, supporting complex interactions between them all.  Particle system models of the neuron can be 

constructed so parametrized, and so generative, as to embrace this variety of fast interactions.   Indeed, they may 
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create new variety, whenever molecules are conducive to building lengthy chains and branch chains, as indeed 

carbon can.   Particle models have great breadth, allowing highly parallel natural processes to reveal behaviors of 

massively-coupled ions in charge fields, constrained by container walls and colliding with binding points.  Such 

large scale networks may display dominant patterns in parallel, in series, in systemic loops, or as spatial-temporal 

patterns.  By making the container shapes more complex, e.g. adding topology of arborizations, which consist of 

numerous bifurcations and tapered shapes, patterns may emerge far more complex that those generated by smaller 

scale modeling strategies.  Contrast that with the analytic methods.  J. Crank, in his “The Mathematics of 

Diffusion” , 1975, is only able to address the primitive shapes of cubes, cylinders and spheres. 

Electronic circuits deal in the flows of a single type of charged particle (the electron).  These particles may be 

conducted, resisted, capacitated, inducted, gated, or accelerated (forced).  Conduction, resistance and gating are all 

variations on a single phenomenon.  When a gate is open, resistance is minimized (its a conductor), and when a gate 

is closed, resistance is maximized (high resistance = an insulator).  And that leaves four base functions:  C,R,L,F 

(capacitance, resistance, inductance, acceleration).   However, man made circuit elements are all designed 

unidimensionally  for point to point connections.  That is, they are intentionally constrained so as to minimize 

dimensionality, maximize linearity, and to separate the functions ( capacitance, inductance, resistance).

In silicon chips, capacitance serves as short-term memory for 1's and 0's.  Inductance is not practical in 

microcircuits, because of the required inertia there available is too small to have appreciable effect.  Force is 

provided by a steady voltage from an external power supply.  All components are designed to behave linearly - 

except the gate, a chip's distinctly non linear component.  All digital components are deterministic, to the extent 

thermal noise is minimized.  To put it another way, great effort has been made to design out all statistical behaviors 

and non-linear behaviors of the components, even though at the nano-level uncertainty is inherent and persistent. 

All of this effort is made in pursuit of reliability, which is defined as precise repeatability.   Given current chip 

architecture, this is a very necessary objective, because in such logical systems a single bit may alter control flow 

over the entire machine.  Consider the single bit setting of the power button, or the single bit setting which 

determines one of two operating systems to boot.   Though digital machines are empowered with general processing 

ability, certain forms of mathematical completeness and strong leveraged control of operations,  this arbitrary bit 

value situation makes digital processors excruciatingly sensitive to software errors.  We say they lack robustness.  
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While digital machines exploit discreteness a/k/a logic, biology exploits the continuities of saline volumes and 

membrane surfaces.  It benefits from the high orders of resonance that they support, i.e. spatial-temporal patterns. 

Biologic systems have no master bit for power on and off, nor operating system.  However, there are some 

mechanisms of informational leveraging.  For example, hormone molecules can radically change the mode of the 

cell.   Therefore, man made circuit representations are overly constrained, with one dimensional wires and 2-port 

elements.  Such dimensional and linear constraining suffer serious limitations in mimicking biology, no matter how 

earnest the simulation.

The electrical grid built of of saline resistance and membrane capacitance may be represented by a finite-element 

triangular-grid surface.  This approach is purported to represent distributed discrete capacitances, with lag coupling 

between.  Such a finite element approach can support wet lab work collecting single unit recordings.   Single unit 

recordings on intact neurons are plagued by non-linear capacitance resulting from their complex shape.  An 

equivalent-shaped model to the neuron under study can be “reverse engineered” and then used to subtract out the 

stray capacitance from the data.  Theoretically, this process should leave remaining a clean single channel record.

Electronic conduction through a copper wire is extremely fast, near the speed of light, when all the electrons are 

constrained within a metal bar, and there is no capacitance to absorb some of the charge.  However, any single 

electron is jostling about very slowly, in comparison, translating less than 2E-5 m/s.   It is the incompressibility of 

charge that determines the velocity of the wave front (conduction velocity).  The charge movements of the saline and 

membrane capacitance cannot be electronic.  If they were, then any charge movements would be “shorted out” over 

the entire surface of the cell (and via the extracellular fluid, to all cells) at nearly the speed of light.  The neuron 

could do no more information processing under these conditions than any number of man-made transistors could if 

they were all shorted across two buss bars (nullifying any other wiring patterns between them).  Therefore, we must 

consider that ionic conduction is qualitatively different from electronic conduction.  The saline per se is not a 

general conductor, as copper would be, because it is conducting ions, not electrons, and because only those areas of 

charge imbalance are conducting at all.   By “areas” is meant membranal charge barriers which prevent unbalanced 

charges from neutralizing.  While conduction may be induced across arbitrary paths by the injection of electrons via 

mensuration equipment probes, in the natural state, no such electrons flow broadly through the saline.  
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We observe propagation velocity along an axon in the range  (1..100) m/s, depending on neuron type.   Biological 

“conductors” are best conceptualized not as baths but as surface effects resulting from charge barriers (lipid 

membranes) which conduct to all points along the membrane, and perhaps across to the neighboring cell whenever 

an electrogenic differential between cells is “pumped”.  This lack of point to point conduction links implies 

significant “cross-talk” amongst the nodes of a membrane.  How can a system work in which all conductors are 

significantly coupled?   Two obvious possibilities are: 

1. Damping effects of distance due to saline resistance cause the signal amplitude to fall below the threshold 
of all distant responders.  This would certainly be sufficient if only one channel could open at a time.  But 
as neural electro-recordings often show multiple channels concurrently open, then the sum of their outputs 
would be expected to again exceed the threshold of responders.  

2. The general mechanism of communication is a grid of point processes capable of emulating a wave front as 
a group, but are too weak individually to exceed the thermal noise.  To generate a wave front, these points 
must be in phase.  In that case, the “cross-talk” referred to earlier is actually a vital linkage to create the 
wave front.  Such synchrony implies redundancy, and redundancy is of lower information content.   When 
nodes are in near synchrony, the information is in the slight differential between them.   This set constitutes 
a wavefront at the macro-level, but the subtleties of timing, direction, shape and amplitude all have 
informational values because they determine where, how far, how fast and how strong that wave will 
proceed until terminating.  

3. The point processes might have a mechanism for echo cancellation.  Indeed the refractory period of ion 
channels serves this function.

Their 'nonlinear transfer function's6 vary along many parameters, and these impart significant information 

processing characteristics to the neuron.   Early neuron models have assumed that biology operated analogously to 

electronic concepts, but in so doing lost many of their biological traits.  These traits are not discard-able if one is to 

capture mathematically, parametrize and design BNN's.  This model will of necessity evolve to include ever greater 

types of membranal proteins involved in channel system behavior.    

1.3.2 KINETICS  

Kinetics is defined as the velocity of chemical reactions.  Because models consist of  a set of objects (chemicals?) 

arranged in a network of processes (reactions?), how we define the objects and how we write the interaction rules 

will determine the velocities of communication between them.  In the case of a homogeneous series of repeating 

steps, we can speak of 'conduction velocities'.   

6 Though the term 'transfer function' is passionately reserved for linear systems, a suitable complimentary term for 
nonlinear systems is not settled.
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The modeling challenge includes the problem that a digital universe requires many concessions, leading us away 

from the continuum of natural interactions.  The early definitions of digital process frame the concepts and 

terminology that we later use to discuss simulation experiments and their performance.  The early (less informed) 

design decisions may have great impact upon what questions we can ask and answer.  Graph theory can be utilized 

to help identify possible optimizations in network designs, derived from the fruits of systems biology.   Graph theory 

provides a calculus of connections in an algebraically complete way, but of course must be carefully aligned to how 

biology actually is connected, and avoid any functional connections that biology disallows.    

Regarding the input to such a model, analytic bio-data must be normalized, generalized and interpolated to span the 

parametric space.  But this time every biological effect is but a mere number, discretely stored in a matrix column, 

oblivious to the values in any other column.  The only interactions allowed within the digital universe are those 

specifically programmed.  In highly complex space, such as the possible conformations of an ion channel protein, 

modelers must focus on those few conformational aspects most determinant of channel function.  Thus, the utility of 

“kinetic schemes”, is admitted, right in the name, to be fabrications.   When simplifying, clipping, merging various 

biological arrangements, what havoc does that reek upon the kinetics of the system?   Blessedly, it greatly reduces 

the quantity of possible interaction types; but dangerously, it may discard significant and even crucial reactions, and 

may distort the representation of those that remain.  How the reduced set of reactions to be modeled are normalized 

is of great import because most biological reactions “live” right at the equilibrium points.  Any distortion in the 

design process risks creating a model that has lost the delicate balance of reactions, and thereby produces behavior 

far from homeostatic, far from viable, and far from representing the signals that a biological system actually 

produces.

Molecular models of ion channels, when successful, may yield millions of “states”.  A lengthy hydrocarbon 

backbone is flexible at every joint, and the “radical” arms of the amino acids possess terminal charges that 

necessarily produce a “stickiness” of certain conformations due to opposite charges attracting.   Despite huge 

quantities of possible conformations, we seek to reduce this list down to the highly probable conformations.  Often 

the case, a huge percentage of possible conformations have no impact upon conductivity so may be ignored in an 

information model.  Some conformations may be so fast or so slow as to be out of temporal compass.  Often this 

leaves us with less than 30 states to model, sometimes only 3.  This huge reduction may (or may not) be justified on 

the grounds that these 30 or so abstracted states each represent a group of states which happen to have a similar 
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impact upon conductance/transport/ catalysis and have similar transitions to other states.   Unpublished results by Jie 

Liang, of UIC Bioinformatics, show the conformational possibilities for some ion channels to be largely torsional, 

and not at all chaotic, resulting in only a few states being transitioned in rhythmic cycles of twist close/untwist open.

[38]

 In 1990, a learning synapse (Hebbian) is modeled,[39] and this requires dynamics of 2 time constants, the spike 

time and the learning time.  The former altered input weights by the ms while the latter took considerably longer. 

Since then, time constants have been replaced by the stochastic probabilities of state transitions.  Kinetics predicts 

reaction rates, though the individual bindings are the result of stochastic process.  Stochastics are handled 

mathematically in a straight forward manner using stochastic differential EQs (SDE).  What means of simplification 

can be justified in SDE systems?  Averaging molecular behavior may not be valid in information processing systems 

where very small details are significant to model behavior.  Complexity demands spatial, temporal, quantitative, and 

redundancy simplifications.  In order to harness stochastic processes in an informational system, we must 

deconstruct the traditional aggregate methods, and return to statistical instantiation of individual particles, their 

velocities, their collisions, and their bindings.  This involves random number generators driving CDF selection 

across possible transitions, at a sampling rate of at least 2 times greater than the fastest reaction rate to be modeled. 

Where frequency phase locks are instrumental to system performance, the sampling rate should be at least 8 times 

greater, so as to avoid aliasing error which produces “ghost” frequencies and rhythms as artifacts, as well as 

“missing” many of the phase lock opportunities presented to it.  

While physics is currently engaged in divining the predictability and unpredictability of aggregate quantum matter, 

biology has long inspired this search.  It is intended that this model serve as a platform for investigating previously 

un-noted patterns of molecular systems.  Elegance and speed are sacrificed for the sake of robustness and variety. 

Accordingly, the quantities and placement of elements and their degrees of randomness are critical.  For practical 

reasons,  quantities often need be tempered by observations of diminishing returns from shear number.  Nature may 

be far more bounteous and redundant than our present day computers can afford.  

Neurons enjoy the complexity of at least 5 species of charged particle (Na, Cl, K, Ca, and organic anions), and most 

often there are other ion types involved (e.g. Mg, Mn, Fe, NH4, NO2, NO3, CO3, PO4, SO2, SO4).  These interact 

with channels and pumps which are capable of treating each species differentially.  They are embedding so as to 
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penetrate a membrane that serves as continuous capacitor, its shape determining channel and pump nearest 

neighbors.   Each channel and pump type transports some subset of the particle species in solution, in a unique ratio 

(conductance selectivity profile for channels and ratiometric stoichiometry for pumps).  These differential 

conductivities in turn are multiplied by their net respective ionic partial voltage plus concentration gradient pressures 

to determine flux rates.  They are highly dynamic, as is required of any information processing system.  

Unlike digital gates, ion channels do not respond in a one-to-one to their inputs.  They are not deterministic as 

digital computers are, but rather change conformations according to large numbers of transition probabilities 

(expressions of chemical kinetics of large protein molecules).   An ion channel has the potential to require a 

temporal input pattern which would cause a particular sequence of state changes.  Certain sequences of state changes 

can result in channel openings or closings.  Even given a finite number of gate types, the quantity of possible 

computational systems is theoretically infinite, because conductivity ratios can be set over continuous gamuts. 

Recall also that our kinetic schemes are gross simplifications of actuality; that the numbers of possible patterns of 

input recognition and output responses remain astronomic because the number of possible conformations in any 

large protein molecule (or other large molecule of mixed neutral and polar portions) is 'astronomical'7.  

In common parlance kinetics is a concept applied to the chemical interaction between two or more species of 

chemical. The genius of the Hodgkin and Huxley team in their early work was to treat conformational changes as 

the kinetics of one part of a large molecule interacting with another part of the same molecule;  i.e. an interaction 

with self.   Such interactions are then recognized as state transitions.  A patterned recognition or response of such 

large molecules to environmental impacts is the direct result of that molecule temporally traversing path through its 

state space.  We may think of this as internal kinetics, a useful concept because the transaction rates are determinant 

of which path shall be the dominant one, the secondary one, etc..   As kinetic schemes began to be published for 

channels and pumps, a chemical dynamics approach to neuron modeling became feasible.   The number of possible 

transitions in a state space of s states is s^2.  But the number of paths is quasi-infinite because of the possibilities of 

repetitions and sub-loops along the path.  For practical reasons, the paths actually used are the shorter ones, as long 

paths lower the throughput bit rate (lower the response frequency).   Extending the length of the state path may have 

7 Though tradition has it that emphasis on very large numbers employ astronomy as metaphor, in fact the 
permutations of chemical interactions present in a living cell far exceed the touted astronomic numbers.  About 
100,000 factorial!
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utility if it adds to the ability to process more complex tasks.  For example, if a 3-step input pattern was necessary to 

elicit a 2-step output pattern, then this constitutes a sort of pattern recognition, and therefore is a computation.

1.3.3 SHAPE  

By 1980 morphometric 3-d reconstructions from micrograph slices was becoming possible, and by 1990 

development of computer hardware and software advanced to the point of a package made available for general lab 

use.[40]    This is germane to modeling because shape constrains the positioning all those ion channel and ion 

pumps, which in turn determines the nearest neighbors to each, which in turn is a dominant factor in how 

information is processed.  Topology and actor density matter.  

Morphometric data from the anatomy of neurons is becoming readily available.  But Actor distribution data remains 

sparse.  While fluorescent marker studies can sometimes display whole cell distributions of membrane proteins, the 

verification of channel function is done via patch clamps, which can only sample about 10 out of about 1 million 

channels on any given neuron before it dies.  Thus extrapolations are made with sample sizes too small to achieve 

high levels of confidence.  However, by modeling hypothesized distributions and verifying their performance 

against wet lab data, reasonable inferences can be drawn as “place holders” or equivalents.  In any case functional 

configurations can be discovered and employed, even if not an exact match to the biologic ones.  Working in the 

hypothetical may discover significant domains within which biological reality must lie to produce equivalent 

behaviors. 

In this model, the complexity of biologic shape is abstracted topographically into two-dimensional contour lines, 

which are then rotated cylindrically (i.e. contours of revolution).  This shape simplification may realize about 3 

orders of magnitude reduction in computational load, by converting the determination of where ionic collisions with 

membrane (and stationary proteins) will occur into a simple polar coordinates problem.  Furthermore, of the three 

major engines within the model, only the diffusion/drift engine is intimately shape dependent.8  The electrical 

phenomena of membranes are completely and accurately captured in the form of a simple plane.  The protein 

stochastics are completely and accurately represented as isolated nodal points of the membrane surface.  Membrane 

8  Near-membrane diffusion is amenable to conversion into planar representations via mathematical manifold theory.
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bifurcations, however, also determine nearest neighbors for the RC grid, and this 3-D information is mapped into 2-

D matrices, albeit with sometimes irregular borders.

1.3.4 MASSIVELY PARALLEL SYSTEMS  

Neural modeling can be furthered by conceptualizing the information processing ramifications of massively parallel 

quantities of ions in solution and channels held stationary in membranes, as they occur in living neurons.  When a 

scientist says “All other things remaining equal, A causes B”, he is striving to uncouple the system under test (SUT) 

from the system's environment (SE).  In biology, components are so richly coupled, that the specimen must usually 

be killed to study it thusly.  The act of tackling more complex systems (more coupled systems) exposes the 

inadequacy of this older version of the scientific method.  It might be more fruitful to study creatures while they are 

alive and then say, as the new version of the scientific method: 

“All other things refuse to remain equal.  However, I measured a correlation between A and B several times during  

their motion, and the time sequence suggests causality.”  

This sounds weaker than the traditional form, and such was shunned in prior decades.  But it has now been 

harnessed in far greater quantities of interactions, recorded en bloc, to reveal complex relationships previously 

unfathomable.   So let us revise the claim to:  

“All living things are perverted by static conditions; therefore we allow them their normal dynamics.  We can  

monitor large numbers of variables simultaneously, streaming for long periods of time (days).  From this massive  

data can be measured cross- and auto-correlations across all channels , yielding hundreds of coupling phenomena  

in a single experiment, as chains and networks of systemic regulation and responsivities.”  

This is essentially the approach of systems biology.  Bayesian Network methods applied to rolling systems biology 

(collecting multiple streams of long run data on groups of living cells) are outperforming the “holding things equal” 

tradition.  This is an important water shed, because it breaks the centuries old scientific “barrier” of doing only 

nomenclature and analysis, by entering into the creational activity of synthesis.  This process of synthesis  is 

necessary to understand cells that compute.  Computation, in essence, is synthetic.  It is the convolving of two 

patterns to generate a third pattern.  Synthetic, because 2 second-order EQs would convolve into a fourth-order EQ.
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Any two streams of information have the potential to interact by some function to create a third stream.  

This is the dynamic equivalent of the binary operator.  

In the past, major simplifying assumptions were made in the design phase to reduce the number of equations in the 

model. In so doing, many of the emergent properties of living cells were lost.  The many previous approaches did 

not address the underlying molecular processes directly.  The objective herein is to faithfully replicate, in quantity, 

the 3-dimensional molecular mechanisms employed by living cells to effect information processing tasks, with their 

topological relationships adequately represented.

The quest for understanding cells that compute can proceed by synthetic means.  That is, one can build up from 

particles, rather than cut down from a living squid.  In order to accurately model such complex effects, it is 

necessary to review the underlying physics, and build up from statistical mechanics.  In particular, the physics of 

how ions and molecules diffuse, drift, bond, organize and build.  To rigorously study the information processing 

capacity of the neuron, a science of synthesis is required that retains the integrity of the biology at all levels - from 

ion, to protein molecule, to membrane, to synapse, to glia, to brain tissue circuitry.  The original stochastic processes 

must be preserved, because physics at its essence is stochastics, and biology is built up from such processes.  What 

has previously been labeled as “noise” is actually ubiquitous thermal energy, which biology has harnessed as a 

convenient and free energy source, as a pattern generator, and as a discriminator function.  Thermal noise provides 

the transport of diffusion for messenger molecules, and the energy for effecting state changes in large protein 

molecules such as ion channels and pumps.

The more advanced models of neural networks employ some form of recurrent wiring.  Such feedback offers a way 

of learning and improving, and also offers fine tuning (high discrimination) which is necessary for intelligent 

systems.[41]  Recurrent wiring of nodes  usually transforms time-varying inputs into spatiotemporal patterns of 

activation.  A pattern received can be reverberated about the network so as to elicit a distinctive temporal pattern. 

When an input pattern stimulates the network, it most often responds with a different pattern, then that second 

pattern acts as a stimulus to elicit yet a third pattern, and so forth - thereby yielding a train of patterns until they 

decay or until a new stimulus intrudes to break this reverberating process.  Usually there is a “winner-takes-all” 

mechanism such that only a single most strongly resonating pattern gets to propagate while all others are dampened 

to zero.  This is the same effect of a radio tuner, which may receive 100 stations simultaneously, yet filter all of them 
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out but one and “play” only one signal at a time.  Whenever the output pattern of a neuron does not match the input 

pattern to which it responded, then one or more transformations must have occurred within the neuron.  It becomes 

possible for such neurons to comprise a concept map and/or a problem-solving map, whereby the output patterns are 

solutions to the input pattern “problems”.   Presumably, each output pattern represents some attempt at a real world 

solution, that is incrementally “discovered” and improved as feedback is provided from the environment (rewards 

and punishments) and numerous reties are made.  First there is variety, then selection, and then memory 

(inheritance).  It is possible to construct such systems as either deterministic or as stochastic systems.  

Given ubiquitous thermal noise, biology chose the stochastic option.  Constant driving by thermal noise results in 

information processing cells that never lie silent.  Membranal proteins are rendered in constant state of 

conformational changes, and some of this results in the transport of ions.  This constant state of computation results 

in a phenomena we might call “anticipation”, as such streaming generates a normalcy that is only disrupted by a 

failure anticipate how the environment will next impinge upon the organism.   Biologic systems come to “resonate” 

with normal impinging patterns such that they become predictive of “what comes next”.  It is the failure of such 

predictions, the surprises, that perturb the biologic system into strong response.   One can sleep near the speakers of 

a rock and roll band performance when those band members are friends, but if the sounds change to something not 

predicted, like the sound of police sirens, one is snapped to awakeness with adrenaline pumping.   

The arguments of how the nervous system works must traverse the scale from whole organism down to molecule. 

The history of discovery in neurology has been to attribute function to the largest scale entity (whole brain), and 

progressively establishing such function at lower orders as instrumentation might allow.   Though higher order 

information processing is tautologically the more complex, it must be built out of elements that compute. 

Assumptions about neurons as transistors are falling away to ion channels as transistors, which are falling away to 

ion channels as multi-state Finite State Machines (akin to integrated circuit chips, of say, 100 transistors).  Given 

that ion channels are found to have 7 to 30+ states, and that admittedly, not all states have been found for any given 

channel type,  then it might be difficult to get an ion channel to do mere addition and subtraction.  Mere algebra is 

trivial for a Finite State Machine, and requires some dumbing down to effect it.   This is analogous to asking an 

Integrated Circuit chip to act only as 1 transistor.  While most ion channels are found to operate with 7 to 30 

significant states, only 4 states are required to add, subtract, or multiply.   See the definitional tables for AND, OR, 
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NAND, NOR gates to verify this.  Presumably, the demands for survival over the course of evolution are greater 

than the demands of the math teacher.

In summary, the nervous system is a massively parallel system comprised of information processing elements.  Such 

base elements must receive an input pattern and generate an output pattern.  For information processing to take 

place, the output pattern must be different from the input, at least some of the time.  Else the element would serve as 

a mere repeater (not processor).  The state of the art has it that ion channels are state machines, implying significant 

potential to process information.  As similar protein molecules, receptors and pumps may also serve as repeaters 

and/or processors.  The challenge is to provide a platform for such molecular processors to express their range of 

potential behaviors, in a recordable maner. 

1.3.5 HYBRID MODELS  

The information value of the analog signal being collapsed into a digital signal is polluted with distortions.  Spectral 

analysis provides a reasonable limit of the information contained in an analog signal.   The faster the rate of change 

of the spectrum the less accurate the conversion from A to D is.  Digital signals pick up multiple forms of aliasing 

error.  Despite the many successes of digital computers they are at their worst when emulating continua.

The ion channel has the gating quality of a solid state artificial transistor, and the flux of ions, both vertically 

through the channels and pumps, and horizontally along the membrane as capacitated charges.  Thus membranal 

systems possess  both discrete and continuous elements, thoroughly distributed amongst each other.   Furthermore, 

the ion channel has far more complexity and modulatability than a single NPN transistor.  It is more analogous to a 

medium scale IC (integrated circuit chip with about 100 transistors).  This fact could bump the equivalent “transistor 

count” for the human brain up to about 1E16.   Such ion channel kinetic complexity is probably muted by the typical 

constellations of channels which apparently can be quite redundant in their function.  Especially circumferentially, 

no patterned variation in ion channel distribution has been reported.  This suggests that circumferential distribution 

lends itself to generating lockstep wave fronts, imparting directionality to the propagating action potential.   The 

degree and distribution of such redundancies may be exploited to support and further plasticity, development and 

evolutionary processes.
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The whole of logic is discrete, but it has sometimes been applied to represent hybrid analog digital (HAD) problems. 

This is to say that digital logic can be made to  (weakly) emulate continuous processes.    Such an exercise is sound 

when the entities of interest can be de-coupled into discretized spaces. 9  Our sense of “particle” holds that each is a 

discrete entity.   We talk of its intrinsic traits:  mass, radius, charge, all occupying a single unique location on space. 

Less often taken into account is that such a particle would not be what it is without its extrinsic traits:  gravity, EM 

force, temperature of its environment, chemical bond potentials, its ability to exert pressure, its ability to 

cooperatively form gases, liquids, solids - and many others.   These often taken for granted extrinsics must be 

explicitly defined and enacted within any digital simulation, and usually comprise a much larger part of the 

simulation code than do the intrinsics.  This is so because the quantity of relationships is vastly larger than the 

quantity of entities.   Accordingly, problems involving dense coupling between the components become extremely 

tedious if pursued logically and become intractable for many common problems.  Artificial intelligence suffered this 

set back in the 1980's, when it had to abandon predicate calculus approaches (logically constructed) because the 

quantity of computations “exploded” for all but the simplest problems.   They were replaced by open, continuously 

coupled systems which employed “field effects” rather than logic.  

Biological Neural Networks (BNN's) produce “answers” (behaviors) that are the result of processes more complex 

than step-by-step logic and qualitatively different from step by step logic.   Physicists have been talking about the 

“field effect” or “mass action” of the brain. (Freeman WJ)[42]  Yet, we are today investing great energy to model 

biology within the confines of wholly digital silicon processors, restricted to step-by-step logic.  This occurs merely 

as a result of the convenience of what is readily available, and the economics characteristic of the greater society in 

regard to producing computing machines.  The digital processor is not the ideal machine for the task of neural 

modeling.  This should give pause, as it forebodes some of the problems that lie ahead.  The conversion of bio-data 

into digital programs will always lose a great portion of the total, and will always add in artefactual errors.  Yes, we 

have developed cautionary rules, like Nyquist's sampling theorem, and algorithms to compensate for aliasing error. 

But we still suffer from discontinuities that lose the differentiability that was present in the analog form and must 

continually battle “ghosts” and accumulating “round off” error in the discrete data that are generated by the 

digitization process itself.   More obvious, sampling rates risk missing any event that occurs between samples, and 

9 Consider domains of words or man-made objects.  The processes by which they are invented and articulated may 

be somewhat continuous, but the instantiations are necessarily discrete.  
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incur hugely burdensome computation loads when choosing high sampling rates to avoid such missed events.  This 

option wastes a majority of iterations wherein no such events occur. 

There is significant processing going on throughout the neuron, along its membranes.  The arborizations of 

integration, the soma of inhibitory signals, the axonal hillock performing analog to digital conversion, and axonal 

nodes acting as contrast sharpeners, are all extra-synaptic operations that constitute definite information processing 

functions.  The neuron also provides parallel processes of widely varying time constants.  Fast constants for 

“propagation”, medium constants for short term memory and modulation, slower constants for long term memory, 

adaptation, plasticity, cell development and repair.  This is immensely greater functionality than current solid state 

processors can offer.  Addressing the compass of time constants always requires compromises to get to a simulation. 

A similar problem presents with regard to the compass of space constants.

1.4 MEMBRANE PATCHES  

The obvious necessities of modeling a neuron for its ability to generate an action potential include water, ions, 

membrane, ion channels.  To create realistic input and outputs to the neuron, receptors and vesicles must be 

represented.  To achieve initial conditions across the membrane, “resting potential” tonicities must be establish and 

restored via the pumps.  During action potentials and graded responses, axial flux, neurotransmitter re-uptake, 

modulation and depletion, must all be simulated.  

Because current day computers cannot simultaneously simulate all the ions and actors of a single neuron, one 

solution is to simulate only a small patch of that membrane at a time.  The simulation of a membrane patch of (1E-6 

m)^2 surface area within a volume of (1E-6 m)^3 saline solutions might only require 1e9 collisions, which is 

digitally feasible.  If patches were intensively studied, and then somehow abstracted, and those abstracts assembled 

into whole cells, then we might have an accurate model of whole cell behavior as emergent from molecular events . 

The art of multiscaling software is applicable to this approach.

Consider a de minimis arrangement of two channels, fixed in a membrane between two baths of different tonicities, 

each bath made up of four separate ion concentration values.  Initiated at random states, a steady state is soon 

achieved, and maintained until some neurotransmitter is added near the receptor sites on the channels.  Once bound 
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to a receptor site  a neurotransmitter molecule modulates the transition probabilities, which sets into motion new 

paths through the state space.   There are no clocks in neurons to synchronize events and measurements, as all actors 

are stochastic over their state transition spaces, and in so doing generate varied complex temporal patterns (state 

transition paths) in continuous time.  Any synchrony that occurs does so via field effects, particularly wave fronts. 

The radiating outward of signals from each actor type might be exploited by neighboring actors of a different type 

that exploit such signals.  Practical combinations of actor types are those which generate signal values within 

physiologic range, tending towards homeostasis, responding strongest to input patterns which resonate with high 

probability paths (patterns); and yield patterns which reflect the paths through relaxation states of the channel and 

are somehow useful downstream.  

There are constraints determined by conductivity profiles of each channel type.  There are also constraints 

determined by the ratiometric pumping of ions up gradient.  Channel locations and quantities change more slowly 

than the tonicities of the compartments, a result of conservation of momentum.  Because channels are statistical 

processors, some redundancy is necessary to average out noise (the hair cell of the inner ear has a redundancy of 

about 8).  In a biological cell of about 1E5 channels, despite the above constraints, there are still astronomic 

possibilities in information processing potential.    

The patch model is sufficiently detailed to represent the difference between ions near the membrane (lipids about 

5.6E-9 m thick, hydrated to 8E-9 m) and ions near the ion channel (protein about 1.7E-8 m tall x 8E-9 m diameter). 

The membrane may be glycosylated to greater thicknesses and those sugar molecules can attract layers of solvation. 

All of this complicates how ions will behave along the membrane and near the ion channel openings, which is 

critical to neuron function. 

Hodgkin and Huxley, in 1953 inspired an application of chemical reaction kinetics to large molecule conformational 

changes.  Studies of ion channels in the lobster giant axon led the way because it was large enough to stick a wire 

down the length of it and thus record the channel state changes as electrical signals, via detection of ion currents 

passing through the channels when open.  As methods progressed, such measurements extended to pumps and 

receptors, wherein the movement of an “arm” of the molecule was detectable so long as it had a charge on it (so 

called “gating charge”).   These very much welcomed sources of data none-the-less are a long way from a complete 

characterization of actor behavior as relevant to NIP.   Determination of internal conformations is an inexact science, 
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relying upon detectible charge movement which can only “see” those changes that relocate a polar group parallel to 

the axis of mensuration.   

Since the early 1990's , workers have been attempting to identify the critical elements to comprise a whole cell 

model of neuronal function [36], and  collecting sets of parametric values suitable for such a model [37].  These may 

serve as test cases for a molecular model but are silent on how to construct such molecular models.  

This author recommends the rigorous molecular modeling of typical membrane patches on a one-to-one basis vis-a-

vis ions and membrane proteins.   This is offers a method to build towards a complete, predictive model of 

information throughput for the membranal processor.   Simulated patches can be exercised across their parametric 

space to record their modalities, stabilities, and nonlinearities wrt time-wise variations in physiologic values, 

especially ligand concentrations and voltage.  

Of course, every living cell requires a boundary between self and environment, the plasma lemma, that if punctured 

the cell dies due to loss of tonicity gradients that drive many of the chemical processes of life.  The lipid membrane 

also provides a role as capacitor for storing electrical charge, and by the ratio of those charges, effect a 

transmembrane voltage.  In addition to the elements of ions in saline volumes, channels and pumps to transport 

those ions, there is also the matter of how to simulate that lipid membrane, so as to serve as a charge barrier.  Such a 

barrier effects a capacitor continuously over the boundary of each compartment, especially the membrane dividing 

the intracellular from the extracellular.  

The basic sciences implicated in neuron modeling at the molecular level for bio-computation purposes include the  

mathematics of: diffusion, drift, protein kinetics, stochastics of finite state machines, and topology of shape.    Each 

of these will be developed in the course of this paper.

1.5 WHOLE CELLS  

The choice of quantities of moving parts (thousands) being simulated is motivated by a desire to  "scale up" the 

number of elements (particularly ions, ion channels and ion pumps) only as necessary and sufficient to faithfully 

express the emergent behaviors relevant to NIP.  Simply put, the patterns of molecular organization can trump the 
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intrinsic individual atomic traits, and many of the significant processes of biology are simply not possible at the 

level of say only 10 elements.  Quantities matter, but only to the point of redundancy.

A computer model is limited by the element requiring the largest quantity of computations.  In the neuron that would 

be water.  Water molecules are non spherical, non symmetrical, tend to loosely cluster into variable sized spheres of 

solvation that are easily and frequently altered, and interact with charge in a variety of asymmetric ways.  Water 

molecules collide with other water molecules about 1e14 s-1. [43][44]  Modeling an action potential requires space 

and time of about 1000 (1E-6 m)^3 (cubic microns) and 0.1 s.  That infers 3.31E10  H2O/micron^3 * 1000 (1E-6 

m)^3 * (0.5)*1e14 collisions per molecule * 0.1 s of simulation = 1.66e23 collisions, for an accurate whole cell 

simulation.  This is not tractable within current digital computers.

This effort strives to employ a bottom-up approach, so as to avoid the oblivious discard of biological function . 

Although the model is robust, practical limitations of available computer processing power set limits, and demand 

simplifications of another kind (graininess).  In order to address such limitations, multiscale modeling has been 

resorted to.  Rigorous biologic modeling can be achieved at the nanoscale, the results of which can be mapped to 

larger (whole-cell) scale by inference.   Such a flexible approach can produce models which can be then run on 

various sizes of computers (adjusting parametric “graininess” to suit).   One might liken this approach to adjusting 

the spatial frequency band limits of the Fourier transform of a photograph.    

When large scale systems exceed available digital computer power to model them fully, the system can be broken 

down into its layers of complexity.  The highest level remains intact.  Successively lower levels are allowed fewer 

portions to be fully modeled.  The unmodeled portions must be either clones of the modeled ones, or stable enough 

to allow interpolated values to stand in for the unstudied pieces.  Presumably, redundancy is highest at the lower 

level.  For example, at the atomic level there may be trillions of oxygen, trillions of hydrogen, etc. It is not necessary 

to model every water molecule rigorously.  The study of water in each of its various roles will do.  The rest can be 

inferred.  

A multiscale modeling strategy is employed, with various dt and dx values selected appropriate to each phenomenon 

being represented.  Smallest scale phenomena are modeled first.  Once characterized over the parametric space of 

physiologic domains, then this data may collapsed into a "look-up" table, or to a curve fit, which becomes 

"elemental" to the next higher layer of complexity.  Such tables or equations are extrapolated to fill in the grid 
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between the samples.  This process can continue all the way up the hierarchy of complexity through the whole cell 

model, and to cellular circuits.  

To manage the large compass in time and in space, multiscale strategies provide computational relief.  The question 

is: can bio-computation be leveraged by multiscale strategies without loss of critical nonlinearities?  To answer this 

the smaller Patch model was created, conceived as a sub-model of the WholeCell model.  The Patch works with a 

minimal number of ion channels (usually < 10) to define the modulus of the membrane plaiting the whole cell.   It 

may then be incrementally enlarged to include larger patterns, checking for continuity of performance along the way.

The power of multi-scaling is that it can model rigorously at the molecular level, then clone those results as tiles into 

a much larger model.  Once the parametric space of the smaller patches is swept, and the output modes 

characterized, then they can be tiled into a whole cell model, with much of the computational work at the higher 

level reduced to arrays of look-up tables.  The challenge of multi-scaling is to justify the choices made as to how 

many samples (and which ones in particular) represent that layer, and then to verify the assembled results against 

found bio-data.

1.6 NETWORKS  

For six decades there has been a strong interest in multi-neuron models, more so than single cell models, presumably 

because of a conceptual bias that a neuron was like a transistor and it would take many transistors to do anything 

computationally interesting.     Frank Rosenblatt, in 1958 contributed the Perceptron, a true three layer neural 

network wiring summers and threshold devices.  Bernard Widrow and Marcian Hoff in 1960 contributed an analog 

computer design for neural network demonstrations, called Adeline.  Marvin Minski, who had been contributing to 

the field since 1954, in 1969 wrote a book setting forth a short proof that 2-layer neural networks could not solve the 

exclusive OR problem (XOR).   This seriously quenched interest in neural networks for more than a decade.  Paul 

Werbos, in 1974 contributed back propagation schemes, which like the superhetrodyne circuits in radio, employed 

feedback to intensify and sharpen the selection and classification process, although typically not applied to neuron 

models.  K Fukushima, in 1975 developed large scale (5+ layers of 30,000+ elements) neural networks that 

performed visual processing tasks, albeit quite inefficiently.  He disallowed variety within the middle layers.  Teuvo 

Kohonen, in 1984  contributed self organizing maps.  Steve Grossberg, in 1988 published on Adaptive Resonance 
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approaches.   John Hopfield developed self organizing maps, albeit by means not related to biological neurons.  As a 

new and promising field, parallel processing and associative processors received intensive study.    These studies are 

not irrelevant to the intracell studies.  Their explorations of connections between active elements formalized analog 

and HAD computation.  A significant difference, however, is that the connections of neural networks are all “wired” 

as point-to-point links, not via a common saline bath.[27]

1.7 LIQUID STATE  

Biology works at the molecular scale (2E-10 m), not at the in silico transistor scale (3.2E-8) .  Its processes may be 

divided into two classes:  physical electrodiffusion and chemical kinetics.  Diffusion may take place 3-

dimensionally, 2- dimensionally or 1-dimensionally.  Diffusion of charged particles enjoys the adjunct process of 

drift.  There may also be forms of weak transient bindings, such as solvation, structures which float and drift, which 

impede or facilitate diffusion proportionate to their size.  In aqueous solution there may be numerous ions which 

both generate and respond to a charge field.  

The kinetics of the actors is not, strictly speaking, taking place within a liquid state.  Classifying the membrane and 

its embedded actors as  'soft matter' is more appropriate.  However, it is indeed significant that both membrane and 

actors are bathed in liquid.  It is the thermal motion of liquid medium molecules which effect the conformational 

changes in the static actor molecules.  It is the thermal motion of those same liquid medium molecules that effect the 

movement of ions and messenger molecules along the membrane.   As these are essential and dominant features of 

the membranal system, it is justified to refer to the entire ensemble as a liquid state processor, though for 

completeness one could call it a liquid/soft matter information processor.  Precedent has been set by Liquid Crystal 

display panels, which also are technically liquid/soft matter devices. 

The major events of the soft matter actors are  three:  bindings, conformational state changes, and external effects 

emergent from those conformational changes.  Put another way:  inputs, state, outputs.    Assuming a  higher 

perspective to these physical phenomena, we see that some systemic support will be necessary to exploit them. 

Possibilities include that the membrane will support charge imbalance 2-dimensional waves along this surface; that 

the channels will support some level of pattern recognition; that the pattern of channel and pump placements will set 
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up some sort of temporal patterns or logic;  and/or that the shape of the membrane will define and support some sort 

of patterns or logic to the information flow.

The realization of liquid state processors is dependent upon the following enabling technologies:   production and 

shaping of lipid membranes into compartments; the production of proteins that become ion channels, ion pumps, and 

receptors; the molecular machinery to place individual actor proteins within the membrane, with some control over 

the positioning thereof;  some manner of tethering the actors so that they do not float out of the intended 

constellation.  Optionally, there is actinomysin machinery which grows processes that connect to targeted 

neighboring synapses; the bouton growth and shrinkage mechanism that “weights” the signal strength of each 

synapse; the genetic machinery to code for the proteins which become actors; and the ribosomal machinery to 

decode, produce, insert, and manage all the above.  Artificial replications of each of these mechanisms are objectives 

within the general mission of neuroscience.  

Silicon technology as of the year 2012, consumes about 25 watts for 2.3E8 transistors at a clock speed of 2E9/s. 

Silicon chips are produced with up to 820 million transistors on 32 nm architecture at 1333 MT/s .  The gate density 

of silicon processors is about 1E15/m^2.  

Solid state silicon chips are reaching their size reduction limits, currently at 2..5E-9 m wide conductors.   This 

implies about 1E5 atoms per bit and 1E-20 Joules to flip that bit, at clock speeds of of about 3E9 Hz.  Adequate heat 

dissipation becomes increasingly impossible at smaller scales.  Reliability also becomes impossible at smaller scales 

due to the uncertainty principle.   Does liquid state computation offer any advantages over these solid state 

limitations?

Computers are not touted for their average throughput, but rather for their maximum potential information handling. 

By this criteria, ion channels have far greater potential to handle information than they have so far been measured to 

process.  Each channel can recognize one or more complex patterns as input, and generate arbitrarily different (but 

unchanging characteristics of the type) patterns as output in response.   This is the essence of computing, and 

therefore each ion channel is a computer.  However, the biological literature does not yet provide much insight as to 

the quantity of patterns that a single ion channel can respond to uniquely.  We only know that it is kinetically 

possible and probable.  We can also conclude that this potentiality is exploitable.
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1.8 IMPACT  

Humans are quite a bit more than logical devices.   To model the human brain will require more than logical devices. 

When seeking a model of how humans think, it is hobbling to restrict oneself to digital processing machines.  Logic 

alone can solve the step-by-step problems but not the continuum problems, associative problems, nor the creative 

problems.   Linear systems theory has evolved from its original deterministic form into stochastic partial differential 

equation systems, and these are making headway in the representations of HAD systems.  However, mathematicians 

have not yet offered a formal system of “hyper-logic” (?) or “continuum logic”(?) that spans the potentialities of 

HADs.  For purposes of this paper, I shall refer to “HAD processes” as a place holder for the greater computability 

of continuum plus discrete problem-solution spaces.

The brain is not strictly comparable to a digital machine because events  a): are not synchronized by a clock,  b) are 

not digitized into numeric values of fixed precision; c) are not forced into discrete positions, values or times (but 

rather continuous space and time).  Concerning action potentials, it is reasonable to treat the quiescent periods 

between spikes as 0's, and the spikes as 1's.  But those 1's occur in continuous time, which is exploited for its phase 

information , and at a specific location, revealing spatial information,  and is part of a time series, which reveals 

firing rate.   These effects sum to make the single action potential worth much more than 1 bit of information.   The 

fan out of a single “bit” may be expressed as part of a complex spatiotemporal pattern, of great significance to cells 

impinged upon.   That is, each neuron is characterized by a unique spatiotemporal  pattern in outputting its bit, and 

often sets up constraints as to how the bits can be sequenced (refractory period, periodicity, burstiness, etc.).   Such 

“restrictions” have been described as limiting function t oless than that of a general processor.  But they also 

establish characteristic response patterns, providing a “signature” of origin.  In a realm where some patterns are far 

more useful than others (see the so called “natural stimuli”), characteristic patterns can have great utility, in a sense 

setting priorities, and rank ordering the value of information.

Generally, spiking neurons operate over a firing frequency range of  10 Hz to 1000 Hz (slower for the more 

primitive forms).  Maximal throughput does not occur at maximal frequency, but rather at the mid-range, about 100 

Hz, because information requires “white space” or foreground/background contrast, to carry information. 

Periodicity of firing patterns of several seconds or more may still be highly significant information.  Evaluating 

information processing and transfers, we find a maximum bit/second rate of 100 Hz = 2E16 bits/second times 2E14 
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synapses processing capacity.  The lengthwise number of steps (synapses) from sensorial input through the CNS to 

motor output is greater than 2 and less than 100.  The fastest life preserving actions will need to be the shortest 

possible circuits (length = 2), while the contemplative planning may enjoy the luxury of more circuitous paths.  This 

addresses the verticality (serialism) of the circuits only, not the horizontality (parallelism) of the circuits.   The fan 

out and fan in wiring that characterizes the horizontality of neural networks in immensely higher, about 1000:1 to 

10000:1 for many neuron types.  This connectivity manifests when the neuroanatomist counts the synapses per cell. 

If the circuit length is only seven, and each neuron has 1000 synapses, then there must be a connectivity width of 

nearly 1000.  This is a very horizontal architecture.  It lends itself to massively parallel processing, and to very fast 

processing times. 

Kety SS, in 1991,  estimated that the human brain consumes 14 to 22 watts of power.[45]  This energy operates 

2.3E9 neurons with approximately 2E12 trillion synapses, about 2E14 ion channels, and perhaps 1E15 ion pumps 

(calculations below).   On an energy consumption per unit mass basis, bio-computers apparently offer 6 to 7 orders 

of magnitude greater energy efficiency.  But they are about 7 orders of magnitude slower, in that an action potential 

takes about 5E-3 s, while silicon processors consume about 4E-8 s per calculation step (about 5 clock cycles). 

Because bio-computers require correspondingly less energy to perform equivalent tasks, they do not suffer the 

overheating problem so prevalent with silicon processors.  Despite the soundness of mutual information measures in 

artificial systems, information throughput metrics have not yet been settled for biological systems because not all 

information pathways are known.  Information streaming along is often “pealed” off for ancillary functions.   For 

example, the left and right auditory signals are read and subtracted to determine location of the source of the sound. 

All functions of the neuron are not yet known; all input variables are not yet known; and all outputs variables are not 

yet known.  Neurons are certain to garner higher performance ratings as functionality is revealed because  a) an 

action potential is worth far more than 1 bit;  b) all processing elements run continuously without pause, without 

hold states; and c) the bio-gates are second or third order pattern recognizers which would each require about 100 

transistors each to emulate.

Given the imminent arrival of ever greater supercomputers (currently planned at petaflop performance), software 

applications need be written to harness such computational power to further the understanding of biological 

complexity.  This project strives to advance the art by realizing a large scale hybridization of the diffusion, 

electrochemical and kinetic aspects of neuronal function. This model is highly stochastic, intended to closely mimic 
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the underlying statistical mechanics of diffusion and kinetics, and eschews the earlier practice of simply "adding in 

noise" to deterministic equations so as to curve fit prior records of biologic signals.  The motivation for the 

stochastic approach is to advance biologic science towards expression of emergent phenomena of living systems, via 

large numbers of highly-coupled stochastic difference equations, from which emerge new and significant behaviors. 

To the extent that this strategy is a workable and representative one, it is an important one.  Only with the 

dimensional reduction of the "possibility space" can we hope to produce ANN's that exhibit the great variety and 

flower of BNN's.  It is hoped and expected  that this strategy will produce "verified" models of biological neuron 

types, suitable for large scale employment in networks.  Distinction is noted between "simplified" (prior art) and 

"verified" (current efforts).

Although tedious, a large-scale molecular model of biological neural networks is expected to reveal the common 

ground to all of the artificial networks, and much more.  This is a reasonable expectation because it is the BNN, the 

human brain, that invented all of those ANN types.   Those persons wishing to extend, analyze, or justify any 

artificial neural network design may find utility in this model, due to its flexibility. When wired into “local circuits” 

as prescribed, the whole cell model below is expected to perform generally, such that a network of such general 

processors may be taught to embody each of the extant ANN's and fill in some of the conceptual space between 

them and extend beyond them.  The modeling approach produces behaviors of both conventional ANN 

computations and emergent phenomena of known biological configurations.  It is intended to serve as an effective 

tool for extracting principles of general HAD processors.

Advancements of the whole cell model are practicable in several dimensions.  Internally, processes of longer time 

constants can be added, such as regulations, plasticity, and learning.  Externally, the connection and diffusion/drift 

relationships to neighboring neurons can be built out.  Experiments in shape might reveal optimal production 

designs.

Applications for this work include the study and characterizations of channelopathies, receptor pathologies and 

pump pathologies; the design and testing of therapies for such pathologies; the design and engineering of new types 

of receptors, channels and pumps; and the design and testing of liquid state processors as artificial computational 

devices. 



2 OBJECTIVES

2.1 PURPOSE  

This document describes the functional and nonfunctional software requirements for a large scale simulation of the 

molecular events causally involved in the information flow through a single excitable biological cell.   Simulations 

are accomplished within a general model, parametrically defined over sufficient breadth to simulate hundreds of 

different types of neurons, including hypothetical ones.  This model is intended to support the investigation of 

biological constellations of actors so as to comprise a membranal information processor.  It attempts to found a 

science of liquid state information processors as artificial molecular systems.

2.1.1 NEUROPHYSIOLOGY TO BE MODELED  

An engineering approach organizes the biological facts into standardized types of elements and processes.  These are 

constructed sufficiently continuous and smooth to represent biological entities as predictive and distinguishable, 

instantiable anywhere within their parametric domains.   Nonlinear functions are approached with detailed attention, 

intended to be sufficient to avoid smoothing away biologically significant boundaries or modalities.  

The neurophysiological literature is rich with quantified phenomena relevant to the mechanisms of neuronal 

information processing  (NIP).  However, there remains the synthetic task of hybridizing diffusion processes, kinetic 

stochastics, and  ionic circuits (RC grids, per electrodynamics) into a single general model of bio-computation.  It is 

found that current art does not offer any compatible set of necessary and sufficient model components from which to 

assemble this project.  Accordingly, this projects proceeds from the primitives and rebuilds what we know about NIP 

into a single coherent computer program.  The model performance traits include:  

1. There are multiple charge species.  (Electrical theory for electronic networks has no such accommodation.)

2. The curved surfaces of the plasma lemma require a homogeneity for the placement of actors.  Node 
tessellation can be effected that supports statistical placement of actors over complex surfaces.

3. Capacitance is not discrete, but continuous over the entire membrane surface, communicating ionicly.

63
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4. Conductors are not point to point (as with wires), but are continuous volumes and surfaces.  This presents a 
rather unique challenge to avoid echo-ing and shorting. 

5. Current sources are also logical devices, pumping ratiometricly.  Therefore, they do not allow simple 
restoration of resting potentials but rather must negotiate ion trades to maintain a homeostasis.  This 
requires feedback and modulation to accomplish.  Pumps are stochastic, not deterministic.

6. Particle flows are impeded by: obstacles, temporary bindings and sequestrations, inhomogeneous, torturous 
shapes of the reticuli, and various protein tethers.

7. The gating mechanisms for ion flow are far more complex than are transistors, as they accomplish 
selectivity of the pores, and a stochastic logic applied to their open patterns.

8. Channel, pump, receptor and vesicle molecules are too complex to represent thoroughly within a neuron 
model.  The field of Molecular Dynamics strives to model single molecules using super computers.  In this 
model, they are simplified to finite state machines.  

The model developed herein is parametrized to span the domains of: biologic neuron species, types, shapes, 

bifurcations, compartmentalizations, channel distributions, pump distributions, receptor distributions, vesicle 

distributions, tonicities in each compartment, 3-d diffusion of ions and modulators, second messengers to channels, 

and connectivities between cells.  This model is intended for use by those pursuing neuronal information processing 

at molecular scale;  suitable for dynamic demonstrations, channelopathy diagnostics, and/or computational device 

designs.  

Certain entities are high in NIP value and are given modeling priority.  Follows is an initial assessment of the role 

and value of the various elements when weighed strictly by their contribution to information processing.

1. The neurotransmitter metabotropic receptors serve as transducers, and perhaps do not add new information. 
They serve as critical input portals and broadcasters of second messengers, thus providing amplification. 
They cause information to fan out, at the expense of some delay and time smear.   A variety of G-protein 
second messenger systems are enlisted in the fan out function between receptors and ion channels.  This 
may be both quantitative and qualitative.  By qualitative is meant a receptor's ability to target different 
types of actors in varying ways.

2. Of the membranal entities,  ion channels are probably the highest valued wrt NIP.  They are fast responders 
that  convert input patterns into filtered and patterned binary output patterns.   The stimulating input 
patterns may be as simple as voltage threshold crossings.  They also may be temporal patterns. Channels 
can generate a large number of different patterns per channel type (they express modalities).  Their 
asymmetries in location and refractoriness can radically alter propagation waves in shape and direction.

3. The vesicles serve as transducers, and are low in information value as they (almost deterministically) 
transduce an intracellular Ca++ signal into a synaptic neurotransmitter signal.  There is some time smear, 
and some uncertainty in performance.  By virtual of the large contents contained within a vesicle, they 
provide great information amplification.  If certain vesicle types contained mixed messenger particles 
within, then the output waves can be quite complex in their effect.  But because these mixes are 
preordained prior to the signal that releases them, they produce a rather fixed and predictable mapping.
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4. The pumps are low, but not zero, in the amount of information they inject into the system. They modulate 
channels via the resultant concentrations and voltage built up.  Pumps can respond to messenger molecules, 
voltages and particle concentrations.  They maintain (or at least tend towards) certain ratios between the 
ions pumped.  They can fatigue due to a shortage of energy-conveying molecules such as ATP, with 
significant lowering of pumping capacity as energy resources become depleted.  One of the consequences 
of them being stochastic devices is they make errors, sometimes pumping the “wrong” species of ion, or 
pumping backwards, or losing cargo before completion of the cycle.  Any asymmetries between pump 
distributions (location patterns along the membrane) and channel distributions can set up significant 
horizontal flux.  Such flux may be integral to the function of the neuron, e.g. detecting movement or 
directional sensitivity. 

5. The ions are the smallest of the relevant entities.  They serve as information carriers - the smaller the mass, 
the greater the speed.  Their information is coded as the ratio between the unbalanced members of the type. 
A secondary form of information is generated in the aggregate, as the balance of charge across the 
membrane,  determining the voltage potential that modulates actors and drives flux through membrane 
pores. 

6. In addition to the above list of active elements is the passive element of the membrane.  It serves to anchor 
the four actor types, providing positional stability in an otherwise liquid environment.  The membrane acts 
as a charge barrier to the ions, supporting an energy potential proportional useful to do work.  The 
membrane thus participates in organizational information, but not in the dynamic processing of 
information.

7. Such a system does not work without water.  Water provides a large sink of ambient thermal energy.  It 
provides a free transport mechanism, diffusion.  It is a medium for drift.  It provides viscosity and solvation 
of ions, which slow down ionic movement (that may be necessary to synchronize with other processes). 
Water is an enabler but provides no information in the course of dynamic processing. 

The elements above are deemed to be a necessary set of elements to mimic the 3-dimensional poly-order pattern 

recognition of the neuron which enables it to “process” information as well as transmit it.  It is not claimed that these 

are sufficient for all cases.10    It is highly likely that nature has creatively exploited any number of addenda, 

alterations and assemblies as to effect wider problem solving potentials than this base configuration might not 

embody.  But this is an ambitious base model, and will serve as a point of departure for subsequent models and 

extensions.

2.2 CONCEPTUAL PLATFORM  

It is intended that the following concepts be integrated into a general modeling approach: a lipid membrane with 

variously placed receptors, ion channels, vesicles and ion pumps.  Each instance of these four actor classes operates 

independently and kinetically.  It is intended that quantities of metabotropic receptors, ion channels, vesicles and ion 

pumps be embedded within each contiguous, closed surface lipid membrane, and be present in quantities of 

10 It was subsequently found that a second messenger system could be added to the model as a membrane-attached 
catalytic actor (e.g. cyclase), which provided messenger amplification midpoint between a metabotropic receptor 
and a set of target channels, and that messenger particles could be made to diffuse 2-dimensionally along the 
inner surface of the membrane.



66

hundreds or thousands, as might be necessary to accurately predict the behavior of a specific neuron's information 

throughput.  That the model shall take into account the effects of shape, adjacency and connectivity upon the 

information throughput of the cell.  That each compartment formed as the result of closed membranes shall house a 

3-dimensional particle system, representing ions and messengers, each with instantiated mass, radius, and charge.    

Such a conceptual platform shall provide an ever growing library of experiments, constructs, entities and assembly 

blueprints so as to demonstrate molecular behaviors of extent biological forms and to construct hypothetical forms. 

This model shall be consistent with, and available to interface with other physical models of molecular systems, 

including representations of glial cells, muscle cells, and various biosensors.   It shall be sufficiently general that its 

engines may be transplanted to other biosystem models requiring 3-dimensional diffusion, chemical kinetics and 

electrodynamic phenomena.

2.2.1.1 Reduction vs emergent behaviors  

Due to the historic lack of computing power available to scientists, previous models of neurons were based upon 

severe reductions in quantities and functions of the elements, often to merely one of each type.  Aggregate behavior 

came to be represented, through analysis, as functions that mimicked the group, but not the individual behavior. 

Though representing some physical or chemical phenomenon reasonably,  there resulted a loss of the informational 

role of the neuron.  Reduction in quantity of actors and ions is only justified if it does not sacrifice the natural, 

emergent behaviors of the full set, particularly the information capacity and information transformations.

Information is defined as a change in state.  This concept is extended to analog signals by noting the change in the 

voltage states of a series of samples.  Therefore, an expanse of unique states capable of capturing and changing at a 

rate faster than the impinging environment changes, is prerequisite to a large scale information processing device. 

Just as one cannot demonstrate the processing power of a computer by averaging, aggregating, or collapsing all of 

its transistors down to just one gate, so too is the worker disallowed from “analyzing the neuron via a reduction to 

say 4 or 5 components.   The loss of information processing ability undermines the goal of the project.  Therefore, 

each particle and actor capable of distinct states distinguishable from other particles and actors must be treated as a 

separate information-carrying entity.
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2.2.1.2 Analysis replaced with synthesis  

Diffusion shall be represented by a 3-dimensional charged particle system.  Particles may be ions, messengers, 

modulators, floating obstructions, or water.  Each particle has charge (which may be zero), mass, radius, position, 

velocity, and acceleration.   Particles may collide, reflect off surfaces,  become absorbed into the membrane material, 

become bound and then unbound, and be transported.  Mass, charge and momentum are conserved. 

Electrodynamics and thermal energy shall supply the forces that drive the particle system.  Voltage is a consequence 

of the electrodynamic force of charge inhomogeneities and position resulting in charge density ratios across the 

membrane (partial voltages).

The membrane shall be represented by a 3-dimensional reflective surface with thickness and capacitance.  It shall 

have addressable nodes for the purposes of placing the actors according to realistic density patterns, and these nodes 

shall be everywhere evenly spaced.  In whole cell models it shall be a closed surface.

Receptors, channels, vesicles and pumps shall be represented individually as trans-membrane entities, each with 

position, orientation, a modulatable kinetic scheme, particle binding sites, and some outward expression upon the 

environment.  In the case of pumps and channels, they shall have transport functions and transport ports.  The 

particle bindings and unbindings shall be probabilistic, and may allosterically alter the conformational kinetics of the 

actor.  Actor state transitions shall be animated via individual Markov processes.  

Key physical concepts to be addressed in the NIP model of neuronal function include:

1. Position, Velocity,  Acceleration, which support second order representations of mass and energy

2. Momentum is not often considered in neural models but is necessary to maintain a sane particle physics

3. Charge, electric field, electrodynamics.  Coulomb's Law is indispensable in channel to channel 
communication

4. Particle systems consist of instantiated particles, bounded within 3-dimensional containers

5. Conservation of linear momentum

6. Quantized energy, as the cause of bindings and conformational changes

7. 3-dimensional elastic, momentum-conserving collisions result in hyperboloid trajectories

8. Liquid particle random walks11

9. Fields of flow, driven by EM and concentration gradients, give rise to:  grad, div, and curl
11 Subsequently upgraded to Langevin dynamics.
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10. viscosity, turbulence and chaotic flow may arise without intent

11. temperature is emergent from Boltzmann velocity distributions

12. Boltzmann velocity distributions are emergent from elastic momentum-conserving collisions

13. Mean Free Path of gas particles is not accurate for liquid particles which must move more serpentinely

14. Mean Free Path of gases can be shown to be an effective substitute for aqueous diffusion (short cut 
algorithm)

15. Traveling waves may arise from mass-spring grids12 of like charged ions

16. Hydration shells around ions variably affect mass, radius and viscosity

17. Superimposition is legitimate. Sum of electric potentials from point charges equals the net force.  

18. Maxwell's equations determine that magnetic effects in the cell are too small to be significant

19. Electrostatics is a sufficient representation of electrodynamics where magnet effects are infinitesimally 
small

20. Gauss' Law is emergent, as like charges behave so as to populate the outermost surfaces

21. Reversible and Irreversible processes are present and necessary.  Biology uses both very discerningly.

22. Probability and Entropy measures reveal SDE processes, the heart of kinetics.

23. Electromagnetic force is in contest against other forces.  It tends to override every other force in the cell.

24. Conduction may be “horizontal” (through saline or along surfaces);  or “vertical” (through the membrane) 

25. Capacitance may be discrete or continuous.  Ionic capacitors do not achieve isopotential, due to mass.

26. Polar heads within membrane determine the dielectric effect of the membrane

27. Dielectrics require that the membrane thickness be modified to an equivalent separation distance of charges

28. Ohm's Law in electrolytes is emergent from nano-scale ion collisions (which in turn determine mobility)

29. Semiconductors are gates to charge flux.  Channels act as gates in a far more complex manner than 
transistors

30. Channels can serve as diodes merely by their funnel-shaped pores.

31. RC mesh (multi-loop) circuits (e.g. grid filter resulting from membrane and channels) exhibit Green's 
function

32. Large scale portless grids of RC components exhibit complex behavior (3o, 4o and beyond)

33. Multi-species ionic currents 

34. are not adequately treated in conventional electronics science

35. Membrane surfaces may reflect or absorb.  If absorbing, then the membrane itself is a compartment.

12 resulting from like charged particles on either side of the membrane, forming a capacitor, with attraction across 
but repulsion between.
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36. Active transport is necessary to provide energy for viable concentrations, voltages, and horizontal flux

37. Passive transport is critical to information processing, and is complex

2.2.1.3 Information Theory  

It is understood that all changes in state constitute information.  This includes every chemical reaction, every 

conformational change, and some physical events as well (e.g. adsorption, transport, moving from aqueous phase to 

lipid phase).   However, the domain of interest for this project is neuron information processing (NIP).  Parsimony 

dictates that elements not serving the throughput of information from receptors to vesicles  be declared off-NIP, and 

these are intended to be excluded from the model.   The information processes of interest include precisely those 

changes in state and changes in position that are constituent to the flow of information from the synaptic inputs to 

the synaptic outputs of a neuron.  There are many housekeeping functions within any living cell, including neurons. 

And these all involve information processing in some sense.  But neurons are distinguished by the fast (up to 1 kHz) 

information processing service they provide to other cells and to the organism as a whole.  The mechanisms of this 

service takes place at or near the membrane of the neuron, typified by the propagation of an action potential.  

There are other relevant processes (e.g. adaptation and learning) that may involve more interior cytological 

structures and take place on a somewhat slower timescale (> 1E-1 s).  Neurons are distinguished by their persistent 

alterations in response to signaling patterns, which we call learning.  Changes in shape, actor positions and actor 

quantities are particularly of interest to a NIP model.  Though the time constant of change is typically slower than 

simulation runs, a series of runs can reflect the learning process in a realistic molecular manner.  This project cannot 

become concerned with these processes until after it has stabilized and verified the drift and state transition engines.

Depending on the experimental objectives, unusual entities may need to be added, and perhaps common entities 

removed.  A criteria is needed to distinguish NIP elements and processes from non-NIP cell operations.   Careful 

study of the complex biochemical coupling within the neuron will eventually conclude everything affects 

everything.  The base purpose of this project, however, is to focus those high runners with great significance to the 

throughput signals of the frequency band  (1E-5 .. 1E-2) s-1.  That is, for practical reasons, the coupling matrix must 

be reduced from full to sparse.
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The essence of the transfer function is that it specifically addresses the mutual information between input signal and 

output signal. This is a useful concept in stochastic system metrics.  The mechanism between input and output shall 

be referred herein as nonlinear transfer functions (NTF) in general, and for measurement purposes we may speak of 

the mutual information between input and output.

There is a large field of study concerning neural coding.   The debate has raged on for at least 6 decades as to 

whether the cell employs temporal coding, phase coding and/or convolutional coding.  See Riekec F[46] and Wells 

RB.[47]   This is of direct concern to the application of information theory to NIP functions.  If ion channels are the 

main gateway device in this process, and they operate as Markov processes, then only those coding schemes that can 

be generated by a Markov process need be considered.  Modulation theory and state constraints are relevant.  Error 

tolerant systems are relevant.  And there is a likelihood that some form of convolution is going on between the free-

moving particles and the stationary kinetics of the actors.   Whatever coding scheme is in play, it is only an emergent 

property of large scale molecular systems.  If the underlying molecular interactions are correct, the “code” is merely 

an observer's metric, not intrinsic.  The motivation for divining such a code is to measure the quantity and quality of 

information being passed along the chain.  How much information is actually “read” into the cell; what processing 

of that information takes place within the cell; and what portions of that information are exported out of the cell, 

where and how?  Inputs and outputs can be determined by the molecular behavior of trans-synaptic processes.  But 

some information is expected to be utilized internal to the cell.  Perhaps some dissipates and never makes it to 

export.  Reformation is implied in cellular memory.  For example, there are numerous cellular reformation processes 

triggered by information inputs and through-puts (learning, adaptation, etc.).   It usually requires a series of 

simulation runs to demonstrate it, each with progressive shape/constellation “builds” as samples along the course of 

plasticity responses.  Automation of simulated learning processes is left for others, but various mechanisms of 

plasticity can be added to this model using a variety of parametric settings, including channel densities and 

distributions, synaptic size, growing new connections, and changes in tonicities.  

This project is not a molecular model for the sake of modeling molecules, but rather is an attempt to account for the 

neuronal information processing detailed down to the smallest relevant scale.   To capture the informationally 

significant aspects, physical scale need not be uniformly applied; nor molecular traits uniformly detailed.  A 

uniformity in the information metric (bits) may cause distortion in the physical metric (meters).  One can imagine a 

non-linear transform which maps one into the other.  The physical size of ion channels and ion pumps is not as 
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important as their state transition tables.  They may be treated as point processes and still wield major influence and 

serve critical roles in the information realm.

2.2.1.4 Point Processes  

There is a question as to whether or not there exists a single optimal kinetic scheme for a given type of molecule.  If 

one knew for certain the complete functional roles of a given actor type, e.g. that a given channel type was only 

modulated by voltage and noradrenaline and nothing else, then a singular ideal kinetic scheme might be formulated. 

But in biological systems, it is generally the case that there are hundreds of possible interactions for a given 

molecule type, each of which could be conceptualized as effecting modulation to some degree.  We must, for the 

time being, allow for an open-ended view towards such interdependencies.    A single actor type may have several 

kinetics schemes proposed for it in the literature.  Each scheme can be expressed in model “runs” to determine their 

behaviors, and chosen according to their utility.   Some workers strive to simplify the data they collect on actors, and 

others seek a full accounting of the many states the data hint at.  The more accurate schemes are likely to be the 

larger (less simplified) ones.  It is in those we can expect to find intricate behaviors that go beyond simple openings 

and closings, into the realm of patterns. 

Biology is a space populated by a very large number of very complex molecules coupled in numerous and complex 

ways.   Techniques are being developed to standardize all of that into matrices that render cytochemical systems 

tractable to super computers.  Science is a long way from certitude as to the complete account of molecular species 

present in a living cell, their reaction rates and their emergent functions for the cell.  Until reasonably complete, we 

must model to narrowly proscribed queries, and yet try to allow models of biological systems sufficient vitality to 

display emergent properties, especially including behaviors consistent with their living counter parts.   It is hoped 

that exercising such models should make visible the gaps and errors in our knowledge base that will point to needed 

wet lab research and the next experimental model designs.  Exercising particular kinetic schemes will reveal their 

behavior patterns, and thereby suggest their roles within the cell previously unreported.

The decision as to which kinetics schemes are compatible within a single experiment may be determined on a basis 

of each entity's contribution to the NIP of the whole cell, or to the membrane patch of interest.  Optimization of 

computational load would tend towards representing critical actors via large numbers of states and less significant 
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actors with smaller numbers of states.  More specifically, the states themselves could be ranked ordered by their 

significance, and some cut-off point might eliminate all states below the desired significance bar.  This approach is 

unlikely to lead to such “standardization” as trying to make all kinetic schemes fit into the same size matrices (same 

number of states) - which would have been quite convenient for data handling.    Such an arrangement is not easily 

realized because the significance of each state can only be evaluated in hind sight after many simulation runs doing 

sensitivity analysis.  And as new bio-data becomes available, these schemes may need to be revised.  Both 

qualitative and quantitative changes in such nonlinear systems can jeopardize the prior optimization results.  The 

model, therefore, should support the easy substitution and addition of kinetic schemes, and fully support easy matrix 

size changes for the state transitions probabilities. 

The physical dimensionality of the actor is not NIP significant except as pore size and, optionally, funnel shapes, 

affect flux.  When conductances are known for an actor type as a function of variable concentration and voltage 

gradients, actor shapes may be ignored.  In any case, molecular shape falls into the domain of MD studies and is out 

of scope for this project.  Actors may then be represented as point processes with a binding site on each side of the 

membrane.  Collision rates, although a function of density and velocity in analog space, are calculated in digital 

space so as to mimic their analog counterparts.  

2.2.2 BASIS IN PHYSICS  

The biological phenomena of interest include diffusion, kinetics and the electrodynamics of drift in an aqueous 

medium.  These bases are studied at the molecular level, then embodied as entities and processes so as to exhibit 

some of the emergent qualities of living cells, in particular excitable membrane signal propagation.  The loss of 

emergent properties in models usually occurs due to aggregation.  To preserve the individual particle behaviors, and 

therefore their informational value, individual particles must be instantiated within the model for their positions and 

states, not merely as aggregate representations (as would be standard in analytic models).

2.2.2.1 Electrostatics  

Charged particles in aqueous solutions undergo drift  as a function of the sum of the inverse square of the distances 

between those charges.  In the gaseous state, the electromagnetic force causes acceleration.  In the liquid state, the 
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mean free path of particles is so short, acceleration is reduced to viscosity.  In fact, mean free path and 

incompressibility (as ascribed to liquids) are mutually exclusive concepts.   Indeed, “fixed center to center 

distances” is a constraint that directly implies the path is not “free”.   It is most likely that ions and molecules in the 

liquid state move along serpentine paths as they slide betwixt their neighbors while maintaining fixed center to 

center distances until there is a substitute neighbor ahead taking the place of the neighbor left behind.  Model 

particle systems are usually conceived as ballistic movements interrupted by collisions.  This conceptualization must 

be rationalized wrt liquid state realities.  More on this below.

Although Maxwell's four equations of electrodynamics apply to neurons, the scale of events is such that the 

magnetic effects are not significant to its role as an information processor.  Thus the two of Maxwell's four equations 

applying to magnetism need not be applied at all.   By conventions of naming, this reduces electrodynamics to 

electrostatics, despite that the remaining charge equations apply to moving particles and create forces that induce 

particles to move.

Charged particles within large stationary molecules have been mentioned above for their role in discretizing that 

molecule's states.  Fixed charges also play a role in ligand affinities for binding  and unbinding.  Because of the 

complexities of ligand binding site geometry (recall the “lock and key” metaphor often employed in textbooks), it is 

overly complex to represent ligand binding in this model as a complex of charge attractions over a fixed socket 

shape.  From a NIP point of view, the significant part is the probability of binding to each site, and the probability of 

that allosteric binding event causing an internal state change.

2.2.2.2 Water Molecules  

The most redundant of all entities in the neuron is water.   Those aspects of  water that might be NIP-significant need 

to be identified and extracted for incorporation into the model.   Water is a medium and carrier for information, just 

as a copper wire might be for a land line phone conversation.  The electrical conductance of water is directly 

proportional to the concentration of ions dissolved in it.  

Water provides thermal noise, called Johnson noise, by virtue of the collisions an ion incurs along its conductive 

path.  These collisions are proportional to, and indeed the cause of, electrical resistance, and also the viscosity for 

solutes.
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Water is essential in the phenomenon of pH (acidity and alkalinity).  The bare proton is considerably smaller than 

what we think of as an atom or an ion.  It therefore creates quite unique effects in regard to electron donors and 

acceptors.

Water has no dielectric strength, so supports electric fields, and therefore electric gradients.  

It is difficult to claim that water is acting in the role of information processing, but its traits mentioned above must 

none-the-less be represented to allow ions to function properly.   So long as the ion mobility and mass characteristics 

are represented, water may be abstracted.

Scaling back the quantities of the particles and elements is not trivial, but must be thoughtfully determined so as to 

preserve the NIP characteristics, in time and space.   The quantity of water molecules in a neuron may perhaps be 

reduced in number, reduced and/or abstracted in function, provided that ion collisions that redirect ion velocities, 

and rates of ion drift, and ion solvation sizes are all maintained.  

The ballistic movement of gas particles is relatively simple to execute in a digital computer.  However, the liquid 

state presents special modeling problems, because in liquids all particles remain fixed distances from their nearest 

neighbors, resulting in incompressibility.  The serpentine weaving between one's neighbors is quite complex to 

model and may not of itself be NIP significant..  The critical question wrt to information flow is:  is the net result of 

diffusion in gases qualitatively different than that of liquids?  Lifelong workers in the field of diffusion report no 

such difference, despite the distinctly different mechanics and path shapes.  If the positions of particles (density 

patterns) with respect to time in gaseous diffusion and liquid diffusion are similar except for the average speed, then 

there is great computational advantage to be had by treating particles ballistically, rather than as tightly packed 

sphere slipping along.  It is therefore reasonable to treat a ballistic trip as a summary of a more convoluted trip, to 

get to the net position of a lengthy serpentine path, so long as the distribution generated by such shortcuts is the 

same distribution of natural liquid diffusion.  To the extent that the ballistic shortcut is justified, all of the particles of 

water interacted with in between the start position and the stop position can also be omitted.  This effectively 

reduces the quantity of particles represented, and therefore effects a significant reduction in model computational 

load.
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2.2.2.3 Saline  

Not only is the quantity of water molecules super abundant to the needs of a whole cell model, perhaps also are the 

quantities of the ions.  The number of ions in a model may be reduced to the extent of redundancy in their NIP role, 

provided that redundancy can be determined.  A minimal sufficiency may be determined by empirical performance 

in a patch model to within range of acceptable error.  Because of the complex and nonlinear nature of neuronal 

behavior, the easiest method of determining sufficiency might be empirical;  to run the model as test patches while 

sweeping a gamut of particle densities and recording sensitivity to changes.  Care must be exercised near modal 

shifts in time (e.g. from periodic spikes to bursts of spikes), and modal shifts in space (e.g. from analog responses to 

digital responses across the initial segment a/k/a axonal hillock).  Indeed one of the objectives of the model is to 

identify systemic minima for element quantities, as preserve the bio-computation functions of the cell.  Sampling 

theory may be applied to the challenge of element count reduction if the dimensionality of the problem is not under-

estimated.  For normally distributed values, 30 samples per degree of freedom yields 99% confidence levels, but 

nonlinearities make that an unreliable “rule of thumb”.

The quantities of ions in solution may be reduced to the extent many of them are sufficiently distant to the 

membrane functions as to render them insignificant.  If they are serving as “reserve capacity” or “buffer” for charge 

imbalances, then they still are not NIP active.  Short of compromising axial and/or circumferential flux, their 

numbers may be reduced.  At the risk of some graininess, the numbers of ions may be reduced proportionate to the 

reduction in the numbers of ion channels and pumps.  Then there is the question of quantity of ions that flow 

through a channel per millisecond of channel open time.  If this quantity is, say, 1E3 to 1E7, then couldn't that 

number be scaled down by one or two orders of magnitude?   Only if the capacitance were also scaled down, so as to 

preserve the resultant transmembrane voltage, and only if the speed of ions through the channel were proportionately 

slower, so it takes the same amount of time to generate an action potential.   There is then the matter of consistent 

multi-dimensional scaling.

Reduced to a tractable quantity, ions in water might be modeled for the transient solvation shells that accumulate 

when quiescent and are sloughed off with increasing drift. Neutral molecules are known to be encased in water 

“cages” that optimize the “hydrophobic” energies.  The actions of water are nonlinear and determinant of mobility. 

The mass of ions is significantly altered by the up to 50 water molecules that might become encased around it. 
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Given that mass is a strong factor in drift, conduction velocity, and wave shape when charge disturbances occur, the 

model must accommodate water structures to achieve predictive results.

2.2.2.4 Motion of Ions  

Similar challenges present themselves when attempting to simplify the representations of ion movement.  Motion 

has variously been represented as steps within a grid, random walks, statistical scatter patterns, dimensionless 

spheres proceeding ballistically, two dimensional elastic collisions, three-dimensional elastic collisions, and various 

modifications of Monte Carlo simulations.  The physicist's trick of periodic boundary conditions, whereby a cube of 

particles is cloned and re-used as a neighbor to itself, is only useful for perfectly homogeneous patterns along the 

membrane.   Most, probably all, neuron types rely upon certain inhomogeneities along the course of neuronal length 

to accomplish their information processing role.  This eliminates some of the easier representations.  At the very 

least, the NIP performance of a neuron must be represented by a series of such cubes made distinctive by the 

patterns of ion channel and ion pump distributions.  The boundary conditions become problematic unless the various 

cubes are placed continuously adjacent, such that particles can move freely from one to another.  Because the 

particles are carriers of information, and the information content is their position (they have no changeable states), 

then one must conclude that anything about a model that interferes with their natural flux processes threatens the 

veracity of the NIP model.  For this reason, the Rall modeling method [48], slicing the neuron into segments which 

are then mathematically coupled, was eliminated as a candidate approach.

2.2.2.5 Membrane Lipid Molecules  

The neuronal membrane consists of self organizing molecules.  But interestingly, such self assemblies consist of 

many dozens of types of molecules, some of which alter the thickness and/or the capacitance of the membrane.   The 

lipid molecules are not stationary, but apparently move as adaptive changes to temperature, hydration, pH and other 

factors.   The dielectric strength of the polar heads of the membranal lipids alter the electrical capacitance of the 

membrane.  There may be “rafts” of inhomogeneities floating around 2-dimensionally within the membrane.  

It is acknowledged that the quantities of lipid molecules in a neuronal membrane are too great to model all. 

Therefore, the membrane will have thickness, but not individual lipids.  The thickness may vary at each node to 

mimic the inhomogeneities of the lipid mix.   
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The membrane also provides various forms of tethering for the proteins active in NIP.  In particular, ion channels, 

ion pumps, metabotropic receptors are among those membranal proteins.  Verification of the proposed model wrt 

reducing quantities of lipid irregularities shall be accomplished by modeling membrane patches small enough that 

the number of particles is tractable to current technologies.  These patches may then be extrapolated in size and 

complexity, in progressive stages, such that verification work for each stage can be performed by comparing the 

performance of the reduced quantity model to the performance of the full quantity model.

The roles of the membrane, from a NIP perspective, include:  define a compartment shape; reflect particles that 

collide with it; provide positional loci for each membranal protein (a/k/a actor); define the sidedness of the 

compartment (inside vs outside) so as to orient pumps and receptor sites;  and act as a charge barrier to capacitate 

any charge imbalance across the membrane. To fulfill all of these roles requires a surface location system, an 

equivalent thickness that determines capacitance, and the ability to divvy up the surface into pixels suitable for finite 

element method treatment  or tessellation of nodes.  It also must allow penetration by the various protein actors 

embedded in it, for transport.  It would therefore seem that the individual lipid molecules are not significant to NIP. 

The inhomogeneities of constituent molecule types can be represented by pixel-wise variations in thickness and 

capacitance.

There may be a need to model the membrane as diffusible for some particles, e.g. anesthetics.   To accomplish this, 

the membrane is treated as a compartment and the surfaces treated as the water-lipid partition coefficient, breached 

stochastically with forward and backward reaction rates. 

2.2.2.6 Thermodynamics  

There are two types of random process of interest to neuron modelers:  Collision events of particles13 in solution due 

to thermal energy; and conformational changes within large actor molecules, also due to thermal energy.  For 

completeness, I note that there is chemical conversion of ATP that yields a specific quantity of chemical energy per 

molecule; ultimately driving the membranal system.

13 Brownian motion is defined as the random motion occurring with particles too large to move by their own 
internal thermal energy, but small enough that collisions with solvent particles are sufficient to move them 
randomly.
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The relationship between thermodynamics and information theory is analogous to the relationship between the 

power supply and the CPU in a silicon computer.  The two are linked by the concept of entropy.  Just as the 120VAC 

current must be conditioned via a power supply to drive the gates within the chips, the thermal energy must 

somehow be limited in its effects upon the decision processes of the cell.  This is accomplished by the complexity 

and strengths of a multitude of chemical bonds which constrain the intra-movements of large molecules.  A molecule 

may be so constrained that the various thermal impacts constantly impinging on it only bring about one of several 

possible “subsequent states” in the duty cycle of that molecule, but do not break the chemical bonds which constitute 

the solid.   Which state is the “next state” may be altered by modulation of that molecule.  Thus, thermodynamics 

drives an information processing system.  The kinetic scheme of each actor is a product of its thermodynamics 

(some amount of energy is necessary to change state; the higher the energy, the lower the probability of that being 

the next state).  So the thermal dynamics is already implied.  To incorporate Gibbs thermal dynamics would in effect 

generate those probabilities.  But as they are already given to us by the published kinetic schemes, most 

thermodynamics work would be redundant.  

A word about the concept of “duty cycle”.  If a molecule is of one-time use, then we make speak of the processing 

steps of its functional role.  But for all those molecule types of reuse in living cells, there must be some series of 

steps that returns to the “start” position, so the process can be repeated.  Exploration of the kinetic schemes of the 

actors reveals that no matter which state you start in, the actor will proceed into one or another limit cycle.  (Else, 

the actor is stuck in a poison state.)  The quantity of limit cycles determines the quantity of possible modalities. 

When a state graph is drawn accurately reflecting the molecule's physicochemical transitions, there must be at least 

one loop in this graph.  If there is more than one loop, then there is variability in the molecule's behavior, and 

presumably in its role.  For purposes of this project, “duty cycle” refers to the dominant loop (path of highest 

probability), usually directed, in the set of possible states.  Multi-loop actors can be discussed as having alternative 

duty cycles, with criteria or probabilities as to each one occurring.  Of particular interest would be modulation 

conditions which could switch preferences for which of the loops is active.  Each of the loops, in turn can express 

themselves by the impact they have upon the output of the actor, e.g. transport pattern or catalysis pattern.  

Significantly, the net Gibbs energy to traverse any complete cycle equals 0.   This has a great implication, that the 

act of conformational changes, though individual steps may be net positive or net negative on Gibbs energy change, 
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and actor completing a duty cycle consumes no energy.  This is significantly advantageous over solid state gating, 

which must consume energy, and then release heat, with each gate cycle.

There are additional critical processes requiring energy, especially pumping ions up-gradient.  Like an ion channel, a 

pump can be represented by its known kinetic probabilities, a series of which comprises its state paths.  Using 

chemical sources of energy is permissible, as ATPase pumps will convert 1 ATP molecule to 1 ADP + 1 Pi.  Th 

quantum energy released by this reaction is usually spent doing work, pushing 1 or more ions “up-hill”.  However, 

there is almost always more energy released than absolutely necessary for transport.  The surplus energy may go to 

increase the velocity of the transported ion, or increase the “ringing” of energy within the pump.  Either way, there is 

a temperature increase in the system as a result.

Particles in aqueous solution undergo random trajectories because of relentless collisions, most driven by thermal 

energy, and some by drift.  At any point in time, a compartment at uniform temperature will have a velocity 

distribution that will follow the Boltzmann velocity distribution.  The thermal energy affects each mass value 

differently, and therefore, there will be a Boltzmann distribution for each mass group (particle type).  The 

introduction of new uncharged solute into this solution will result in a Gaussian-shaped spread of that solute, 

following the heat equation.  This pattern of diffusion occurs subsequent to each channel opening or to each pump 

cycle, whereby transported particles are released to diffuse into the new compartment.  In the case of charged 

particles, the outcome is more complex because Coulomb's law is in effect.  

On the inlet side, channels and pumps act as ion species filter drains.  The removal leaves a “hole” in the spatial 

distribution pattern, causing all particles to rearrange themselves in a more diffuse manner.  In this case it is the 

“holes” that rearrange themselves.  In a matrix of neutral particles, they diffuse in a Gaussian-shaped spread, and the 

actual particles act in compliment.  The spatial disparities in action between the various channel and pump types 

result in irregular concentrations over the length of the membrane, rather like the surface of the ocean in response to 

several winds and vents.  Such crests and valleys drive lateral flux of the transported particles.   Ion charge adds drift 

force to these movements.  Concentration gradients add another force factor to the determination of transport rates. 

Concerning non-ionic particles, such as neurotransmitters and second messengers, they are less likely to be 

transported via channels.  
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Conformational changes may range from trivial to significant, from continuously flexible (e.g. movement in angles 

of rotation), to discrete conformers with no intermediary shapes found.  At the continuous end, there must be no 

energy barriers, and many Gibbs-equivalent states.   At the discrete end, there will be found significant energy 

barriers, caused by repulsive charges, and then the discrete states, caused by attractive charges.  For example, 

inverting the “chair” conformer into the “boat” conformer requires energy to distort the bond angles enough to pass 

between these two “relaxed” conformations.  Though apparently a mechanical distortion, the subatomic phenomena 

involves distorting the electron orbits, distorting charge patterns from one relaxed state to another relaxed state. 

Fixed charges along the molecule create attractors towards some states (stable) and repulsors away from others 

(unstable).  Of course the greater the energy needed to force a conformer out of its stable state, the more unstable the 

intermediate position will be, and the shorter lived they will be.  These effects tend to cause molecules to snap 

between states, and the observer sees the stable states as discrete possibilities unless in possession of very fast 

recorders and clocks.  Ambient thermal energy is sufficient to achieve some state transitions, but perhaps not others. 

When a state is achieved from which there is not enough energy available to get out of, this may stop the biological 

functioning of the molecule.  We say this molecule has become “denatured” or “poisoned”. In summary, the human 

notion of “digital states”is a fiction that conveniently summarizes the high speed with which states are changed and 

the stability (persistence) of those states when not perturbed. 

   The energy budget of a chemical system is highly determinant of which reactions transpire and at what speed, 

which are reversible, which are blocked, and which are poisoned or denatured .  Entropy and information are closely 

related concepts.  Entropy can be employed in coding theory, but the contribution of thermodynamics is completed 

prior to the measurement of information.  Its effects are already embodied in the state transition probabilities.   It is 

not likely that thermodynamics will need to be directly incorporated into a NIP model because its effects are implicit 

in the empirical reaction rates provided, and because information flow is not directly related (not one-to-one) to such 

energy “costs” as they are rather orthogonal to each other.  The model works with transition probabilities, 

superseding the thermodynamics that underlie them.  The risk is that some thermodynamic principles or events 

would make transitions impossible, especially hypothetical constructs.  There is an empirical check for the in vivo 

data, but hypothetical constructs will require verification in the chemical realm if intended to be realized as physical 

entities.  Known thermodynamics can be mapped into the probabilities of the Markov processes.    
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The consumption of ATP to drive pumps requires thermodynamic phenomena, but those particular aspects of the 

neuron are not on-NIP.  An informational approach creates ATP as particles, with probabilities of binding and 

unbinding to actors as a modulator type.  The ability of a pump to transport against a concentration gradient is 

clearly a thermodynamic problem.  But, once again, the thermodynamics is embodied in concentration gradients 

times the binding kinetics, which in turn determine the transition probabilities per unit time.  

There would have been an advantage to carrying the thermodynamic process along through the simulation, in that it 

generates the reaction rates of all possibilities dynamically.  The disadvantage is that it greatly increases the 

computational load, without contributing directly to the information throughput.  In a future time of lower cost 

computation, it will become desirable to add a front end model of the thermodynamics to “pre-process” all the likely 

probabilities and make them available as a library of Q matrices, to be called per parametric combination each dt.

2.2.2.7 Kinetic Schemes  

Conventional chemistry kinetics refers to reactant A mixed with reactant B to yield Product C (and sometimes 

Byproduct D) as per the rate constant of this reaction.  There are usually alternative (competing) reactions which 

generate other “side-reactions”.  In reversible reactions, a backward rate constant may also be determined.  When 

observed at the molecular scale, reaction rates are seen to be probabilities of a binding (forward rate) and/or 

unbinding (backward rate) to occur.  Regarding larger molecules, as are common in biology, the quantity of possible 

reactions often becomes “astronomic”.   Large molecules without charge inhomogeneities are pliable, bending and 

twist like rubber.   Large molecules with charge foci at various points are more likely to react extremely quickly, 

appearing more discrete than continuous.  Large molecules with distributed charge loci might react with themselves, 

thus changing conformations.   Such charge mediated “flips” result in a rather discrete number of possible 

conformations (states), with the time spent in transition between such conformations very short (<1E-7 s).[49]   

Though conventional chemical nomenclature may not catalog all these conformational possibilities, the physical 

reality of their actions is much the same as conventional chemical kinetics.  The greatest point of difference is that in 

biology their are no rate constants.  The rates fluctuate due to modulation.  This is inherent to large molecules, which 

will experience changes in the electron cloud at one end due to some binding or unbinding, but this will invariably 
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affect the electron patterns at all other points on the molecule as well to varying degrees.   Thus one site's reaction 

becomes another site's modulation. 

The reactions-with-self are interpreted as “conformational changes”, and the subset of these deemed NIP-significant 

are assigned state numbers and state transition probabilities.  Very complex molecules and structures from a 

molecular dynamics point of view might be greatly simplified, or even eliminated, if their roles are off-NIP or their 

NIP-contribution is minimal.  

In biological systems, large molecules experience these frequent state changes due to thermal energy.   It is not 

currently feasible to observe these states directly.  They are observed indirectly through 2-step voltage clamps and 

charge movement detectors.  As a result, only partial data about states is available.  And this data arrives in a mixed 

format, such that the rate coefficients must be “peeled” out of the aggregate of superimposed exponential decay 

curves.  This results in significant variation in reported results between workers, even when working on the same 

raw data.  Choices are made, which invariable serve as simplifying assumptions. The extraction of significant states 

and reduction in their number  to  NIP-significance yields something called “kinetic schemes”.   These are the 

results of attempts to collapse multiple similar states into single states, ignore flutter too fast to be determinant in 

action potential propagation, and ignore transitions too slow to be found present in any action potential.  The result 

is indeed a scheme, in that many quite different schemes may fairly represent the exact same molecule along its 

behaviors of interest.  Some experimental objectives may require more detailed kinetic schemes than were adequate 

for prior experiments.  This all handicaps the model, which would thrive on a complete, stable set of transition 

probability tables, including both internal changes and external bindings.  We mourn not to greatly however, as one 

Q matrix is easily exchanged for a new and better one. 

Kinetic schemes which capture the most significant NIP conformations (as states) are chosen for representation 

while insignificant states may be bundled together as the “idle” state or ignored all together.  Each of the most 

significant states is significant precisely because of its effect upon the surround (directly or indirectly).  The 

respective functional role of each state is  interpreted and labeled as a phenostate, such as: {channel open, channel 

closed}.  Phenostates are distinct from states because the mapping is not one-to-one.  There are usually more than 

one state that express as “channel closed” and more than one that express as “channel open”.     
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Kinetic schemes also capture the nature of the transitions between states, as state transition probabilities.  Because 

information is defined as a change in state, these transition rules are of the essence in a model of neuron information 

processing.   

Kinetic schemes are artifacts, hugely abstracted images of the more complete account of bio-molecules as the 

discipline of Molecular Dynamics might provide.  While this abstraction makes the information role compact and 

representable in silico, it renders an impotent output, merely a state number.    When a kinetic scheme is employed 

to represent a receptor, channel, vesicle or  pump, it is necessary to add an additional entity which interprets the 

output state for its “expression”.   In the same sense as this word is used by the geneticists, “expression” maps the 

internal state of the molecule to its impact upon the environment.  A phenostate table projects the molecule's implicit 

nature to its explicit nature, as a mapping, or lookup table, which may in turn point to an executable function like, 

“move ions to other side of membrane”.

2.2.2.7.1Modulation of Kinetic Schemes
Kinetic schemes for large molecules are not stationary  Those so called “rate constants” that populate the transition 

table are not at all constant..  The transition probability values are subject to change, implying second-order 

transitions.  This implies a second order of information , and also implies an increase in the dimensionality of the 

state transition matrix.   These second order effects are usually referred to as modulation, and the input signals 

causing such modulations are referred to as modulators.  

Modulators are entities external to the molecule being modulated, and may be particles (ligands) or forces (voltage, 

mechanical pressure or heat).   In any case, they exert their effect by altering the bond strains and electron orbits 

throughout the larger molecule, and thereby alter the energy barriers between states.  Thus, the probabilities of the 

molecule's conformational changes are altered.   Second order modulations of the kinetic schemes typically operate 

on the same time constants (just as fast) as the first order conformational transitions.  In the case of voltage 

modification, the second order dynamics can be faster than the first order transitions (regarded by physicists as force 

field effects).   Therefore we cannot demote such modulations to the status of parameters, nor as adaptive signals, 

nor as compensators.  They are full status input signals.

Conceptually (and mathematically) we may say that the state changes of the large molecule are analogous to 

velocity, and the modulation of those state changes is analogous to acceleration.  To complete the comparison, the 
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modulator particle embodies the potential energy.  The chemical bond it makes at the allosteric binding site is the 

force the modulator brings to bear (force being causal to acceleration).   Of course, this is only metaphor, but 

perhaps useful when  later thinking about informational transactions.

2.2.2.7.2Kinetics of the Actor Molecules
Just as diffusion commutes rather simple movement fronts via multitudes of particles,  actors accomplish transport 

functions by passing through a multitude of molecular conformations.   That actors are comprised of  large number 

of constituent atoms (about 1E5) might suggest very large quantities of degrees of freedom, reduced by constraints. 

Large quantities of freedom would present a modeling nightmare except that all but a few of these conformations are 

either insignificant or insufficient in occurrence.   MD studies also suggest that ion channels are quite constrained in 

their internal motion to rather rhythmic cycles and do not appear chaotic in dynamic simulations.[50]

Beginning with the kinetic schemes published by wet lab researchers on membranal proteins, the nodes thereof as 

each assigned state numbers.  By applying graph theory to the transition links between states, it is not difficult to 

assess which states can be merged or ignored with no loss in NIP-functionality.  The kinetics of receptors, channels, 

vesicles and pumps may be simplified to such kinetics schemes as sufficiently mimic the dynamic transport behavior 

of their biological counterparts for purposes of a given experiment.  This includes modulator binding behavior, 

response to force fields, signaling, transport, patterns of receptivity, patterns of response, and refractoriness. 

Caution must be exercised  to avoid assumptions that alternative pathways are redundant and can be purged or 

merged.  It is the alternative pathways that enable actors to exhibit modality.  It is prudent to leave all pathways 

intact until sufficient runs can determine whether or not they express as anything significantly distinct vis-a-vis the 

modeling objectives.  Various modalities are of keen interest to this project because they are implicated in actor 

pattern recognition and pattern generation.

Metabotropic receptors employ complex G-protein messenger systems that radiate outward along the membrane. 

They may employ multiple stages, using 2-dimensional and 3-dimensional processes in series.  When proteomic and 

genomic aspects are not considered, they may be simplified to messenger particle shuttles between a single receptor 

and multiple ion channels, so as to effect signal leverage and some variation in delay, faithful to the spatiotemporal 

patterns reported in the biodata.  
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Vesicles are extremely complex, mechanically, chemically, and systemically.  Within this modeling effort, vesicle 

complexities of compartments, subunits, complex control systems for construction, staging, release and recycling, 

are not tractable.  However, the NIP function of vesicles is similar to that of the receptor.  To the extent that vesicles 

are transduction mechanisms from Ca++ signals to neurotransmitter release into the synapse, immense conservation 

of computational load can be realized by reducing the vesicle to a stochastic point process which merely releases a 

larger quantity of messenger particles than does a receptor, and at a faster rate (as a batch).  To serve the information 

throughput, the kinetic schemes must yield a release pattern in time that mimics the known patterns of exocytosis.  

The vesicles, in particular, lend themselves to NIP-simplification because the molecular mechanisms of construction 

and release are enormously complicated, while the throughput from Ca++ stimulus to neurotransmitter response 

apparently is captured in a few statistical equations.  This leaves the vesicle as a sort of inverted receptor, 

transducing an intracellular message into an extracellular broadcast of messengers.

It is hoped that all actor types might tolerate some reduction in quantity without loss of veracity.   Although care 

must be taken to establish the correct scaling factors for each element type.  It is notable that Jon Art produced 

predictive results with a model that scaled actor quantities down to just 3 channels, to conclude that the turtle 

auditory hair cell could tune to a specific frequency independent of cilia length.[51]

The molecular kinetics of an actor may express widely varying timings between states (about 20 orders of 

magnitude of time constants are possible between the fastest and the slowest transition ).  Such a compass must be 

clipped, for practical reasons.  It is possible to tranche the challenge into 3 or 4 orders of magnitude at a time.  The 

tranche of greatest interest is the one that straddles the action potential, about (1E-4 .. 1E-2) s.

From an informational point of view, the actor has an internal 'space' which contains its states and its state transition 

probabilities.  The actor also has an external space within which its impacts and bindings of particles, impinging 

voltage, and the transport effects occur.  

2.2.3 MEMBRANAL SYSTEMS  

A membranal system is defined as one layer of lipid membrane between two layers of saline; with active transport 

molecules embedding in said membrane.  Membranal systems have distributed sources of energy, in the forms of: 
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chemical energy source  e.g. ATP (adenosine tri-phosphate) as a for driving ion pumps;  concentration gradients 

(across the membrane and ipsilateral gradients between actors) which determine flux; charge fields which usually 

produce ions held in capacitance near the surface of membranes; and thermal energy which drives diffusion and 

actor state changes.

Membranal systems consist of two or more liquid state compartments separated by soft matter partitions which play 

an active role in systemic function.  Generally, the liquid state provides analog communication and convolution, and 

the soft matter provides discrete state functions.  The importance of soft matter as opposed to conventional matter or 

hard matter deserves mention.  Soft matter physics concerns those molecular types which are easily deformed by 

thermal fluctuations. It is those proteins which have the potential for numerous conformations, and are delicately 

balanced in the energy needed to effect changes in those conformations, such that these molecules will experience 

spontaneous alterations due merely to ambient thermal energy.  This quality makes them very useful in biological 

systems, both for their low (often zero) energy requirements, and for their spontaneous traversing of their state 

space.

The highly coupled nature of membranal systems with respect to receptors, messengers, channels, ions, pumps and 

vesicles is expressed in a large scale network of interactions, from which emerge copious qualities and quantities of 

couplings, with causality well distributed and highly non-linear.  Membranal systems may possess critical and 

intricate positional organization of the active elements.  Distribution patterns by which transporters are laid out over 

the membrane determine characteristic behaviors of the membranal system.  Indeed it is the intention of this model 

that it should serve as a tool for studying such characteristic behaviors as distribution patterns are varied.  

The communication linkages over the membrane will express feed forward and feedback circuits.  Spatial 

positioning of actors and concentrations of interactors (particles) have consequences with respect to diffusion time, 

force field intensity, nearest neighbor interactions, and refractory effects.  Thus, the local environment to an actor is 

critical to that actor's behavior and NIP impacts.  The natural surficial distribution of actors and particles is 

significant to the various information processing roles. This justifies the concept of modeling each actor as 

occupying the center of a voxel, which delineates that actor's “impinging environment” of saline above and below it.

These two, the external and internal environments of each membranal actor, conjoin to produce behavioral patterns, 

characteristic of each actor type in a given context.  These patterns can be mapped across their parametric space, 
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within physiological domains, pathological domains and hypothetical domains, via combinatorial parametric 

sweeps.

2.2.3.1 Channel and Pump Performance  

Channels, by virtue of their gating function between compartments and the voltage potential they dynamically alter, 

can pass from 6E1..1E6 ions in a single opening of less than 1E-1 s.  They are easily amenable to instrumented 

measurements of currents, which can be manipulated to detect many of the significant conformational changes that 

impact upon channel openings.  To the extent that a model, by virtue of its accuracy in kinetic representation, 

becomes predictive of the correlation between molecular design in a given environment and its performance, then 

that knowledge can incrementally be extended into realms where the functional changes in conformation are not so 

easily measured in the wet lab.  Modeling extends our knowledge by principle.  But that must eventually be verified 

by fact.

2.2.3.2 Receptor  and Vesicle Performance  

The model membrane may be tessellated according to the biodata on actor distributions.  Each actor is represented 

as a surficial node.  These nodes imply a network of edges consisting of diffusion/drift links to nearest neighbors. 

Receptors act as input nodes for the network.  Vesicles act as output nodes.  Typically the quantity of receptors and 

vesicles would be 1 or 2 orders of magnitude lower than the quantities of channels and pumps.  This is consistent 

with the expectations of linear algebra, which would provide for M input nodes, N output nodes, and N x M interior 

nodes.  In a neuron there are also interior nodes which neither receive input from receptors, nor pass output to 

vesicles (the so called middle layers).  These can be of arbitrary quantity, as some function of length of dendrites and 

axons, plus surface area of the soma, times some viable density value.

The kinetic schemes of receptors and vesicles are quite similar to, and fully compatible with, the kinetic schemes of 

the channels.  To pass and process information, the kinetic rates and transition speeds would be expected to be 

similar for all 4 actors types, else there would be a weakest link which would squander the other resources by 

causing them to be in wait states most of the time.  
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Receptors and vesicles each serve two functions.  They transduce and they fan-out (amplify).  The receptor may 

accomplish its leveraging role via catalysis, while  the vesicle accomplishes the same via a storage reservoir that is 

released as a batch.  Transduction is duplex in role.  Each transduction converts one type of messenger to a different 

type of messenger, and each transduction causes the signal to cross the membrane, i.e. pass from one compartment 

to the next.  

The receptor receives one messenger particle as input and releases numerous second messenger particles as output. 

The speed of catalysis is critical to the information throughput rate.  If the time allotted for message delivery 

happens to be 1E-4 s (measured empirically) and the time to diffuse from receptor to the target channel is 4E-5 s 

(constraint of physics), and the quantity of down-stream target channels is 100; then the catalysis of the receptor 

must produce 100 particles in 6E-5 s, or  1 per 6E-7 s.   A seldom addressed implication of this is that there must be 

a complimentary mechanism for “clean up” that removes all of those 100 wandering particles, where ever they may 

roam, in about the same length of time they were produced, 6E-5 s.  Given their uncertain locations, that is asking a 

lot.  But without so doing, these messengers go forth continuing the message long beyond its currency.  They would 

produce echoes and noise if not removed.  Worse, they would act to block the receipt of future information.

The vesicle receives one calcium particle as input and releases numerous neurotransmitter particles as output.  The 

contents of the vesicle may consist of more than one type of particle.  The quantity of particles within a vesicle has 

variance.  The timing of release also has variance, and the reliability of release may result in releasing 0,1,2,3, or 4 

vesicles per event.

Because of the primary transduction role of these two actor types it is not expected that their kinetics would also 

perform a pattern recognition role nor a pattern generator role.  However, it is certainly possible for them to do so.

2.2.3.3 Pathologies  

The ability to model neuronal function as a system of molecules enables workers to characterize, diagnose and 

design corrective measures for channelopathies.   Channel errors may occur in subunit amino sequencing, subunit 

(mis)matches, channel positioning, multichannel rafting and spacing, channel type ratios, or channel densities that 

displace  membrane capacitance.  All can be modeled predictively with the proposed nanoscale particle/kinetic 

system.   Such a general tool can establish the essential and robust parametric values of a channel/membrane system. 
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It can then explore pathological possibilities, followed by various designs for therapies.  For example, 

excitopathologies involving over-production of glutamate due to high frequencies of ion channel openings could be 

dynamically modeled in 3-dimensions to determine the root cause down to a specific subunit of the channel.  Once 

the offending protein is identified, then those who develop therapies can focus on replacement methods.  Also, 

alternative kinetics could be experimentally developed.  If direct replacement is not possible, then the addition of 

compensatory actors may be therapeutic.  Modeling offers great assistance in developing such compensators, and in 

reverse engineering the desired effect back to the proteins exhibiting such desired states and state transitions.  It is 

plausible that therapeutic strategies can be worked out for channelopathies, including, but not limited to, subunit 

replacements, synthetic channel insertions, compensating actor constellations, altering spacing and geometry 

between actors, altering the messenger environment, and altering the tonicity of one or more compartments. 

A similar case can be made for pathologies of receptors, vesicles and pumps.  What is learned from the eminently 

measurable channels is likely to have analogs in the other actor types, though not as easily measured in wet lab.  The 

model, however, is agnostic to such limitations of instrumentation and can assist in the exploration of receptors and 

pumps just as easily as with channels.

2.2.3.4 Emergent Phenomena  

Alan Turing, in his 1952 “The chemical basis for morphogenesis” brought a working definition of chaos and 

principals of self-organizing molecules into science,  (also Robert May, Belusov, Lorenz, Mandelbrot)  forever 

ending determinism as a viable explanation for anything biological.   Very simple equations can create immensely 

complicated and unpredictable behaviors, so long as there is some form of feedback in them.  Stochastic feedback is 

not an abstract mathematical invention, but is in fact abundant in every living cell.  And so all of the deterministic 

approaches are obsolete, even as they continue to yield good results for certain problems of artificial systems. 

Biology employs multiple forms of feedback to generate patterns that become the basis of yet more complex 

patterns.  They generate novelty and then via feedback select the most useful of those patterns and assimilate them 

for future and repeated use.  To model emergent phenomena, approaches are needed that preserve the chaos, and 

filtering thereof, and the means of capturing the useful finds into self, processes inherent to biology.  See also 

Steward Kauffman, 1995, for a theoretical justification.[52]
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Routine use of the phrase “emergent property” or “emergent phenomenon” is not an evocation of mysticism.  It is 

the consequent of a very down-to-earth process:  arranging things.  A house is emergent from a pile of bricks and 

sticks when one particular arrangement is followed (as prescribed by a set of architect's drawings).   Emergent 

phenomena are self evident when concrete, but we do not have a common language for communicating emergent 

processes that are dynamic.  The Niagara waterfall is emergent from a flowing river and a sudden drop in the 

elevation of the river bed. This is an arrangement which alters the continuity of the water, and we give this striking 

change a name: waterfall.  All aspects of life are arrangements of things, simple things like oxygen, carbon, sulfur, 

nitrogen, and hydrogen.    But some of these arrangements can result in some quite impressive results.  Positional 

organization makes all the difference.

The discipline of molecular biology is on a quest to explain all of life's structures and processes at the molecular 

scale.  This is not to be confused with reductionism.  The anti-reductionist argument would look at the pile of bricks 

and sticks and claim “they can never hop together and spontaneously form a house”.  The statistician agrees with 

him with slight modification. “It is extremely improbable that the bricks and sticks will hop together and 

spontaneously form a house.”    A biologist immediately starts looking for the DNA (blueprints) and the ribosomes 

(laborers) and sets into motion the construction process that will result in a house, provided there are adequate 

energy sources (money).  New types of entities emerge from the extant entities when the following are available: 

the building blocks, the patterns of assembly and a mechanism that “reads” the pattern and executes the assembly. 

This is a synthetic process.  Its opposite is analysis, a cutting process, a disassembly.  What was missing in 

reductionism was the acknowledgment that there exist synthetic processes.  Physical synthetic processes form rock, 

mountains, hurricanes.  Chemical synthetic processes form plastics and detergent.  Biological synthetics form 

trillions of fascinating entities upon the earth.  

What is categorically different in modeling upward from atoms is that the build process is necessarily synthetic. 

Every form that results from assembly of given smaller/simpler parts is emergent, requiring some information 

source for the pattern of assembly, and some production mechanism for effecting that assembly according to pattern. 

This is no surprise to engineers and chemists, but most fields of science are heavy in analysis and silent on synthesis. 

People trained only in analysis may experience some conceptual friction in accepting emergence as a practical and 

scientific undertaking.   
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It is an objective of this project to substantiate in physics several of the emergent phenomena common to neurons, as 

instrumental to their acquiring the ability to compute.  It is a strong motivation of this project to enable simple 

elements to give rise to complex behaviors.

2.3 DELINEATION OF THE CHALLENGE  

2.3.1.1 First Problem Set  

1. Create a compartmental surface via rotation of contour points into rings

2. Create loci on this surface, homogeneously spaced (each point on a ring (slice)).  

3. Adjust ring width to preserve point spacing. Solve the circum/secant distortion.

4. Tessellate this surface into triangles with nearest neighbor actors as corners

5. Allocate capacitance per triangular face, one actor per face

6. Solve for normals to each triangle, for particle reflections

7. Effect reflections according to normals

8. Collision Detection algorithm determines which face will be struck

9. Collision Detection mechanism for particle-particle hits

10. Initialize particles in solution to randomized Boltzmann velocity distributions

11. Equations for diffusion metrics: flux, grad, dif, curl.

12. Add forces, sources: point, line, plane, uniform, gradient, N-body

13. Mean Free Path algorithm that preserves Boltzmann velocity distribution.

14. Velocity distributions quivers for plotting moving particles

15. Conc tracker per voxel

16. Nernst voltages for ions from concs

17. Vm from weighted Nernst

18. Vm from Coulomb's law

2.3.1.2 Second Problem Set  

1. Add membranes for extracellular, core, presynapse, postsynapse plugs

2. Map ceiling/floor surfaces per ring to define compartments, then per particle 
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3. Calculate likely collisions with membranes (anticipate and optimize CPU time)

4. Add database manager to call any subset of membrane/zone/segment/ring/node/actor

5. Add viscosity of medium, from mechanical mobility and electrical mobility

6. Add library of particles and their relevant traits from periodic table.

7. Parametric control of strength of charge

8. Add library of commonly-used compartments

9. Add membrane thickness and water-lipid partition coefficient

10. Add charge attraction and repulsion between particles, charged membrane

11. Add binding sights and bound particle management

12. Add library of actor types

13. Develop flux and charge metrics on a per voxel basis

14. Develop 2-D grid circuit for membrane and saline RC system (accommodating actor conductivities)

15. Actor PDFs from biodata

16. Actor placements via PDFs

2.3.1.3 Third Problem Set  

1. Develop finite state machines for each actor type (M,R,P,Q matrices)      M = modulator state; R = 
open/close table; P = PDF;  Q = transition probabilities

2. Instantiator for bindings and state transitions

3. Bookkeeping between bound particles and their binding sites; map B state to A state

4. Extract and normalize PDFs out of bio-data on protein actor distribution

5. Sprinkle actors according to their PDFs  (recep, shuttle,channel,vesicle,pump)

6. Avoid overwriting while preserving PDF stats (Alert if insufficient nodes)

7. Add actor normals and poles

8. Identify nearest neighbors and Calculate distances between nearest actors

9. calculate Voronoi areas around each actor. Use to calculate membrane capacitances/actor.

10. Calculate actor-to-nearest actors saline resistances

11. Signal generator to drive model across multiple input ports

12. vesicle simulation: signal to NT release algorithm

13. ATP to ADP  conversions as part of pump cycle;  
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14. Reporting routines, data capture 

2.3.1.4 What is Needed from the Biologists  

The skills sets for computerized modeling generally arise from engineering studies, but the skill sets for producing 

the input data necessary to drive models of neurons generally arise from biology.  This dependency surfaces as 

modelers recognize “missing pieces” found necessary to built an integral working model.  Follows is a list of the 

data that would be needed to accurately represent a neuron mathematically and dynamically for its information 

through-put.  

1. The physiologic ranges of intracellular and extracellular tonicities for each cell type, in each species

2. Definition of channel types, pump types, receptor types for each cell type, within each species.

3. Distributions of each of those actor types, for each cell type, of each species.

4. Specific kinetic schemes which determine the input output time function of each actor type.

5. Specific kinetic scheme for the binding and unbinding of each ligand to each  actor type.

6. Specific modulation effects upon the kinetic scheme of each binding combination for each actor type.

7. Specific input output function for each vesicle type for each cell type within each species.

8. Distributions of each vesicle type within each cell type.

9. The variability for each of the above.

10. The shapes of each cell type, gradients and variations thereof, including tortuosity of the membrane

11. For local circuits, the connectivity matrix between all cell types of a given individual nervous system.

The above are necessary for both the neurons and the glial that exchange ions or messengers with them.

2.4 MODEL REALMS  

The model is nonlinear due to conditional flow control operators.  There are two master processes that drive the 

model: Particle collisions and gating events mediated by stochastic finite state machines.  Each encounters frequent 

and significant extrinsic disruption events that are germane to the transfers of information.  As a HAD (hybrid 

analog digital computer), the continua of space, time and force fields behave linearly for particle drift, while the 

intramolecular state transitions and binding/unbinding modulation events behave nonlinearly.



94

Solutions to linear systems are amenable to closed form analytic EQs.  As the order increases in polynomial EQs the 

smooth curve give way to ever sharper singularities, heading toward square and triangular “waves”.  Where lower 

order systems abide by continuity, higher order systems tend to emulate the “decision” with sharp modal shifts when 

a certain combination of conditions is crossed.  The nervous system is concerned with recognition and decisions as 

to how to respond to such recognitions.  The study of the nervous system is then, by necessity, a study of nonlinear 

processes.

Within biological systems there are two dominant circuits.  The homeostatic circuit is a negative feedback loop that 

tends toward equilibrium (set point) after each perturbation.  It generates the classic sigmoid response curve.  The 

defense circuit is a positive feedback loop that once perturbed tends to grow very fast to limits of the system.  This 

phenomena can give rise to the startle, the attack, the appetites driving search behavior, and, at a smaller scale, the 

firing of neurons.  Positive feedbacks are inherently dangerous.  In every case there must be limits to resources 

consumed by positive feedbacks, timewise limits to the duration of these circuits in their consumptive process, and 

some grand restorative negative feedback loops that eventually take over and restore baseline levels for the 

organism.  The membranal actors exhibit distinctly nonlinear behaviors (as finite state machines); and the ecologies 

of systems of such actors coupled by particle collisions give rise to highly nonlinear behaviors. 

2.4.1 ELEMENTS   

Physics tells us that everything consists of particles and/or waves.  It is convenient, however, to classify element 

types at a somewhat higher order so as avail them for simulations of the NIP functioning.  Considered are particles 

and their movements within volumes and limited by surfaces.  The volumes contain particles (ions and messengers, 

as solute particles), and the surfaces contain actors (membranal proteins, as point processes).  The particles change 

their positions, and the actors change their internal conformation.  The particles are accelerated by the EM and 

thermal forces, randomized by collisions with water molecules.  The actors are stressed by the force of voltage and 

modulator bindings, and by particle collisions (thermal noise).   

The experimental space is divided into compartments (volumes).  Compartments are organized by shape.   The 

surface of each compartment is considered to consist of a membrane.  Each surface has sidedness (e.g. inside and 

outside), thereby orienting its actors.   Particles within the volumes are significant by their distributions.  For 
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particles, position is information. Velocity may also be information, in that zero velocity indicates a particle is 

bound, and binding indicates a change in state for the actor to which it is bound.   Actors of the membranes are 

significant by their states.  For actors, state is information.  States inevitably have impact upon their surround.  For 

example, an open channel effects a leak across the membrane, causing a redistribution of particles, and therefore the 

positional information of the system.

For convenience, the particles are treated according to two classes: monatomic and polyatomic particles.  Though 

biology makes the distinction between ions, ligands, neurotransmitters, and others,  for modeling purposes charge, 

radius, and mass are the significant constants (traits).  For polyatomic particles the radius must be treated as an 

“effective radius”.  Ions that solvate by accumulating water shells also require special treatment, because both their 

mass and radii are varying over time.  The particles are present in a number of types the same as chemical names. 

For example, sodium, chloride, potassium and calcium are almost always present.  The actors are represented in 

multiple classes: receptors, channels, vesicles and pumps.  The second messengers are treated as extensions of, as 

part of, the receptor type which they serve.  For example, there are neurotransmitter receptors, ion channels, 

neurotransmitter vesicles and ion pumps present as membranal actors.  In some cases the distinction between classes 

is blurred.  For example there are some pumps that can transform into channels.  This may be accomplished by a 

logical switch.

For completeness, there are several intangibles that need to be considered in a NIP model of the neuron.  They are 

emergent properties of the lower level processes.  Positions of particle in a volume determine concentrations, and of 

course, concentration gradients.  Gradients times mobility plus prior inertia determine velocities. Velocities of 

particles in a volume determine flux, divergence and curl.  Positions of charged particles determine an electric field. 

Electric field sums to apply force to each charge.  Force divided by mass plus inertia determines velocity.  Positions 

of charged particles near a membrane determine capacitor charge (coulombs).  Velocities of charged particles 

determine current (amperage).

In summary, all elements have position (shape, position or surface address) and state (capacitance, bindings, and/or 

configuration).  The traits of each element are predefined as TYPEs, and their initial positions are prescribed as 

DISTs.  Each actor must in any given instant be in a certain STATE, which is prescribed by its state transition 

probabilities.  
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The terms interactor and particle are used interchangeably in this document. The terms ligand and modulator are 

used interchangeably in this document, except that, technically, voltage is also a modulator.  The prefix B may 

indicate interactor-related functions, the prefix A may indicate actor functions, and the prefix C pertains to 

compartment, membrane and capacitance functions.

2.4.1.1 Element Divisions  

a)  Actors are stationary proteins, affixed to the membrane, and operating as finite state machines; 

b)  Particles consist of charged Ions and uncharged Ligands dissolved in the water filling each compartment;

c)  Membranes serve as compartments for particles, as addressable nodes for actors, and as capacitor for the 

electrics. 

d)  Emergent forces and flux are observed via the metrics of voltage and flux.     

2.4.1.2 Element Classes  

1. Water, as a statistical phenomena of collisions and charge smear, hydration and thermal mass.

2. Ions, any number of species in quantities up to about 1,000,000, as computer capacity allows

3. Ligands, defined as any molecule that can modulate ion channels or ion pumps via binding/unbinding, 
including all neurotransmitters.  Ions may be ligands.  Ligands may be charged or neutral.

4. Membranes form closed surface vessels, sometimes nested, which define the shape and volume of: 

a.  plasma lemma, as a closed-surface the shape of a neuron, or a simplified version thereof

b.  neighboring neuron plasma lemma, but also forming an outer closed surface

c.  core (nuclear) membrane, creating a central compartment within the neuron for purposes of 
sequestration, re-uptake, etc. and for limiting the intracellular volume to predominantly a near-membrane 
layer.

d.  dendritic synaptic “plugs” which provide synaptic clefts and neurotransmitter release sites.  This is 
intended to be the business end of the adjacent neuron, as programmable boutons.

e.  axonal synaptic “plugs” which provide signal detection for received neurotransmitter molecules from as 
output from the neuron.  These boutons serve to listen to the output of the model whole cell at realistic 
termini.

5. Receptors, metabotropic stand-alone types utilizing second messenger leverage mechanisms to modulate 
more than one channel.  Note that ionotropic receptors are merely binding sites on the ion channels, and for 
purposes of this model are not referred to as receptors, but as channels.

6. Ion channels of any number of types, defined as: kinetic schemes per subunit, conduction profiles, 
modulator combinations effects upon state, and state effects upon bind/unbind kinetics; (includes ionotropic 
receptors)
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7. Vesicle release mechanisms are represented simplified to kinetic schemes for release of their 
neurotransmitter package in a time-wise, and variance-wise, realistic fashion.

8. Pumps, including co-transporters, exchangers and ATPases that selectively move certain ion combinations 
across membranes.  Represented as kinetic schemes.  They may run backwards. They may starve or 
saturate. They may be allosterically modulated. They may pump Ligands.  They may replenish the vesicles.

2.4.2 STATES  

Compartments are usually considered to be static, therefore of only one state.  However, because lipid membranes 

are prone to act as capacitors, and that capacitance is NIP significant, the state of a membrane may be said to equal 

the distribution of charge across it.  That is, farads * voltage = charge, for each area local to an actor.  

Each interactor has the extrinsic state of  its position and velocity.  The forces impinging on its mass and charge 

determine its acceleration.   

Each actor has as many states as its kinetic scheme requires, and a set of transition probabilities between each 

possible pair of states.  The transition set determines which state the actor will spend most of its time in, down to the 

state of least persistence.  The transition set is usually modulatable via allosteric bindings and/or voltage.  And such 

modulation shifts the proportion of time each state is visited.  More subtly, modulation may speed up or slow down 

transitions without shifting the favoritism of states visited.

Conceptually, there is an analogy between interactor position and actor state; between interactor velocity and actor 

state transition frequency; between interactor transport and actor modulation.  The modulators which modify the 

transition probabilities are roughly analogous to force, as they alter the state change velocities.  All of this has utility 

when we consider that the information flows necessarily pass from particles through actors and back to particles 

again.  The analogs will map cleanly in and out of the actors.

2.4.3 FORCES  

There are many possible forces impinging on a living neuron. However, in modeling parsimonious to the task, the 

largest force is the electromotive force.  This force must be calculated each dt.  There is also the thermal energy, 

which is represented as a sum distribution of molecular inertia.  Concentration gradient force is an emergent 

property of diffusion, which in turn is the expression of the thermal energy.   Thermal energy is implicit in particle 



98

systems as particle inertia assigned at initial conditions, never needing to be added thereafter throughout the 

simulation, as momentum is conserved.  Ions moving through channels are driven by these two forces: electrostatic 

and thermal (the actions of voltage and concentration).  All other forces are sufficiently small that they may be 

neglected. 

The thermodynamic energy cascade is a fact of any living cell. The energy source for the system may be glucose, 

which is metabolically converted to ATP, which becomes a convenient packetized form of energy useful for a long 

list of bio-functions.   Some pumps are driven by ATP.  These establish a concentration gradient across the 

membrane sufficient to drive a long list of membranal processes.  Pumps that move charges across a membrane are 

said to be electrogenic.  For example, the Na-ATPase pump moves 3 Na+ out and 2 K+ in, for a net charge per duty 

cycle of 1 +charge out.   This has the effect of charging the membrane as a capacitor, but it is a lot of work to fight 

the EM force to move charges up gradient.  The charged capacitive has the effect of producing a voltage across the 

membrane, and this voltage is a pressure which impinges on the actors.  Some other pumps are driven by the 

concentration gradients, effectively undoing what the electrogenic pumps did.    The flux through all ion channels is 

driven by such concentration gradient and/or by corresponding partial voltage gradients.  All of this could be 

modeled as a thermodynamic model, or by a probabilistic model, or by a deterministic mechanical model (like 

clockwork gears).  An energy cascade can be emulated by a series of kinetic processes with the appropriate kinetic 

proclivities and ligands passing between them.  Each step consumes only a small portion of the energy coming to it, 

and passes along what's left to the next step.  By this means, a single type of pump can provide the energy that drives 

many other types of channels and pumps.

2.4.4 INPUTS  

The input signal to the cell is created by a Signal Generator.  In order to be faithful to bio-signals it must produce 

multichannel releases of neurotransmitter packets into any number of synaptic clefts.  The modulation and timing of 

such releases may be driven by realistic multi-unit neuron recordings or hypothetical  data.  The Signal Generator 

shall imitate the lag, time spread and variations in quantity of the various messenger molecules in the vesicle, and be 

parametrically adjustable over the physiologic domain.  
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In most cases a new experimental design may be created by modifying a pre-existing experiment.  Reusable data 

characterizing element types, processes (as functions) and experimental designs (each an assembly of types, 

distributions of types, and input signal set) is stored in libraries, constituting an “experiment”.

2.4.5 MEMBRANES  

A 3-dimensional membrane reflecting the significant topological bifurcations and nearest neighbor relations is 

necessary to study channel distribution patterns, their effects upon neural functions, and their sensitivity to 

parametric changes (robustness).  The patterns of channel distributions are more than mere densities, as mixed 

channel types may be present as triads or within rafts or other protein structures which fix the distances between 

certain channel types.  Such distances may be critical to resonance frequency and localization detectors, etc..

The 3-D shapes of both the intracellular and extracellular compartments are defined as closed surfaces, each 

enclosing a fixed volume, derived morphometrically (as provided by the anatomical literature).  Such closed 

surfaces may be nested.  Attempts are made to simplify the shape to reduce computational load without loss of 

veracity.  The membrane, of approximately uniform thickness, effects a Resistance/Capacitance 2-D grid, comprised 

of the insulative/capacitive lipid layer, and two conductive/resistive saline solutions, on either side of this 

membrane, containing the diffusing ions and ligands of the system under test (SUT).  Membranes are herein referred 

to as M; there volumes within as compartments, or Comps.  

2.4.5.1 Neuron Shapes  

The phenomena this model intends to demonstrate are shape-determinant.  For example, the topology of bifurcations 

in the dendritic arbor. determine nearest neighbors among the actors, which in turn determine which signals are 

received from whom.  Previous workers have collected high resolution, three dimensional morphometric data on 

neurons.  Instantiations of high fidelity shapes as dynamic information processors are presently computationally 

daunting.  

2.4.5.1.1Patches
It is put forth as a testable hypothesis that the mathematician's notion of "manifold" applies to the neuron.  Namely, 

that although the closed shape of the neuron is immensely complex (difficult to capture as a mathematical function), 
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the most significant operations of, and upon, that function are sufficiently local that the mathematics can be reduced 

to planar operators for all local (nanoscale) effects.   And that these planar patches can be assembled (tiled) into 

more complex shapes that topologically represent the nearest neighbor relationships of the living neuron.

2.4.5.1.2Zones
The whole cell model membrane has (usually, but not mandated) Nine Zones 

1. Dendritic Synapse 

2. Dendritic Bouton

3. Stalks

4. Soma

5. Axonal Hillock

6. Axon

7. Node of Ranvier

8. Axonal Bouton

9. Axonal Synapse

These are only a suggestion, as it is very easy to define any number of zones and allocate any portion of the neuron 

length to each zone.  A single zone type may be used multiple times, even separated, over the length, e.g. node of 

Ranvier.

2.4.5.1.3Whole Cell
There are two possible approaches to whole cell models.  First is a simplified version of down-scaled size and 

reduced quantities of elements, but otherwise a charged particle system with actor kinetics.  The other is to assemble 

the results of patch simulations, tiled into a neuron shape.  This approach treats the patches as lookup tables so as to 

avoid redundant calculations.

A canonical patch may be used to characterize the zone from which it was excised.  A set of zones can be assembled 

into a whole cell model.  The contour of revolution is a compromise shape that represents most of the topological 

relationships between elements of a neuron, both surfaces and volumes.  Use of the revolution of a contour about an 

axis allows a single basis conversion to cylindrical coordinates to locate membrane surfaces, detect all boundary 

collisions, and thereby realizes significant reduction in computational load.
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2.4.6 MOBILE PARTICLES  

Particles  = {Water ions ligands}.   Particles have size (radius), mass, mobility, and may have charge.  They collide 

with each other, reflect off membranes, and may bind to actors.  They may be transported by pumps or channels. 

They may be bond by receptors, channels, vesicles or pumps.  They may, if charged, become solvated with one or 

more shells of  loosely bound water molecules, according to radial distribution probabilities.  All unbound particles 

are subject to the diffusion process.  Charged particles are also subject to the drift process.  Like charges repel and 

oppositely signed charges attract, both  according to Coulomb's law.

2.4.6.1 Water   

Water is an essential entity determinant of saline solution behaviors.  There are approx 55.4 moles of water per liter. 

With  Avogadro's number of molecules per liter, that yields 3.34E25 water molecules per liter.  A neuron of volume 

= 1000 micron^3 would have about 96% water, which comes to about 3.2E19 water molecules. Current PC 

computers can handle about 1E6 particles per CPU core.  Therefore, some method of reduction in quantity is 

necessary.  In the case of instantiated water molecules this would be as much as a 1E-13 quantity scaling factor!

Water exhibits several behaviors relevant to the ions themselves.  It tends to smear the charge fields.  Such that an 

ion that would have headed straight for an opposite charge in a vacuum, will be diffused randomly (as in pascal's 

triangle) in a water solution though drift will still bias its direction.  Its acceleration will be reduced to a terminal 

velocity.  An ion collides with a water molecule on average every 1E-10 m.  This disrupts all straight line and 

elliptical trajectories, resulting instead in “thermal noise”.  There is a net drift of charge if there are asymmetries in 

the total charge system, otherwise mere Brownian motion.  The effects for concentration asymmetries are evolved 

via diffusion.

2.4.6.2 Ions  

Each ion type has a unique combination of mass, radius, charge, mobility.  From the modeling perspective, the 

motile particles present in large quantities (ions, water) are measured in aggregate as concentrations and flux.  And 

the motile particles present in such small quantities that they are individually significant as messengers, make their 

impact as modulatory bindings (that is, allosteric) upon the stationary protein channels.  From the ion channel's point 

of view, flux entities pass through the channel but do not usually bind to them; and signaling entities which bind to 
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receptors, but usually do not pass through the channel.  Calcium is a noteworthy exception for its flux through 

calcium channels and its modulatory binding to certain potassium channels.

The extracellular and intracellular saline solutions consist of particles in almost constant motion due to thermal 

velocities, chemical gradients, voltage gradients, and point-to-point charge forces. They therefore possess individual 

position, velocity, acceleration, collisions, reflections, binding, and  transport.

Diffusion is simulated via 3-d motion of instantiated particles within the various cellular shapes provided. Typically 

less than 20 types of particles (ions + ligands) are simulated in a single experiment, but the total quantity of particles 

may be 1E6 or more.  

2.4.6.3 Ligands  

By definition, ligands are molecules that bind.  In this case, any messenger molecule or ion that can bind to any site 

on a receptor, channel, vesicle or pump, and thereby modify its transition probabilities, is considered to be a ligand. 

This includes neurotransmitters, Ca++, hormones, phosphates, ATP, cAMP, and other messenger molecules that 

affect neuron transmission of information.  For modeling purposes, ligands are considered by default to be 

electrically neutral particles, but it is feasible to give them charge when doing so is instrumental to the experiment.

2.4.7 STATIONARY ACTORS  

Embedded within the membrane, at statistically determined locations, per probability distributions (PDFs) specified 

in the physiology literature, are species of proteins that variously act in the capacity of neurotransmitter receptors, 

ion pumps, ion channels, and neurotransmitter vesicular release mechanisms. Collectively, these are herein referred 

to as Actors.  Actors usually have bindings sites for either ligands or ions.  Such bindings are characterized by 

affinity profiles which are determinant in binding rates and unbinding rates as a function of concentration.  The 

prefix A may be used to indicate actor-related functions.

2.4.7.1 Receptors  

A receptor is an actor that binds a ligand (e.g. neurotransmitter) on one side of the membrane, that in turn results in a 

conformational change within the receptor, that in turn causes the release of a packet of secondary messenger 
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particles on the other side of the membrane.  The receptor, as envisioned in this model, includes some mechanism 

for sending multiple second messengers to target channels and/or pumps.   This may be referred to as a shuttle 

mechanism, though its biological counterparts may bear little resemblance to shuttles.

2.4.7.2 Channels  

Ion channels gate the conductance of passive ion flows through pores in the membrane.  The gating decision is 

stochastic, varied in frequency, duration and pattern by external modulators as they may allosterically bind.  And the 

current combination of such bindings shall determine the state transition probabilities. 

Channel openings can result in millions of ions passing per ms. They are the transporters of greatest quantities.  As it 

is the pumps' role to restore what the channels let leak across the membrane, the pumps can be easily overwhelmed 

if the channels remain open for very long.  Viability therefore insists on either there be a high ratio of pumps to 

channels, or else the open time fraction of channels be very small, say about 1%.

Channel densities cause them to occupy positions along the membrane that leave only so much area of membrane 

per channel.  Membrane capacitance is proportional to this area.  Therefore higher channel densities enjoy less 

capacitance. This can be a big factor in system performance, because capacitance is the buffer that allows both 

channels and pumps to perform out of synch.   

There is more to channel locations than mere density.  The fine pattern expressed as the distances between several 

channels structurally assembled into rafts may not be revealed by density numbers.   Zeroth order patterns may be 

defined relative to the given surficial node locations.  Second order patterns may be defined relative to actors of the 

same type. Third order patterns may be defined relative to other actor types adjacent to it (e.g. triads).  It is this fine 

pattern (second order organization) which in some cases determines neuronal resonance frequencies, or burstiness, 

or other characteristic behavior. The term ‘plaiding’ is used here to describe second order channel distribution 

patterns beyond mere channel density by zone or by gradient.  Setting up assemblies is necessary whenever such 

patterns alter the neuronal response to a stimulus in a physiologically useful manner.  This modeling approach  has 

the utility of enabling study of a great variety of channel plaiding patterns;  physiologic, pathologic, therapeutic and 

novel design, as distinct and characterizable systems.   See “assemblies”below for further discussion.



104

2.4.7.3 Vesicles   

Vesicles are extremely complicated in mechanism, but fortunately much simpler in informational impact.  As a 

spherical container made of membrane, containing some mixture of messenger ligands, it must be released 

statistically into the synaptic cleft upon the binding of a Ca++ signal.  Therefore, its function is to map a single Ca+

+ ion into a (somewhat variable) packet of messenger molecules, fairly reliably.  The uncertainties (for a single 

action potential) include: sometimes the vesicle does not open, sometimes it opens partially then re-closes, and 

sometimes more than one vesicle is released.  The probabilities of each of these occurring is often known, and so 

can be programmed probabilistically.  For modeling purposes, the vesicular release mechanism can be reduced to 

something like a receptor inverted in it positional polarity vis-a-vis the membrane  ( that is, mounted inside out). 

Such uncertainties have often been ignored or consciously eliminated as noise.  But the alert modeler will note that 

all possibilities make up a distribution of responses.  The distribution is the whole, and each instantiation is but a 

part.  It is the repetition in time or the redundancy in space, that reveals the whole.  It is reasonable to conclude that 

biology makes full use of this fact because the spatial redundancies are quite consistent, and the temporal patterns 

are of the essence.  Collapsing such nuances out of a purported information model may seriously degrade the 

veracity of the model, therefore doing so is countermanded.

2.4.7.4 Pumps  

Pump require an energy source to transport ions against the gradient.  They transport particles in very small 

quantities per cycle, usually less than six.  They more often than not transport more than one type of particle each 

duty cycle.  That is, they transport in ratios.  Because of such ratiometric mechanisms, one type may be pumping up 

gradient while another is being pumped down gradient.  The energy source for a given pump type may be an particle 

concentration gradient or ATP.  Pumps may counter-transport ions, or co-transport ions, or both.  They may transport 

in an eletroneutral, or in an electrogenic, manner.  A pump cycle may take (1E-3..1E-2)  s.  Pump densities and 

distributions may be similar to, or quite dissimilar to, channel densities and distributions.  In any viable system, the 

quantity of pumps must be sufficient to restore what ever quantities of ions the channels let pass passively.  It might 

be expected that the neuron makes efficient use of the significant energy invested in electrogenic pumping by 

minimizing the ion channel openings as consistent with the neuronal role.
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2.4.7.5 Assemblies  

This model contains a mixture of channel types of known internal kinetics and transport function, each at known 

locations (based upon published kinetic schemes and distribution studies).   The model also supports assemblies of 

actors such as rafts, which are positioned as though a single actor, at some specified node, but functionally perform 

as a set of actors at fixed (small) distances apart.  An example is the channel triad.  Actors are embedded within a 

membrane of known capacitance, bathed in solutions of known local tonicity on each side of the membrane, with 

known concentrations of various messenger molecules local to each actor.  The model is expected to produce 

systemic behaviors, such as action potentials, propagation, and that these may arrange into firing patterns mimicking 

their biological counterparts.   Such a model commands “controllables” and “observables” that may not yet be 

observable and controllable in the in vivo studies in the biological wet lab.  Model parametric values can be varied, 

sensitivity analyses can be performed, hypothetical scenarios can be enacted, and various optimization routines can 

be run, so as to discover perhaps new modalities of information processing at the molecular level.  Exercising such 

models can also assist the biologist by drawing attention to crucial areas and missing data.

2.5 PROCESSES  

All of the dynamics of the model are embodied as particular processes, intended to represent specific physical 

phenomena.  The three base processes are thermal motion, acceleration due to the EM force, and chemical release of 

energy.  The first two of these, in turn, bring about secondary processes of diffusion, drift, capacitance and molecular 

kinetics.  The kinetics in particular brings about tertiary processes of receptor transduction, and channel gating. 

Finally, the kinetics are supplemented by chemical energy release to make possible pumps which move particles 

against the concentration gradient and/or against the voltage gradient.  These are the necessary and sufficient 

processes with which liquid state information processors can be built.  The challenge of this project is to simulate all 

of these in a digital computer.  As these processes occur in continuous space-time, digitization is certain to bring 

about some distortions and some inconveniences. 

Diffusion in water is occurring at about the 1E-10 m space constant and 1E-12 s time constant.  The EM force 

expresses itself as capacitance along the membrane, the thickness of which is about 1E-4 m.  This capacitance, along 

with channel openings express as action potentials occurring at about 1E-2 s.  The wide compass of time constants 

(1E-12 .. 1E-2) and space constants (1E-10 .. 1E-4)  inherent to necessary cellular processes present formidable 
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challenges in digitization.  A variety of methods are applied in attempts to simplify and compress the time and space 

compasses.  The very slow processes can be ignored if they are clamped down (held constant) so as to avoid going 

into some rest state, inactivating state, or other modal shift that would arrest or distort normal physiologic function. 

Several very fast processes can be averaged into a single average effect as a pseudo-state.  For a discussion of 

techniques beyond these simple expedients, see scaling topics below.

Particles move about in a living cell  in response to more mechanisms than mere diffusion and drift.  The 

intracellular membrane and elaborate transport mechanisms serve to rather tightly control the movements of all 

resources from source to target locations.  Because neuronal information function is established as an electrical 

phenomena that is for reasons of physics considerably faster than all other cellular processes, it can be concluded 

that the more elaborate intracellular transport mechanisms are not fast enough to directly participate in NIP function. 

Of course they may play supporting roles, but are out of scope for this project.  That lease the fast processes of drift 

and kinetics, but does not rule out structures and impediments within the cell that would disrupt, divert, or thwart 

diffusion and drift from their straightforward effects.  In other words, living cells may employ diffusion and drift, 

but these may be biased by a plethora of membranes and fibers.  If it is found that particles relevant to NIP modeling 

do not move quite randomly, perhaps a bias can be introduced which will increase the success rate in arriving at 

target locations.  For example, the concept of affinity implies the equivalent of an attractive force.   Physics offers no 

such a force, only a net performance of combined diffusion and the EM force that results in movement as though 

there had been one.  Biases in velocity can enable the model to get target arrivals up to frequencies similar to those 

of living cells.  Attractor/repulser forces, or even shuttles, can assist the model in successful point to point transport. 

Simplifications can lead to deficiencies and flaws, and so a careful approach would try to replace the most complex 

mechanisms with the simplest digital mechanisms that would still accomplish very similar phenomena.  Some 

instances of such considerations follow.

2.5.1 DIFFUSION  

True diffusion in water occurs in picosecond frequency of collisions.  A digital model cannot faithfully embody such 

events, in multitude, for much more than a nanosecond of simulated time.  This is not sufficient for NIP purposes. 

Therefore, justification is sought to rescale the time constants of diffusion to frequencies closer to 1e-5 s.   Diffusion 

results from a particle system consisting of spheres with varying radii, mass, charge, and velocity, colliding into each 
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other at high event rates (equivalent mean free path is about 1E-10 m), as fully elastic, momentum-conserving 3-

dimensional collisions.   The question is: what reduction in particle quantities will still perform in similar fashion for 

the actor kinetics they impinge upon?

2.5.2 DRIFT  

Charges are ubiquitous and this requires the N-body problem be resolved each dt.   Charges may be neutralized by 

binding to oppositely charged particles or actors.  When actors possess charged binding sites, those charges are 

included in the N-body problem.  The membrane is a barrier to charge flux and results in capacitated charge 

whenever there is charge imbalance across that membrane.  Presumably, the quantities of charged particles can be 

proportionately scaled down, but simulations for sensitivity to charge scaling must be performed to determine 

empirically the practical limits for a desired level of confidence.

2.5.3 KINETICS  

Each actor may have multiple configuration states, presumably altering the functioning of that actor wrt particle 

binding, transport, and release.  The kinetics of each is mathematically represented by transition probabilities table. 

This table may be uniquely modified by each combination of bindings of the various modulators.  The table is 

“read” by the current state, and outputs a row, which constitutes a PDF as a set of possibilities for the next state.  The 

PDF is instantiated to determine the subsequent state.  That state is then “read” for its phenostate (functional 

implications).  The phenostate calls some set of executable functions to carry out the transport operation for that type 

of actor.

2.5.4 ELECTRODYNAMICS   

The membrane creates a portless, closed-surface, electrical network of resistors, capacitors, and current sources. 

The variable resistors are the only input signal into this circular grid.  The most common electrical representation is 

a ladder filter.   Driven by a voltage source on the left, repeating units are equal (or nearly equal) filter stages. The 

variable resistors are not usually present, but are added here in anticipation of ion channel conductivities.  This 

circuit represents either electronic flow, or else a single type of ionic flow.
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This can be extended from linear string to 2-dimensional grid, so as to represent the membranal system

FIGURE 4: RC LADDER CIRCUIT AS A 2-D GRID

The edges of the grid wrap so as to form a closed surface.    The depiction of a neural membrane as an XY Cartesian 

FIGURE 2: RC LADDER FILTER REPRESENTING A CABLE

FIGURE 3: RC LADDER FILTER WITH VARIABLE RESISTORS
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grid is unrealistic in that the positions of the channels and pumps are semi-random.  Positions are none-the-less 

significant to function.   A grid is helpful, though not Cartesian.  Tessellation can come a lot closer to the natural 

arrangements of actors. The variations in nearest neighbor distance, and the pattern of heterogeneity among the actor 

types, are highly determinant of systemic behavior, given actor strong nonlinearities.  The capacitance per node 

varies with the area per node, and to a lesser extent with variations in the lipid makeup which determines membrane 

thickness and “polar head” dielectric coefficients.   The saline resistances vary with salinity * internodal distance. 

And due to channel and pump activities, those salinities are local to the actors, not general to the compartment. 

For electricity to move at all, there must be a “complete circuit”.   Because channels have duty cycles that are most 

of the time closed, it is not a given that circuits are completed with nearest neighbors.  For example, If chanA has a 

duty cycle of 0.12 and chanB has a duty cycle of 0.07, then they share open time only 0.0084 fraction of the time, 

assuming they are completely independent.  But they are not independent because of the refractory period. 

Whenever the refractory period initiates before propagation to the neighboring cell, then chanA will always be 

closed for chanB openings when signals are passing  in the orthodromic direction, and vice versa for the antidromic 

direction of propagation.  Only when propagation is perpendicular or near perpendicular to the axis between the two 

channels can they both be open at the same time.  This might tend to support wave fronts, but it does not complete 

the circuit very often so that channels can conduct current.  Thus, current must be conducted to some other sink.  

As it turns out, membrane capacitance is crucial as a current buffer.  It absorbs particles as they are pumped across 

the membrane, and releases them when the channels open.   Without membrane capacitance, the membranal system 

grinds to a halt.  

Pump density is significant to membranal system performance.  As pumps only transport at about 1/1000th the rate of 

open channel flux, then even if the channel duty cycle was only 0.01, there would still need to be 10 times as many 

pumps as channels.   There is another factor that increases the need for pumps.  The sodium pumps generate a 

sodium gradient that is used to drive a number of co-transporters and counter-transporters.  These are types of 

pumps, being driven ultimately by yet another type of pump.  This pump cascade adds load to the total Na pump 

load, further increasing the quantity of pumps required.  The sum or all energy drains upon the Na-ATPase 

determines how hard they must work and how many there must be.
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Some pumps are electrogenic and others are electroneutral.  The electrogenic pumps alter the charge balance across 

the membrane.  This charge imbalance cannot diffuse freely into the electrolytes due to the strong EM force.  Rather 

it will quickly become capacitated at the membrane.  All charged particles, both stationary (as protein or lipid heads) 

and mobile (as ions and dissolved polar biochemicals) contribute to the charge field, even across membranes. 

Therefore the whole model is an N-body problem to determine the resultant forces on each particle.  Although water 

molecules tend to “mask” or “smear” the charge effects, this effect offers no short cuts to the  calculations of 

accelerations when requiring conservation of charge.  Compartments cannot be calculated for charge fields 

separately, least all capacitance be nulled by so doing.

Maxwell's 4 equations drive the entire field of electrodynamics.  They include magnetic and inductive effects.  But 

the molecular systems within neurons generate infinitesimal magnetic effects, so magnetism may be dispensed with 

in the NIP model.  Eliminating 2 of the 4 equations reduces the system from electrodynamics to electrostatics as far 

as physics is concerned.  But in the neuron, the charges are still very dynamic, and critically so.  Charge movement 

due to the accelerating forces caused by the general charge field are of the essence as to how the neuron functions. 

Because membrane capacitance is ever present in the proximity of those ions effecting the action potential, there is 

no opportunity to ignore the surround and calculate only the charge in a local vicinity.

Investigations are warranted to determine how much of the RC grid is emergent behavior from the EM force.  A 

particle model may investigate the consequences of treating capacitance as discrete (near each actor) vis-a-vis 

continuous capacitance.

2.5.5 TRANSPORT FUNCTIONS  

The phenostates of each actor serve to trigger the appropriate function of impact to the outside world, when 

appropriate.  

Certain receptor states trigger the release of the messenger particles, or begin the catalysis function that generates 

messenger particles.  Particles are released at random velocities consistent with the Boltzmann velocity distribution 

for each mass, at the system temperature.
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Certain channel states result in channel openings.  This triggers calculations of the partial voltages across the 

membrane (via the Nernst EQ) the aggregate voltage across the membrane (via Coulomb's law) and the difference is 

multiplied across the conductivity profile of the channel type, then multiplied by the open time, to calculate how 

many particles were transported.  Those particles are identified by serial number and are reassigned to their new 

compartments.  Their velocities resume as they were before transport so as to preserve temperature and conserve 

energy.

Certain vesicle states trigger partial or complete exocytosis into the synaptic cleft of the contents (release of 

messenger particles).  Stochastic EQs determine the timing, and portion of contents released., so as to mimic 

biological counterparts.  

Certain pump states trigger the reassignment of bound particles from one compartment to the other, and cause the 

release of those particles, resuming their old velocities from just prior to binding.  This is done to preserve the 

Boltzmann velocity distributions, which in turn preserve temperature, and conserve energy.  

The price paid for working within a discrete computational space is the incursion of logical functions to handle the 

necessary switching from class to class, type to type, compartment to compartment.   Each of the modeling phases 

has a set of functions to create, maintain, and deliver data.  By definition the RUN phase is heavily iterative. 

Therefore the RUN  functions are the most sensitive to numeric methods regarding opportunities for model 

efficiency.  

Functions maximize their reuse potential via an object oriented approach.  Care must be taken to conceive of each 

function in its most general form, spanning the likely parametric space of neurons to be modeled.  This implies an 

additive (constructive) rather than subtractive (analytic) approach.  The model must be open to the addition of new 

structures and compounds found within cells, without having to tear apart existing functions.  This strongly suggests 

a physics (first principles) basis for each function, and an object-oriented coding approach.

2.5.6 OUTPUT SIGNALS  

Of the many variables involved in running a hybrid particle and kinetics model, certain of them are chosen for 

capture as the “results” of the experiment.  These variables must be interpretable in the context of the biological 
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literature from whence it all came.  Therefore they must not be some abstracted convenience that has not physical 

meaning, and they must be converted back from modeling units to SI units.  The very large data-series with heavy 

repetition are collapsed into some reduced form via sampling, smoothing, threshold crossings, statistical measures, 

or curve fits.   The human interpretation of the data is after all, the critical last step, and this often requires 

visualization of the data so as to accentuate the differences between two or more comparison cases.

For the mobile particles, position is information.  The position of charges in a capacitor.  The position of 

neurotransmitter molecules vis-a-vis the receptors.  The position of ions vis-a-vis the ion channels and pumps.  The 

position of neurotransmitter molecules vis-a-vis the vesicle they were originally contained by.  The positions of 

charges determine the forces, therefore the accelerations, therefore the velocities.  Charge positions and the densities 

implied by particle positions together determine how much flux there will be upon a channel opening.  The position 

of the channel gates within each the ion channels is also necessary to complete the positional information that makes 

possible predictive constellation.  

State is information.  Each actor has proceeded through limit cycles, and these reflect the modalities of that actor. 

Transport patterns are emergent from those state patterns.  Transport has a high impact upon particle flux.

One may choose the graininess of data presentation.  For example, one may choose to look at only every tenth frame 

of the simulation to get a reasonable picture of what transpired.

2.5.7 TIME SEQUENCE  

Follows is a sequence of events that comprise a minimal set of functions which the model must be capable of 

executing consecutively.

1.  A neurotransmitter packet is released into a synaptic cleft

2. The neurotransmitter particles diffuse across the synaptic cleft, exposed to removal mechanisms, re-uptake, 
conversion, binding to non-informational elements

3. Some neurotransmitter particles bind to those receptors for which there is a binding affinity

4. A binding event is competitive and stochastic, proportionate to local concentrations of competing particle 
types

5. Receptors change kinetics when bindings occur 
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A. metabotropic receptor (includes second messenger system to nearby channels)

B. ionotropic receptor (treated as part of modulatable channel, with no separate receptor entity)

6.  Various modulator concentrations in the compartments alter molecular kinetics of channels and pumps

7.  Second messenger systems leverage one receptor signal into hundreds of ion channels. There may also be 
phosphorylation in a radial pattern around the receptor (2-d  effect for g-proteins, 3-d effect for PO3)

8. Receptor, channel and pump kinetics are instantiated as a function of their prior state, kinetics, modulation 
combos

9.  Ion channels flutter open and closed ;  pumps proceed through duty cycles

10.  Ion channel conductances as a function of conduction profiles, times sum of forces from partial voltage 
gradients plus concentration gradients impinging on each particle type at the two ends of the pore

11.  Ion flux through channels immediately impacts local capacitance at the membrane as a charge imbalance

12.  Charging curve of local membrane capacitance is a significant determinant of action potential shape

13.  Resultant local voltages are “read” by all voltage sensitive actors, resulting in intra-molecular torsion

14.  Saline resistance conducts ionic current to nearest active neighbors, above and below the membrane

15.  Nearest neighbors are modulated by voltage changes, and their open-close times are altered

16.  This process repeats, resulting in ion flux between channels (repeat 8-15 for nearest neighbors)

17.  Propagation proceeds bilaterally around the perimeter and down the axis in a wavefront.  Directionality is 
determined by the kinetics of the relaxation/return-paths to resting state, and refractory periods, which tend 
to be unresponsive to external stimuli

18.  Calcium channels allow calcium influx, which in turn serve as a messengers to cause the release of 
vesicles 

19. Vesicular contents diffuse out into the synaptic cleft

20.  Pumps work towards reestablishing membranal system equilibrium states for each particle type.

2.6 BIOLOGICAL ENVIRONMENT  
For convenience, the standard whole cell model is referred to under the name of Goblet (for its initial shape).  The 

nano-scale patch of membrane with one or several embedded actors is referred to under the name of Patch.  A 

constellation of Patch instances can be brought together to interact as a multi-scale model, when the several 

canonical patch models are archetypal of the many patches around them.  The many patches located between 

canonical patches are created as interpolations.   After confidence is gained through modeling experience, only key 

regions of the whole cell need be sampled to produce a representative membrane fully populated with channels and 

pumps.  It is expected that 10..50 patches would suffice to characterize the entire membrane of a neuron, 
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corresponding to known zones, and also to establish gradients where found.  The individual patch performances can 

then be cloned and/or graded via interpolation, so as to tile the Goblet.  The resulting fine pattern of nearly repeating 

channel types is herein called “plaiding”.

All of the nearest neighbor relationships between surficial nodes emerge from the shape of the Goblet.  Patches then 

extracted as samples from this nodal fabric.  Certain simplifying assumptions for the patches are justified by the 

mathematics of manifolds.

Information processing events at the molecular level of a single neuron are to be modeled, conceptualizing the 

whole cell as an input/output device, such that multiple instances of this model can be wired together, via synapses, 

according to a connectivity matrix, so to simulate local circuits.  Such modeling requires the inclusion of a 

membraniform system defining shaped saline compartments for extracellular, intracellular, synaptic, vesicular, and 

sequestration functions.  The closed-surface membraniform system shall have means of input via receptors and 

output via vesicles, receiving and emitting neurotransmitter molecules across synaptic clefts, respectively.

2.6.1 ADJACENT CELL MEMBRANES  

As an extracellular membrane is provided to contain the extracellular fluid to a prescribed thickness around the cell, 

that membrane is available for pumps, channels, receptors and vesicles.  This surface is completely addressable so 

that placement of actors can simulate neighboring neurons or glial.   While many models assume the extracellular 

fluid to be at zero volts (grounded), it is obvious to modelers that the extracellular fluid is even more dynamic in it 

voltage swings, fluxes, and concentrations than is the larger volume of  intracellular fluid.  This model supports the 

investigation of the role of extracellular dynamics.

2.6.2 ADJACENT CELL SYNAPSES  

A signal generator (SigGen) is provided to simulate the presynaptic signal set.  This signal is a 

spatiotemporal, multi-channel stream.  It may be used to convert any reasonable bio-signal, like a noisy battery of 

spike trains or audio music phase lagged to the various distances, into a series of vesicle releases of neurotransmitter 

into the synaptic cleft.  This is accomplished through the use of “synaptic plugs” which simulate “intelligent” 

boutons.
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For computers large enough to run simultaneous 2 or more Whole Cell models, the outputs of some may 

serve as the inputs of others, so as to form local circuits, and at greater quantities of cells, connected formal neural 

networks as constituted in layers.

In any case, the whole cell outputs are captured as streaming data into flat files, containing the particle 

positions, fluxes, transmembrane voltages, forces, and actor states wrt time.  Output Reports, as graphs, and movies 

of particle positions and actor states are provided for visualization of the data.

2.6.3 DENDRITIC ARBORIZATIONS  

Representation of the many shapes ad bifurcation patterns of dendritic fields requires radial partitioning (herein 

accomplished by inserting vanes into the dendritic “cones”).    The taper rates and bifurcation points are represented 

via vane placements.  There may be as many dendritic cones as necessary to reasonably represent the shape being 

modeled.

2.7 CAVEATS AND ISSUES  

Irrespective of the biology, the modeler runs into several issues concerning the numerical methods and hardware 

constraints.

2.7.1.1 Deterministic vs probabilistic universe  

Already discussed, determinism is apropos for the very simplest of mechanisms, like the lever and the gear.  But as 

complexity rises, even the smallest probabilities can express as some degree of variance or chaos.  Take for example 

printed circuit boards in computers.  Every component on them is intensively designed to operate deterministically. 

And indeed they do, most of the time.  But the very “deterministic” calculations of failure analysis reveal that every 

board will fail sooner or later, and that the exact time cannot be predicted (violence excepted).  Everything is built 

out of components that have some thermal “noise” in them, which is inherently random.  This randomness is mostly 

tamed by design, but never 100% contained.  Thus, it is wise to acknowledge the inherent randomness (uncertainty) 

in everything, and design accordingly.   Variance can be rationalized as multiple state paths, with each path resulting 

in a somewhat different outcome.   The qualitative difference between solid state silicon and biological membranal 
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systems is that random processes are embraced and harnessed in biology.  That is the various states paths each serve 

some utility; usually described as shifts in mode.  This makes many wondrous things possible, and, by the way, 

transcends the narrow view of the determinist.

2.7.1.2 Incompleteness:  incomplete physics, incomplete biology  

See the abductive modeling approach described above as to how humans deal with incomplete information.  Beyond 

the scope of this model, multicell networks processing large block of information develop an innate ability to think 

across missing information, and do so effectively, in a useful manner.

The incompleteness problem deserves some thought because the available data from the literature on membranal 

proteins is rarely complete.  The kinetic schemes are not only simplifications in their own right, but often stop short 

of a complete scheme due to practical limitations in mensuration.   The modeler will often be confronted with 

missing reaction rates, and missing states.  This sometimes becomes quite obvious in the simulation, wherein actor 

performance does not match the biological single channel recordings.  The verification process is dedicated to 

answering the question of completeness and accuracy of input data.  The “art” of modeling is called into play when 

there simply is not the necessary data to complete a duty cycle.  Then the single unit recordings must inform the 

modeler as to what is missing and within what range the missing values must lie.  There are several aspects to the 

treatment of missing values to be treated later:   First, is the need for a clear marker that tags each estimated value, 

that they not be passed as biologically derived.  The second is a sensitivity test to determine the plausible range for 

the estimated value, serving to limit the model and to inform the biologist as to what is expected, should the 

additional wet lab work be performed to measure that value.  Third is a contemplative analysis for alternative 

explanations of the single unit recordings.  In all likelihood there are more than one way to achieve a given single 

unit behavior trace.  What subtleties of the bathing solution could affect the data?  What possible denaturing of the 

actor might alter the results?  What degradation takes place over time since the preparation was made?  What was 

missed in the search for hidden states comprising a kinetic scheme?

The biological aspect of incompleteness acts as a frontier, inviting wet lab workers to proceed onward into uncharted 

domains of mensuration.  The modeling aspect of incompleteness requires a careful compliance with known physics 

so as to avoid creating fiction and then presenting it as emulations of science.  The good news is that neural 
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networks, more than any other type of processor, are known to perform well in the face of incomplete data to solve 

the assigned problem.

2.7.1.3 Entropy in cytological systems  

Entropy is the opposite of information.  Therefore any loss of information is entropy.  It is a very relevant concept to 

this model because there is an interest in identifying information that is redundant, dead-ended, or corrupted along 

the process path.  Failure to identify these types will result in an over-stating of the throughput information of the 

system.

2.7.1.4 Asynchronous biologic events v synchronous digital  events  

Digitization of time leads to aliasing error, the cure for which is smaller dt size.

2.7.1.5 Steady parametric change (development and evolution)  

Postponed for future releases.

2.7.1.6 Noise vs thermal energy source  

It is probably for the better if those modeling biologic processes discard the term “noise” once and for all.  Living 

cells simply do not see thermal energy as noise.  It is exceedingly useful free energy, and it is harnesses in many 

ways within each cell.  No living cell is viable without it.  Period.  Perhaps “ambient thermal energy” is a suitable 

replacement.

2.7.1.7 Molecular dynamics vs kinetic schemes  

Molecular dynamics are based upon first principles of physics and are far more accurate and predictive than kinetic 

schemes.  Kinetic schemes are abstractions that are subject to the whim of their creator, much as curve fits may be 

accomplished by several different strategies.  However, the computational loads of MD make them far too intensive 

to include in a whole cell model.  And most of what they calculate must be irrelevant to the NIP function of the 

neuron.  The best usage is that the MD simulations are used to validate and choose amongst the proposed kinetic 
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schemes such that the best in class is being employed in the model.  This model is built such that any improvements 

in kinetic schemes at any time can easily be submitted to the model library for easy utilization.

2.7.1.8 Unsettled Classifications, Ambiguities, and Conflicting Characterizations  

Biological data solidifies over the time from the first discovery, through characterization, to a well characterized and 

generally agreed upon entity.  There is always a period of uncertainty and conflict about distinguishing 

characteristics. This is a meta-problem in that it occurs before the bio-data gets into a model.  It is for others to argue 

out the classifications and variations on biologic themes.  It is for those interpreting the results to determine its 

applicability to biologic systems, whether physiologic, pathologic or pure fantasy.  It is for the modeler to to 

carefully label the hypotheses and competing representations of actors as alternatives, and is encouraged to run 

competing models to determine which exhibits behavior most closely matching biological reality.  

When ever there is ambiguity or dispute about types and classes, it is recommended that both be entered into the 

library, with distinguishing names.  Then comparison RUN can be executed, and the performance rated to the 

objectives.  At some point of model confidence it should become the arbiter of such disputes,  The proof of claims is 

in its performance.

2.8 JUSTIFICATION  

Justification concerns the physical, chemical or biological basis of entities and processes selected for inclusion in the 

model, and the veracity of the representations of same.  This is a general theme throughout the modeling process. 

The metrics for justification are discussed in Chapter entitled Architecture.

2.9 VERIFICATION  

Verification concerns the performance of each aspect of the model.  Each function must be verified over applicable 

physiological ranges for its veracity of performance, stability and graceful recovery from errors.  Then assemblies of 

functions that typically work in concert are verified.  Finally, all the called functions of a RUN are exercised over 

extreme and normal parametric settings to build confidence that the model is stable, reliable, repeatable, and 

representative of that which it claims to model.  Verification goes ultimately back to the literature of the biological 
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phenomenon which the model purports to simulate.  The metrics for verification are discussed in Chapter entitled: 

Architecture.

2.10 MODELING   TEMPORAL PHASES   

Living cells enjoy many time constants that digital models cannot span.  The growth and development of cells, 

responsive widening and retraction of synapses in “learning”, and a lot of  compensating and adaptive strategies so 

as to continue functioning over widely varying conditions.  At this point in model development, it is straightforward 

to define a single distinct scenario (cell condition), and run it as a separate model experiment.  When a cell shifts 

modes for reasons other than the direct result of protein conformational kinetics, then some re-architecting of the 

cell structures and processes is often involved.  This may be regarded as meta-programming to a NIP model.  It is 

possible to effect structural changes within a modeling run, but out of scope for this project.  For the time being, 

multiple runs across a series of scenarios of changing parameters will approximate these higher order processes.

2.10.1 MICROSCALE MODELS  

      A neuron can be designed or analyzed from the bottom up or top down.  A top down approach would implement 

the whole cell model first (microscale), then progressively add more elements and features.  The patch model 

(nanoscale could be used selectively to verify the validity of representative patches from the whole cell model. 

Once the various patches of interest have been modeled at the nanoscale, they comprise a library of re-usable blocks 

for the large-scale whole-cell simulations.  A means for exchange of particles between patches is necessary for them 

to work as an integrated whole.  Given that patches are collapsed to lookup tables for purposes of tiling a whole cell, 

such particle exchanges would simply be numeric values.      

     Distortions arise from a reduction in particle densities.  If one model particle represents a million real ions, then 

there are a number of other compensations in the model that must be made.  The  channel conductivities then 

transport very grainy amounts of charge, resulting in rather abrupt changes in voltage, called shot noise.   Also, a 

recalibration of membrane capacitance, receptor bindings, and pump function are all necessary if the results are to be 

meaningful to biologists. 
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2.10.2 NANOSCALE MODELS  

It is intended that the nanoscale model of a patch of membrane represent real ions one to one.  If all the physical 

constants are preserved in quantity in the  nanoscale model of membrane, ions and ion channels,  then the causal and 

spatial relationships between the key elements remain intact.  The price paid is that only about 1 millionth of a 

neuron can be modeled this way.  It is possible and advisable to model a smaller portion of the neuron where the 

physics is tractable to computation without scaling.  Patches of 10 by 10 voxels of 0.01 micron edge length would, 

on average, have only 1 channel.  In busier areas, near synapses, this density could rise to a max of 25.  A patch of 

16x16 voxels, one layer deep on either side of the membrane, would allow the study of Hodgkin-Huxley type action 

potentials.  A typical rendition of this size would have about 92,000 particles, 256 membrane addresses and 12 

channels.  Note that this is 10 times the average channel density but typical of the more informationally active 

regions of the neuron.  Note however, that high channel densities imply low capacitance per channel, which have 

significant consequences upon the ability to generate an action potential and the propagation thereof.

2.10.3 MULTISCALE MODELS  

The solution to the overwhelming computational load of rigorous whole-cell simulations is multiscale modeling. 

The microscale and Nanoscale simulations may be used in concert. Certain representative “patches” of membrane 

can be incrementally increased in size and counts until a point of diminishing returns is reached in the input/output 

relationships.  This nano-patch can be expanded until propagation is consistent with up-scaling.  That is, if 

increasing the number of components does not add appreciably to the generated results, then that patch can be held 

at its point of diminishing returns.  Such an exercise provides valuable insight for both ANN and BNN designs.  

1. When such a size is reached it can be “cloned” around the circumference of cylindrical shapes as an 
accurate predictor of what actually transpires in an axon.  

2. To the extent that the parametric space is exercised and consistent between ANN and BNN, such patches 
can be collapsed into look-up tables, and then stitched together in much larger quantities. accurately 
modeled at the nanoscale of ions and ion channels, including the nearest neighbors, membrane capacitance 
and chan type mixes/patterns.  

3. A design can mix-and-match canonized patches to mimic the BNN distribution patterns.

4. patches that do not add anything to the output signal can be eliminated.  For example, can a  thin radial 
slice down the entire length of a neuron accurately mimic the BNN performance?  If not, can the edge-
dissipation effects be negated via mathematical stitching so as to improve the model’s veracity?
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Multiscale modeling will play an important role in capturing the information processing capabilities of neurons. 

Because a full-scale model will involve perhaps  1e12 particles, 1E8 locations, and 1E6 actors, over a series of 1E6 

time steps. every opportunity to reduce computational load in the ANNs is to be fully exploited.   Aside from the 

Computer Science  contributions to numerical methods, there are several higher level strategies that can gainfully be 

employed.  

1. Reducing patch size to its minimal informational character.

2. Eliminating all patches shown not to contribute to the out put

3. Cloning all homogenous patches alone a wave front (only the locations of the wave front need be 
computed)

4. Correcting for edge artifacts allows modeling of only a radial slice  of circular profiles

5. Studying complex local phenomena and then collapsing the results into look-up tables to be libraried for 
future use.

6. the ‘digestion’ of  relevant phenomena at a lower levels for preprocessed use in larger quantities at higher 
scales.

7. the automatic detection of violations of canonical forms.  This is critical to avoid bad science.  Any 
emergent phenomena not consistent with previously characterized behavior must be detected and alerted. 
This should trigger additional intensive study into the local behaviors so as to add more possibilities to the 
library of low level routines.  The essence of multi-scale modeling is that the unanswered question drops 
down to a lower level of analysis, on a type-by-type basis

8. At each level, parametric sweeps need to be performed across each of the likely permutations in assembly 
of parts.  Distinct modes, if any, should be mapped.  

    The whole cell model can be realized as a projection or clones of patches.  As this is a tedious method, it is 

anticipated that over time, the bottom up approach will need not be repeated with every experiment.  Stable 

performance of certain parametric domains would justify direct to whole cell modeling which represents ions 

perhaps 1:10,000.  Random checks can be performed on several patches from that whole cell to insure that 

performance between the rigorous nanoscale model was being matched by the less rigorous whole cell model.  Some 

minimal quantity of patch types with a placement map can capture the input-output relationships of that particular 

species of neuron.  The levels of confidence of such whole-cell simulations are dependent upon how exquisitely the 

whole cell is calibrated to the lower scale patch models.  

A question arises as to whether intermediate assemblies of patches could effect any computational efficiency.  For 

example, might one patches be cloned into a 5x5 array of 25 patches; and these assembled into grids of 625.  The 

problem is that portions of the larger grids must be discarded to achieve the shape of the neuron, and this fitting of 
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square tiles onto an irregular surface could become more tedious that its worth.   The solution to tiling irregular 

shapes is called tessellation, and it works with triangles, not squares.  Conveniently, every square can be cut 

diagonally into two triangles, and triangles can always be stretched to fix the contour.  It would still be an 

algorithmic challenge to decide  how to fit all the tiles onto a cell surface.  It is much easier to tessellate the cell 

surface first, and then map 2 adjacent triangles down into a square patch. 

2.11 APPROACHES  

The activities of science are for the most part analytic.  Analysis seeks the uniformity of an object or process so as to 

collapse all instances into a single compact form.  It thrives on homogeneity, and indeed strives to reduce all 

equations to their homogeneous form.   There have been thousands of attempts to analyze the neuron for the 

mechanisms of its functional role.  However, there is this problem:  information is precisely the non-uniformities. 

Information is the non-homogeneities.  If you could take all of the analytics out of a neuron, and throw them away, 

what is left is the information.  It may be that some of this information remains un-read; and so we think of it as 

waste or noise.  But all of the important information being processed and throughput by the neuron lies outside of 

analysis.   To be fair, one could employ analytic techniques to characterize the building of the mechanisms.   But this 

will not deliver to you the content.  Any more than studying a TV schematic will ever tell you what shows will be 

aired tonight.   What is needed is the further development that focuses directly upon the non-uniformities, as a 

complement to traditional analysis.  We have a word that serves to name its complement:  synthesis.  Which of 

course means to build.  Structure is a zeroth-order activity, and information is a first-order activity, as it is a 

differential.  This raises the conceptual question: what is a proper way of studying the information processing 

potential of a living cell?   On a spectrum from uniformity (e.g. a salt crystal) to pure white noise, are various 

patterns.   There must be “degrees” of patterns, as there are for example, degrees of symmetries.  Simple patterns are 

of low information content, while extremely complex patterns (e.g. the distribution of ones and zeros in a large 

computer memory) can contain maximal quantities of information via efficient coding.   

But humans come to the table with a bias.  They tend to read simple symmetries as “good” and rich symmetries as 

noisy, wild, undesirable.  For this reason Albert Einstein's e=mc^2 is celebrated, but Erwin Schrodinger's wave 

equation for a single particle in a potential
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where:  
i = imaginary input;    
h = reduced Plank constant;    
Psi = probability amplitude;   
del^2 = Laplace operator;    
m = mass;    
V= potential Energy; 

 is much less so, despite that Schrodinger's equation is arguably “more important to the betterment of mankind”. 

This attests to our preference for simple patterns, even regarding erudite theoretical physics.  This same bias may 

cause us to expect simple equations to explain neurons, and regard information-rich processes as noise, or somehow 

unclean, or unfinished or held suspect.  

To find the information of a membranal system we must go hunting for its most complex patterns.  It is not the job 

of analytics to do that.  Our current state of reports on neuronal pattern recognition is based upon preconceived 

notions of known patterns to be searched out.  That is, few investigators have applied means to find previously 

unknown patterns.  Feature extraction is based upon preconceived definitions of such features.  As a departure from 

this limitation, the coding applications of information theory can find patterns without a priori definitions, as 

arbitrary digital codes, or as self organizing maps.   It is possible to sample analog data to force it into digital data, 

but the sampling method chosen strongly biases the outcome of patterns subsequently found.   

One approach that aligns quite closely to the task of discovering how neurons use information is System 

Identification.  It begins with no preconceived notions, and works on analog data.  Its typical goal is to create a black 

box that imitates the functions of the System Under Test.  This requires a complete knowledge of the input and 

output signals and a rather complete exercising of the parametric space.  It is effective for linear systems, but 

increasingly ineffective with increasing nonlinearity of the system.  

The content that is generated by a neural information processor is all the non-uniformities to the neuron' otherwise 

steady state.  And the value of that content depends upon whether and how it is read.   That implies that the 

information values are extrinsic to the mechanisms that created it.  The search for a concrete litany of what 

information is actually produced by neurons may be frustrating because it may produce far more than is actually 

“used”.   A biological process which simply generates abundant information in response to perturbations from the 

environment creates a ready pool of internally measurable data that correlates with “outside”.  It could be that only a 
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small percentage of these are actually “read” or “peeled off”.   This is not unprecedented.  How many pollen grains 

are produced per stamen that might receive one of them?  Obviously to the stamen that one grain carries a lot of 

valuable information.  But what is the information values of all the pollen that will never see a stamen; the pollen 

that will never be read?  Nature often creates redundant information, to succeed in a noisy environment.

In like fashion, the neuron may produce information as ion movements, in abundance, even though only a tiny 

percentage result in bindings, or triggering output signals.  We would then expect significant redundancy of 

information content.  But there may also be variety.  The ability to generate “bits” as ions moved across membranes 

varies from cell to cell, and from situation to situation.  We therefore need a generous approach to modeling neurons 

that allows for such a possibility, and preserves such nuances, without attempt to aggregate any of these information 

carriers.
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2.11.1 DISCIPLINARY SPAN  

This project specifically tackles the following challenges in modeling neuron information flow:

Class Problem Class description

Software Architecture Over-arching structures of the model and its processes that define the domain 
and range spaces

Geometry & Topology Primitives for the various shapes, distances and neighbors of and between the 
elements. 

Algebra Basis changes, eigenvalues, inversions, determinants

Physics Constrain all operations for consistency to applicable laws of physics.  Mass, 
inertia, momentum, size, charge, force, elastance, drift.

Forces & Collisions Position, velocity, acceleration, momenta, reflection, absorption

Kinetics Molecular states and bindings; stochastic processes, Markov, Kolmogorov

Biodata2model Convert bio-data received from literature into normalized compatible optimal 
library of types

Design and Logic Continuous and discrete bio-processes which identify necessary and sufficient 
elements and relationships for information processing.

Digitization Continua of space-time reduced and compressed  into digital representations, 
topology

Numeric Methods Sampling and aliasing error , integration and differentiation, random 
distributions

Build Populate data structures with instantiations of types per the experimental 
design.

Phenomena Map out the flux, current, charge field, voltage, forces, acceleration, barriers, 
binding, transport, capacitance

RC Grid Electrical network representation of a wet circuit, over a portless closed surface

Signaling Input Signal Generators and output signal capture devices

Information Theory & Stats Metrics on the channel capacity of elements, patch and whole cell

Iterations All functions within a time loop are difference equations

DataBase Management All data structures to be populated and their integrity insured

Graphics Presentation functions

Testing Each function must be justified and verified

System Optimization CPU and memory resource management
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2.11.2 LIMITATIONS  

There are, of course, many limitations on the construction of such a neural model as described herein.  It is helpful 

to sort them out and identify which are hard constraints and which might offer opportunities for future study.    

1. Physical basis of biology

2. Biological data as driver

3. Mathematical constructs

4. Available hardware resources

5. Available software resources

6. Quantities of elements and processes

7. Qualities of elements and processes

8. Author's time

The biology addresses an immensely complex space, and a constantly evolving one.  Biologic data generation will 

always be both voluminous and inadequate.  As Thomas Weiss has compiled [53], the underlying processes of NIP 

are fairly well established, with the exception of protein kinetic schemes.  As these proteins are assembled out of 

subunits, and often modified (e.g. tail snips), tethered, and recycled, the kinetic schemes are greatly simplified 

representations of what is really transpiring within living cells.  The challenge is to capture the NIP significant 

aspects of transport phenomena and to handle the very large quantities of elements and their processes in the form of 

a large scale model.  Any treatment of missing data will be risk-prone, yet to get actors working some of the blanks 

will necessarily be filled in with tentative data.

This project will of necessity develop geometric functions, collision detection algorithms, Kolmogorov processes, 

N-body charge fields, complex data structures, topological mappings, and visual representations of the output data.  

In the modeling of information systems, redundancy of the form does not necessarily indicate redundancy of the 

function.  In a digital computer, for example, despite millions of identical transistors (redundant form), they are each 

assigned a unique task when under full load (no redundant function).  In the neuron the case is not so clear.   There 

may be 1E16 water molecules, 1E13 ions, and 1E6 channels.  How many of these could be eliminated with no loss 

in function?  Given a fixed and known information transmission capacity, then redundancies could be identified in a 

straight forward manner.  But in a yet-to-be-explored  analog environment of living cells, where a wave front 
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(propagation) can take any shape and proceed in any direction, by what criteria can we declare redundancies?  We 

do not yet know how much information each downstream neuron extracts from the signals impinging on them. 

Many modelers have purged elements only to discover later that doing so lost the essential qualities that were being 

sought.

At the molecular level, information content is more certain because the entities and interactions between them are 

fewer in type and better characterized as to mass, charge, radius and affinities, and bonds.    A sampling theory is 

needed to determine how many elements performing the same function are necessary to achieve some define 

standard of reliability.  

Super computers are in development that promise to handle an adequate number of elements so as to mimic 

neuronal information processing behaviors of whole cells and local circuits of cells.  What has not stabilized is the 

computer programming languages, compilers and higher level applications that are most conducive to multi-scaling 

of whole cells from the molecular scale up.   Trends are towards human productivity tools, but we do not yet have an 

adequate set of geometry tools for physics-based modeling and sparse matrices.   We do not yet have an adequate 

representation in silico of the continuity of space-time.14

The quantities of elements and processes are easily scalable.  The only challenge is to determine the confidence 

levels for consequences each simplification procedure and to resist any reduction, either quantitative or qualitative, 

which cannot be justified by underlying physics and performance to match the biology.

In NIP modeling it is necessary to rank order all elements and features as to their relevance, then delineate cut-off 

lines, below which traits are purged from the model as not justified given their low significance.    The notion of 

“relevance” is not simple.  If, for example, we were to choose element size, then the first thing to go would be the 

ions.  Clearly not a workable strategy.  If we were to choose the ratio between modeling cost and information 

processing gained, then the vesicles would be the first to go.  Also not advisable.   This author proceeded as follows: 

1. Identify the necessary and sufficient chain of events between input and output, of which any missing link 
would cause the neuron to fail in its roles.  

2. Identify the elements along this chain.  

14 The historic analog computers are acknowledged, with production peaks in the 1960's.  They were abandoned as 
not cost effective before they could be miniaturized down to the nm scales of current digital machines.
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3. Identify the necessary and sufficient processes of interactions between these elements to effect neuron 
function.  

4. Identify the internal processes of elements necessary to neuron function.  

5. Identify the quantities of each element as present in living cells and explore the consequences of reduction 
in quantities, as individual types of elements, and as ratios between the element types.

6. Consider the adequate representation of an element to be its bio-inputs and bio-outputs with an adequate 
state graph in between to mimic the NIP relevant behaviors of that element.  For example, a vesicle need 
not be represented as a bag of solute, but rather as a stochastic device that releases a varying quantity of 
particles in response to successful bindings of its appropriate ligands.

2.12 MOTIVATIONS  

   The motivations for this project are three-fold: 

1. To provide a conceptual platform for studying the dynamic interactions of membranal information 
processing systems at the molecular level, consisting of receptors, ion channels, vesicles and pumps, one 
that is physics-based and information theory constrained, so as to yield predictive behavior over wide 
parametric domains;

2. To provide a method of extending the parametric domain for the above modeling of biological membranal 
systems, such that their normal and pathologic functioning can be simulated, such that therapies can be 
designed and tested within the model;

3. To develop a molecular basis for liquid state processors.  To the extent that biological neuron information 
processing is parsed down to its molecular minimum, and the varieties of mechanism and function are 
explored for their utility, a molecular model is the blueprint for the physical construction of artificial liquid 
state processors.

These three do not necessitate separate efforts for each but rather are the benefits of a singular effort to model 

information processing at the molecular level of charge, diffusion, and kinetics in 3-space.   

2.12.1 CONTRIBUTIONS TO SCIENCE  

This model is intended to enable researchers and modelers to mathematically simulate single neuron information 

processing, based upon the movement of large quantities of ions and ligands in solution, ( >5000) between large 

numbers of membrane-embedded proteins ( >500) which experience significant quantities of state changes, and 

extensive coupling between these elements via electrical and flux phenomena.  This model intends to employ a 

Finite Element Method (FEM) approach to the electrical circuits of membranal systems, a free path to collisions 

approach to the saline solutions on either side of that membrane, and a stochastics approach (per Andrey 

Kolmogorov and David Colquhoun,[54] to the proteins as finite state machines. 
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The objective of modeling a viable system requires, at the very least, sustainable dynamics.  In this case, that implies 

a closed system with a compliment of ionic pumps, restorative of, and sustaining, normal ionic gradients across the 

plasma lemma.  This project is intended to move the art beyond prior tendencies to impale the neuron with micro-

electrodes and then to, in effect, model its death, or to treat ionic concentrations as infinite sinks, or record only the 

effects of injecting electrons into an otherwise ionic circuit.  It also recognizes the topological relationships between 

ion channels and bifurcations in the dendritic arbor.  It strives to support a number of emergent phenomena, 

including propagation, capacitance, refractory periods, resistance to antidromic conduction, and poly-channel 

behaviors like resonance and burstiness.

2.12.2 PRIOR ART ON LIQUID STATE COMPUTATIONAL MACHINES  

Heath in 2000 discussed step by step enzymatic processes, as chemical machines.[55]   Kaminski and Wojcik 

proposed a liquid state approach to artificial retinas.[56] [57]   An M.S. thesis by Vreeken at Utrecht University 

described temporal pattern recognizers in the liquid state.[58]  As yet there is no literature on BNN's construed as 

liquid state information processors.  This project seeks to found the field of liquid state information processors with 

a firm foundation in physical first principles at the molecular level.  

2.12.3 END USES  

Information processing events at the molecular level of a single neuron are to be modeled and packaged as an 

input/output device, such that multiple instances of this model can be wired together, via synapses, as per a 

connectivity matrix, to simulate local circuits.   Libraries shall be kept and accumulated for the various interactor, 

actor and compartment types, for re-use. 

2.13 EXTRACT  

There are 4 main areas of effort in this project:  Physics, Modeling, Informatics, and New Concepts.

The physics concerns particle systems, surfaces, kinetics and transport.  The modeling concerns geometry, 

homogeneous surfaces, computer graphics, numerical methods, and multi-scaling.  The information theory concerns 

transduction, leveraging, diffusion, differentiation, stochastic processes, integration, and waves.  New concepts 
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include liquid states information processing, continuous capacitance as a conductor, particle wave transmission, 

designer kinetics, molecular pattern recognizers and generators, and hybrid analog digital (HAD) system 

computation in the wet.



3 STRATEGIES

3.1 MASTER QUERY  

Q:  Can a software model of the neuron be designed suitable for the study of ion channel and ion pump distributions 

in 3-space, sufficient to generate the input/output information function predictive of the behaviors of a particular 

living neuron or type of neuron?

A:  It would require a synthesis of the necessary and sufficient processes of: 

1. diffusion and drift of ions in aqueous solution

2. kinetics of channels, pumps, receptors and vesicles, and their resultant transport functions

3. electrical voltages and currents of extensive capacitance in 2-space and resistance in 3-space 

4. topology that preserves the positional relationships of elements via analogous shapes

3.1.1 COROLLARY QUERIES  

Q:  Can the set of all extent neurons be parametrized such that a general model can be designed to span the domain 

space of those parameters?

A:  The complete parametric space of neurons is not yet known.  However sufficient data has been collected and 

analyzed that models are approaching (asymptotically, it is presumed) the performance of living cells. A base model 

must represent: dendritic synapses, dendritic arborization, soma, initial segment, axon, nodes of Ranvier,  and axonal 

synapses.  This base model must be built of the physics of diffusion and electrodynamics, and the chemistry of 

kinetics.  The base model is then modified and expanded parametrically spanning the measured performance of 

living cells.  The base model must be amenable to new features as more becomes known about membranal systems. 

Q:  What superfluities may be purged to reduce the computational load of the model?

A:  First, to include only those mechanisms which are the high runners in the causal map between input stimuli to 

the neuron and that neuron's output.  Second, to incorporate such numerical algorithms and heuristics as developed 
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by computer scientists that most faithfully perform the desired tasks via minimal computational load.  Performance 

tests will be necessary to demonstrate the veracity of each such method.

Q:  What are some of the methods by which the model can be made efficient enough to be realizable?

A:  Coding efficiencies at the machine level are inherent to any modern computer language compiler.  Compression 

strategies reduce the quantities that have some quality of redundancy to them.  Shapes can be simplified so long as 

the nearest neighbor relationships are preserved, and the relative distances between them.  Various cytological 

obstructions to diffusion can be imitated by increasing the viscosity of the cytological fluid.  Bases can be converted 

from Cartesian to spherical to resolve collisions.  Data can be normalized and held in units most convenient to the 

CPU.  Computationally awkward configurations can sometimes be transformed.  Biological complexities that are of 

low consequent to the flow and processing of information service that the neuron performs can be purged.  Some 

problems are divisible into sub-problems, so as to eliminate memory overflows, by reducing the focus, scale and 

scope of each piece.  Then results can be reassemble, re-scaled to the whole. 

Q:  What approach would proceed toward optimal (or at least competitively fruitful) models of neuronal information 

processing, available at this time?

A:  To fully employ currently available digital computers, and to best prepare for those more powerful digital 

computers  likely to become available in the short term, massively parallel processes can be addressed directly. 

Large scale depictions of information flowing through the neuron would entail large numbers of states, large 

numbers of links between those states, and large numbers of transition rules for changing states.  Each molecule of 

informationally significant types can be instantiated for its information role.  Thus the physical basis of life at the 

molecular level is nearing tractability.  Because life is necessarily built of, and organized at, the molecular level, it is 

desirable, perhaps necessary, to found the modeling effort at this level.   Because life is also organized at progressive 

levels above the molecular level, it is also necessary to accommodate a multi-level model.  Every level of 

organization should be consistent to the known biology.  This generally involves concepts of sub-assemblies, then 

assemblies, all arranged in a connection grid.  Connection networks inevitably gives rise to feedback loops, which in 

turn give rise to behavior.

Q:  What are the likely limitations to this approach?



133

A:  The quantities of ions, channels and pumps in 1 neuron are significantly greater than can be individually 

modeled by currently available computers.  Multiple simplifications will be necessary, justified if such 

simplifications can be demonstrated to yield substantially the same results as would the full quantities in vivo. 

Sampling theory is useful in justifying quantity reductions.

3.2 PERSPECTIVES  

The first step in modeling is to set forth the criteria by which all possible elements and processes are rank ordered 

for importance of inclusion.  This is the same criteria around which all representations within the model of elements 

and processes will be optimized.  This criteria deserves careful thought, as it determines the nature of the model.  If 

a model is expected to yield emergent behavior, then its kernels must be precise and complete.  

The prime criteria that defines this project is neuronal information processing (NIP) service.  This concerns 2 

fundamental roles of neurons:  Computation, whereby many input signals are processed into a smaller number of 

output signal patterns;  and Connections to other cells in ways that imply timing and positioning of output signals. 

The literature is more prolific on the matter of signal transmission than on signal computation, probably because the 

mathematics of transmission lines is well established  (cable EQ, information theory, and the Hodgkin Huxley 

studies).   Bio-computation is still a nascent field, with little yet proven to serve as settled art.  Nor are there crisp 

definitions as to what exactly constitutes information processing operators in biological entities.  Neurons clearly are 

not digital processors, and so the computer sciences are as likely to mislead as be helpful in the characterizing of 

bio-computation events.15   For example, 1 leaky bucket mechanism is a transient summer, an integrator, and an 

averager, all depending on when you read the output value.

The conceptualization of biochemicals as information processors and information carriers requires an interesting 

perspective that is not widely voiced.  Let us start with a simplest case.   Proposed is a water/ice integrator.  Given a 

fixed mass of water at 0 degrees Centigrade in a near-perfectly insulated container, then any heat removed from the 

system would result in the formation of a precise amount of ice, 0.0003 g/J.   In such a system weighing the ice 

would answer  the question “How many Joules of heat, net, have left the system?  Each gram of ice indicates 334 

15 In a neuron, there is no clock, no wires, and only one large capacitor.  Its power source is distributed. Conduction 
takes place in contiguous 3-d liquids, and there are at least five flavors of charge.  Gating logic is driven by 
thermal noise.  There are many mechanisms of modulation.  There is rapid turn-over of the gating elements 
(short life span).  The architecture is in a constant state of reshaping.  Communication between cells is chemical.
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Joules.  It is a very accurate integrator, albeit with an upper and lower limit to its range.   This measuring device can 

be augmented with a steady known heater, melting the ice at a steady rate.  Then the device would act as a leaky 

bucket integrator.  It would be measuring heat removed at a  rate above some set point (equal to the Joules injected 

by the heater).  

Let us now move to an analogous computational system of salt water in two compartments, with an ion pump 

between them. We will pump ions rather than heat, so instead of analog temperature scale we have the discrete count 

of ion particles to measure.   Let the initial conditions in each compartment be: 1 liter of 1 molar NaCl.  Let the 

pump transport  ions individually between the two compartments, leaving the water where it is.   Then the tonicity in 

either compartment, at any point in time, represents the integration of the pump flows.  Given a pump that can run at 

a variety of speeds and in either direction, the resultant tonicity can be subtracted, divided by 2, and multiplied by 

Avogadro's number to get the net quantity of ions pumped.  In a realistic case, both negative ion Cl and positive ion 

Na would need to be pumped  to avoid the very large forces of charge separation incurred when pumping against the 

EM force.  Electrogenic pumps do a lot more work for the same quantity of particles moved, so we shall not do that 

here.  We use an electroneutral cotransporter.

Next, let's add a small permanent pore between the compartments.  Then our system would constitute a leaky bucket 

integrator, analogous to the ice system with a heater.

Next, let us elaborate our processor by setting the pump to a steady rate of ion transfer, and add an adjustable valve 

that for each setting allows a rate of “leakage” across the membrane.  In this arrangement, a rapidly varying valve 

position constitutes a “signal”.   The tonicity of the compartment then may be seen as a “moving average” of the ion 

flows through the valve.  We could have varied the pump rate while holding the valve at a constant “leak”and gotten 

the same effect, but for practical reasons it is easier to open and close a valve quickly than it is to vary the pumping 

rates quickly.  We can transmit higher frequency signals with the valve, but interpretation is a bit more difficult.  A 

simple valve allows flow through it proportionate to the pressure differential across it, and that pressure accumulates 

to higher values when our “signal valve” is open less.

Additional complexity is introduced when we separate the way the cation and anion are transported.  Suppose that 

the Na is pumped, while the Cl is passively “leaked” through a second valve with a flow rate equal to one half that 

of the Na pump.  In this manner, a charge differential accumulates to the extent that the signal valve does not pass a 
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quantity of cations equal or greater to the Cl leak quantity through the leak valve.  The charge differential constitutes 

a voltage across the membrane, which may also be used as a signal.  There exists a mathematical transform that 

converts the input signal of the valve position into this voltage signal.  This arrangement is also referred to as a 

“leaky bucket” or decaying average.   

So far, these processors convert 1 input signal to 1 output signal.  Can 2 independent input signals be operated upon 

so as to generate a unique output signal?  Suppose there were 2 different types of Na valves, each controlled by a 

mechanical linkage to outside the system.  If 1 of these modulated valves was moved only rarely or slowly, it can be 

said to add a bias flow to the signal of the other valve.  If both valves are changing positions at similar speeds, then 

there is an additional parallel operation taking place.  Subtraction could be accomplished if one input was an Na 

valve and the other input controlled the rate of Na pumping against the gradient.  When ever the quantity of cations 

moved is not equal to the number of anions moved in the same direction, we have an electrogenic process. The 

results of electrogenic process can be measured as q = voltage* capacitance; where q= net quantity of charges 

moved.

All the above are linear systems.  If we add yet another valve that passes only Na, but its position (fraction of 

opening) is controlled by the voltage accumulated by the system, then what would be the transform function?  The 

voltage is a sort of feedback of the accumulated concentration differential.  If increasing voltage gradually opened 

this second valve until it passed a quantity equal to the pump rate, then that would set an absolute limit to the pump's 

ability to accumulate voltage.  Such a valve would act as a “relief valve” or high limiter.   The combination of the 

two valves sums to a non-linear relationship.   

A voltage low limit would not be quite so easy because it would require our signal valve to shut completely 

whenever the voltage dropped to the “low limit”.   This would require a series mechanism, most easily realized by a 

channel with two gates.  One gate would be the normal signal modulator as described above, and the other would 

close when ever a low-limit threshold was crossed.  The combination of a high and low limit tend to produce 

sigmoid response curves.  These are noteworthy because such curves are prevalent in biology, as self regulating 

(homeostatic) processes.  

While the sigmoid curves essentially flatten the input response, it is possible to go the other way, to accentuate the 

input.  If a small change in input signal results in a large change in the output signal, we can say that we have an 
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amplifier, or we could say we have an excitable system.  Man-made amplifier circuits usually are designed for 

linearity, while many biological excitable membrane tend to perform with distinct nonlinearities.  In fact, there are 

two general types of neurons: those with graded responses and those with action potentials.  The graded responses 

are near-linear, while the action potential generator closely matches the functioning of an analog to digital converter 

(A2D).   An all-or-nothing response is an acute nonlinearity.  Thus, process of digitization is highly nonlinear.   Note 

that a point of confusion arises when the digital pulse generator produces a pulse rate proportional to the analog 

input magnitude.  In this arrangement a very nonlinear process is used to produce a quite linear response curve, 

albeit in a different format.

In the simplest A2D case, an analog signal voltage is transformed into a “spike” rate.  Accordingly, many modelers 

were content to model the neuron as linear summers on the dendritic side and as A2D converters on the axonal side. 

When observing neurons at the molecular level, it was found that the mechanisms in play are much more numerous 

and much more varied.  Ion channels and ion pumps both number in the thousands per neuron, and there are dozens 

of types.  If all that was transpiring was a linear A2D process, then 1 or 2 types of channel would have been quite 

sufficient.

Popular amongst physicists is a way of approaching the complexity of molecular systems by considering how 

earthquakes work.    They are characterized by very slow accumulations of energy, held from escaping by some 

“stiction”.  At some point the accumulated potential energy exceeds the stiction, and sudden movement results. This 

releases a large portion of the potential energy until things settle into a relatively  “relaxed” state, quiet and slow 

enough for stiction to set up again.  And the process renews.  It is very difficult to predict the precise moment of the 

release.   The earthquake is thought of as not having an input signal, only a steady injection of energy into the 

system.  They are capable of generating erratic spasmodic behavior autonomously, given only this steady  pumping 

in of energy. 

The precise moment of the beginning of the release is called the criticality.  The precise moment of the first ice 

crystal in water being chilled is another criticality.   Such critical behavior requires a barrier of some sort, that gives 

way when potential energy builds up too much.  The physicists call this the “partition function”.    This function is 

characterized by this trait:  at the criticality a local disturbance can propagate throughout the entire system.  This 
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implies that at this brief release period, all elements are tightly coupled, while at most other times they are hardly 

coupled at all. 

It is interesting to note that such partitions can be in space and/or in time.  A membrane is an obvious partition in 

space.   When pumps operate at 1/1000th the transport rate of the valve openings, the two processes are partitioned 

by their difference in time constants.  If the valve openings can be triggered by disturbances in adjacent valves, then 

the pump-valve system exhibits criticalities.  Neurons have such elements and resultant behavior.  A signal can 

propagate through a system whenever there is one or more paths (connected nodes) of at-threshold  potential 

energies.  There need not be a defined pathway of propagation.  Critical systems usually percolate through multiple 

semi-random paths, a changing subset of all possible paths.  In the absence of an input signal the various nodes tend 

to release randomly, and will also propagate to their neighbors to (randomly) varying chain lengths.  Such systems 

are “at the brink” most of the time, and can be exquisitely sensitive to external disturbances, unleashing the total 

store of energy in response to a tiny perturbation.  The system “quiets down” after each release, until the pumps can 

rebuild some pressure.  An excitable system may be described as being refractory during this after-potential phase.  

Despite the chaos described above, a quantity of such mechanisms operated in parallel can often perform as reliably 

as a single linear deterministic mechanism.  That is, multiple chaos processes in parallel can be wired to emulate 

determinism.  The law of numbers is in effect.  Thirty random processes giving way to release their energy at 

random times can all sum to a beautiful ramp function.  Or to an exponential function.  The quantity of parallel 

redundancy can be adjusted to achieve arbitrary accuracy to the linear function.   Achieving and maintaining 99% 

repeatability is quite easily accomplished.  And as few as eight random processes in parallel can generate a linear 

signal adequately precise for most organismic purposes.  

Another feature of parallel random processes is that as a group they can multiply their top end frequency response 

over what they can detect individually.  Stochastic resonance is the ability of large numbers of parallel random 

processes to tune to certain frequencies, yielding a characteristic frequency spectrum.  This arrangement can be 

likened to a noisy electrical circuit, in that the circuit resistances and capacitances are determinant factors in the 

resonant frequencies.  However, in biological systems the thermal noise is harnessed as an energy source.  The noise 

reduces the stiction, which increases the response frequency, and the accidental phase locks with different peaks 
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allows the group to pick up all of the peaks where a single actor may be fast enough to only pick up ½, ¼, 1/8 or 1/16
th 

of the peaks.

The temporal partition functions of the neuron are the ion channels.  They are variously configured to undergo 

strong nonlinear changes in response to mild temporal inputs.  There may be a small voltage band that triggers an 

ion channel to open. 

Random processes, of course, are not restricted to uniform distributions between 0 and 1.    They have achieved 

great utility by employing rather unique distribution patterns and then being able to significantly modulate that 

pattern.  These distributions express as characteristic responses, and modulating them to alternative distributions 

express as modalities of performance.  This goes far beyond the textbook techniques of fiddling with the mean, 

variance, curtosis and skew.  

 These observations lead to identification of the linkage between nano-processes and the macro-processes.  At 

equilibrium, macroscopic variables will evaluate to the same solution as the microscopic variables will.  Thus, the 

plethora of macroscopic equations in the literature being applied to neurons.  See, for example Johnson & Wu's 

textbook teaching neurophysiology from a macro point of view.[59]   However, the essential function of the neuron 

requires it to be in non-equilibrium states to create and delivery information; and the information may not exist at all 

at the macro state where it may be averaged to zero.  To secure the information, the system must be modeled at the 

molecular level, instantiating each molecule.  Non-equilibrium states are of the essence in neuronal mechanisms, 

and so representations which aggregate nano events into macro behaviors will not be able to demonstrate how 

information is processed.

Let us return to our construction of a liquid state processor.  Nonlinearities may serve either as regulators or serve to 

make the system excitable.  Regulator functions are negative feedback functions, and exhibit inherent stability. 

Excitable functions are positive feedback functions, and are inherently unstable.  Instabilities are dangerous to 

organisms unless they are strictly limited.  This implies that for every excitability function there is at least one over 

riding regulatory function.  For example, many Na and Ca channel types are excitable.  If these channels were 

simple positive feedback loops, they would bleed the neuron of its membrane voltage and in effect kill it. The limits 

to excitability may be: depletion of the particles in flux (fatigue); a complimentary compensating action (e.g. the K 

channel, which moves positive charges in the opposite direction of the Na channel); or  a kinetic cascade of 
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conformations within the channel itself that simply makes it impossible for the positive feedback circuit to continue 

(self timing the event, as the Na channel fourth subunit does), or inherently unstable (short-lived) excitation events 

(as the first 3 subunits do in the Na channel).

Noise and instability are closely related.  It is usually noise that initiates an instability event.  Working at the macro 

level (human scale), engineers have considered noise to be their nemesis.  Biology, having evolved at the nano scale, 

is thoroughly immersed in thermal noise.  Biology “considers” it to be the force that renders everything dynamic. 

One of the great differences this makes is that biology harnesses thermal noise as a ubiquitous energy source, to 

provide continuous liquid state transport and continuous conformational change.  

In such a dynamic environment, the key to design is selective partitioning: a sort of management system for 

ubiquitous and continuous transport and kinetic activity.  Better put, biology is made possible via optimal 

partitioning.  

Spatial partitioning is provided by the lipid membrane, which sets up the hydrophobic/hydrophilic gradients and 

transitions.  Such spatial partitioning determines shape, which in turn determines connectivity with one's neighbors. 

This is another conceptual inversion from the macro to the nano:  that the partitions might determine the 

connectivity.  

Temporal partitioning is brought about through many mechanisms, beginning with ontology (genetic operons), 

expanding fractally to organismic life cycles and ecosystem evolution.  The temporal partitioning of interest 

regarding NIP is that of ion channel kinetics.  Of secondary interest is the durations of each of the events in the 

cascade of information through the neuron from tip to tip:  bindings, releases, diffusion, and conformational changes 

of receptors, channel gates and refraction, pump cycles and vesicle releases and reconstruction.  In the case of the G-

protein systems, there is also a rate of catalysis that is critical to the fan-out speed of signals.

The concept of a liquid state processor may harness the strong nonlinearities of excitability so long as safeguards are 

in place to limit that excitation and restore the steady state quickly thereafter.   If biology had not been able to 

incorporate sufficient redundant safeguards against runaway positive feedback loops, then life would be fragile 

indeed, prone to self-destruction.  So critical is it that positive feedback loops be checked, neurons employ at least 4 

mechanisms to restore the steady state after a Na influx due to channel opening.  First, the channel itself has a 
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subunit, (named “h” by Hodgkin and Huxley) that shuts down the channel after only a few milliseconds.  Second, 

there are K channels nearby, which are triggered by the depolarization effect of Na influx, to counter the cation 

influx with cation efflux.  Third, the Cl leak channels allow anion flux to compensate for charge imbalance across 

the membrane, thus easing the amount of energy necessary to reset the cations.  This Cl flux often passively parallels 

the Na flux, reducing the electrogenesis of the Na flux, which in this case mutes the depolarization effect.  And 

fourth, the ion pumps are constantly at work towards restoring the steady state (membrane resting potential).   The 

Na channels are only viable when their open times are small enough that the integrated Na influx due to all channel 

openings (summed with all other Na-influx mechanisms e.g. co-transporters) is less than the pumping capacity of 

the Na pumps.  As a practical matter, it is easier to limit the firings of the Na channels than it is to increase the 

metabolically expensive pumping capacity.

The addition of pumps create a need for an energy source for the liquid state processor.  Providing energy, packaged 

and transported as ATP molecules, to various actors allows for the active processes of signal amplification, signal 

modification  and system sustainability via reestablishment of steady state conditions after every perturbation.   The 

ion pumps are therefore working as active compensators.  

Although pumps are necessary for electrogenic transport, the intricate gating service provided to the neuron by the 

ion channels, namely the high speed openings and closing in response to complex stimuli and parametric changes, 

is operated mostly or totally by thermal energy.  That is quite surprising, especially when contrasted with solid state 

gates in silicon computers, which are physically bound to consume great amounts of energy in gating and thus 

generate great amounts of heat.   Neurons, of course, are not driven exclusively by thermal energy, as 

thermodynamics requires that chains of chemical and physical events acquire their directionality via increasing 

entropy.  But the most crucial part, the logic gates, are driven by thermal energy, at no caloric cost to the cell.  And 

this fact, combined with the “free” conduction of liquid diffusion, allows the entire human brain to operate on less 

than 25 watts. 

The next feature we can add to our liquid state processor is modulation.  The gates may have their opening statistics 

altered in several ways:  Frequency response may be altered.  The refractory period may be lengthened (forces 

ignoring the near term input pulses).   If the modulator is quick enough acting to match the original signal, then the 
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modulator signal may be multiplicative to the original signal (as it is in analog solid state gates).  We now have a 

multiplication function.

An input signal may be excitatory or inhibitory.  Inhibition can be accomplished by opening Cl leak channels rather 

than opening Na channels.  Or it could be accomplished by an allosteric binding site on the Na channels that requires 

larger perturbations to the Na channel to get a channel opening.  Either way, we now have a subtraction function. 

There are many other ways to inhibit.  Almost anything that breaks the excitatory chain of events can be called 

inhibition.   

A chain reaction of channel openings can be accomplished when the flux through one opening serves as the trigger 

for the adjacent channel to open.  A flux of charged particles constitutes a current.  A current necessarily alters the 

aggregate charge on each side of the membrane.  The altered charge ratio alters the voltage generated across the 

membrane.  This change in voltage, also a pressure, is remotely sensible by those large molecules which traverse the 

membrane and have asymmetrically distributed charges affixed within them.  Whenever the output signal is greater 

than the input signal, fields of such mechanisms could generate chain reactions, as reverberations that would not 

stop unless there were some damping or limiting mechanism present as well.   

Ion channels usually include a mechanisms to shut down the channel.  They do not hold open as long as there is a 

stimulus, nor do they stick open beyond the stimulus time.  The primary closing mechanism merely closes the gate. 

The secondary mechanism renders the channel unresponsive to future stimuli for some duration of time, called the 

refractory period.  This is interesting both for its internal effects and external effects.  Internally it creates a period of 

silence thereby enforcing a separation of stimuli.  This would be necessary if the ion channel were acting as a pattern 

recognition device, for which a start and stop code make the recognition function far more efficient.  Externally, it 

silences the channel just after a wave front has passed over.  Without such refraction, there could be no directionality 

of disturbances, and therefore no propagation.  The neural membrane would just be a dance floor with all kinds of 

actions and interactions, but no net movement from in-port to out-port. 

We can further enhance the computational power of our liquid state processor by building kinetic schemes within the 

channel that require temporal patterned input to get a response.   Kinetic schemes with greater than 2 or 3 states have 

the potential to generate a patterned response.  For example, one can design a channel that requires, as a stimulus to 

open the channel, a two-spike pattern with a certain temporal spacing.  Subsequently, the channel could be designed 
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to output a triple opening pattern.  This maps a unique input pattern to an arbitrarily different  output pattern.  It 

implies that the channel is in the pattern recognition business and in the pattern generation business.  As channels 

have been found to have more than 30 states, there is adequate state space there to accommodate both of these.  It 

remains to be investigated the extent of such phenomena in nature.

And finally, for completeness, we will consider spatial patterns.  The distributions channels and pumps are neither 

uniform nor clustered - they apparently are distributed in elegant patterns that reflect function.  Although the 

synaptic receptors and vesicles are clustered at the boutons,  what happens over the rest of the neuron is more 

complex.  It is the purpose of this model to enable the investigation of the consequences of various channel and 

pump patterns upon neuronal information processing.   For example, varying the types and quantities of channels in 

the dendritic tree can support or thwart antidromic conduction.  The layout of the channels over the vast topography 

of a neuron de facto gives us gives spatial patterns.  The question is, what consequence do such spatial patterns have 

upon the temporal performance of the channels, and how do they act in concert to process spatiotemporal 

information?   Can a single neuron, due to such spatial patterns of channel layouts, perform special pattern 

recognition?   

This work is an independent effort, not an extension of any known strategies or frameworks for mimicking the 

information through a 3-d shaped neuron.  It is therefore burdened with significant “re-inventions” of computer 

functions for geometry, physical principles, electrical circuits, information theory, stochastics, topology, and 

graphics - into an integrated coherent whole.  At the onset, it was expected that most of this art was already 

completed, stable, computationally efficient, portable and available for reuse.  Unfortunately, searching, translating, 

testing, and integrating such pieces (when indeed they existed), took more time than simply writing them “from 

scratch”.  Integration of such a diverse collection of functions is a major challenge, and there was no hope of finding 

other people's work gleaned  from diverse fields that was inter-operable.   

This work is a multidisciplinary hybridization of biologics, engineering, physics-based computer graphics, stochastic 

systems, electrochemistry, statistical mechanics, and small amounts of topology.  It is intended to advance 

computational thinking by scaling up the parallelism of neuron sub-elements consistent with the biology, and 

providing a software platform for studying neuronal function and design in a high dimensional parametric space.  A 

library of algorithms simulating physical phenomena are provided at a level consistent with numerical methods 
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optimization.  That is, the simplifying assumptions are “leveled” so that the precision is maintained with equal rigor 

across the model library.

It is intended that this whole-cell model serve as elemental to the development of Designed neurons, and that these 

can be assembled into local-circuit canonical forms for neural networks. 

3.3 APPROACHES  

Biological models have traditionally been regarded as parsimonious representations of the system under study so as 

to yield an answer to a singular query.  Such minimalism was advocated to ease the human effort of model 

construction, require a minimal computational load when such was expensive in time and resources, and to present 

an unfettered case of a particular mechanism with all other influences stripped away.  After some set of bare 

mechanisms has been accumulated and exercised, interest grows in assembling these mechanisms as they are 

connected and interact in living cells.  As digital computers advanced and enjoyed gradual reductions in cost, and 

the science of software algorithms advanced for increasing re-use and generality, the quest for general models 

became feasible.   Let's define a general model as a persistent model that can exhibit multiple behaviors, and 

therefore answer multiple queries, accomplished by only changing the parametric values that drive the model. (as 

opposed to having to rebuild the model with each different query).  This general ability is ideally expanded to fill a 

defined parametric space (corresponding to physiologic ranges).  The over all trend of science might be summarized 

as an evolution from simple, short sets of analytic closed form equations, towards an exhaustive, large scale, open-

ended  representation of a whole system.  This expansion is taking place not merely in quantities of elements, but 

also expanding down-scale to  the atomic level (or sub-atomic if those processes are relevant to the system under 

test).  

3.3.1.1 Analytic Approaches  

The history of science is for the most part the history of analysis.  The greater quest has been to discover the most 

prevalent patterns of nature, and reduce them to the simplest mathematical representations, traditionally called laws. 

This act of cutting the problem down into simple calculus problems relies upon the redundancies and homogeneity 

of nature, and goes on to represent all of a type as though there 1 instance of that type was sufficient for questions of 
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science.  Alternatively, the aggregate group behavior generated a quite different stimulus-response pattern from the 

singular instance, which was regarded as more valuable than singular studies.  Thus, trillions of gas molecules in 

motion could be reduced to a single scalar, temperature.  The material called steel could be reduced to a compression 

strength, a tensile strength and a shear strength.  The macro world view necessarily works with measures of 

aggregates.  

We might ask:  Given that analysis means to cut, just what is it that's being cut?  It must be the links or relationships 

between the smaller parts.  It must be the more intricate and subtle forms of organization.    Although the defining 

characteristic of information is changes in state, a pronounced secondary characteristic is its portability, its 

transmissibility.  This implies links or channels of communication.   The utility of information stems from its 

conveyance from a source to a user.  So might the act of cutting in analysis sever those lines of communication, so 

essential to information processing systems?   If the purging of redundancies and the cutting of higher order 

relationships is performed in analysis, then might analysis be the wrong approach for the study of information flows 

through the neuron?

As the scale of examination has been reduced down toward the atomic and subatomic levels, the analytical forms 

based in continuous math begin to fail.  The quanta effects are categorically not continuous.  At the atomic level 

things become much more discrete, and there one is forced to reconsider what analysis means.   Need one only shift 

from continuous math to discrete math to continue on downward?  Or does one reach the bottom of analysis, after 

which it is most fruitful to undertake the return trip, the journey through synthesis? 

What analysis taketh away, might synthesis restore?   Synthesis is the stepchild of science, most often written off as 

technique, or as engineering, and therefore not “pure”.  But synthesis has played a role all along in science, albeit 

not as prominent of one.  Considerable synthesis was necessary to design and produce the instrumentation and 

apparati that enabled a lot of the experimentation.  More to the heart, the act of interpretation of experimental results 

subsequent to any analytic investigation is indeed synthesis.  To understand any system requires both the 

characterization of the elements and then the reconnection of those elements to the point where they generate 

predictive behavior.  In the past that was called interpretation.  As systems science has matured and computational 

machines grown, that work is now more often done as modeling.  Modeling is the hard science that has vanquished 

the soft science of pondering possible interpretations of the empiric data.  Modeling improves on the static logic of 
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text by offering dynamic demonstrations of logic in full flower, developing and evolving complex forms, including 

living forms.  The logic of Boolean algebra is not robust enough to represent the varieties and distributions of living 

processes.  It has often led to erroneous conclusions when so applied.  However, stochastic systems has come to the 

rescue, opening up the severe limits of 0's and 1's to the colorful PDFs so abundant in nature.  

 With the physicist's development of quantum theory in the first half of the twentieth century, and its implications of 

uncertainty, leading to complexity theory - it dawned on most workers that determinism was incorrect.  Especially 

Godel's proof made this conclusion unavoidable.  This opened up a conceptual space for bottom up models of 

physical systems, indeed of the universe.  That very act we can call synthesis.  The probabilistic assembly of things 

(subatomic particles, atoms, molecules), brought attention to the self-organizing qualities of matter.  This was 

furthered by general systems theory and its stochastic variants, which in turn reached upward from physics into 

chemistry and biology.  

Modeling is often defined as an exercise in parsimony.  We set up constraints.  We do linear programming.  We 

exclude components that are deemed to be of low significance to the desired outputs.  We often squeeze out the 

variance so as to employ ideal equations to represent non-ideal reality.     Models will fall short of expectations when 

they analyze out what they seek to observe; when they collapse the variance of a population into an aggregate form.

But there are alternative approaches to modeling.  One is to employ generative equations that give rise to immense 

complexity emerging from their own simplicity.  Two very simple equations can interplay iteratively to create nearly 

infinite complexity.   This observation led to the development of the field of fractals. The essence of fractal patterns 

is that there is an additive equations counterbalanced by a subtractive equation.  The subtle net value between these 

two can flutter into very large scale patterns.   Biology, of course, is also generative; from compact, simple, static 

DNA, to proteomics, to living cells.   Within a nervous system, a simple excitatory mechanism plus an inhibitory 

mechanism can synthetically create nearly infinite patterns.  Then might not such generative processes be relevant to 

the study of neuron information processing and transmission?

Analytic models have oft encountered limits.  They fail at the 3-body problem, to say nothing of a particle system of 

say 1 million charged particles with size and mass.   They fail at the inherently nonlinear and dissipative nature of 

living systems, as analytics tends toward the linearity of its base methods.   They fail at encounters with 
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discreteness, which appear as singularities.  They fail at the uncertainty of outcome distributions.   They fail to 

generate the emergent phenomena that are rife in biology.   

Biology does not require dualism - that is, it does not break the laws of physics nor exempt itself from them, nor 

even transcend them.  But biology is synthetic, building up elaborate layers, meta-layers, rich coupling and feedback 

loops.  And accordingly, to establish these phenomena within a model is an exercise in synthesis, not analysis.  Yet 

we still find most models of biologic phenomena employing analysis, so as to simplify the challenge and reduce the 

computations. For these and other reasons, it is deemed germane to this project's objectives to build up from physics 

first principles  processes and allow them to run free, to see what they can do.

3.3.1.2 Exact Solution based Approaches  

Exact solutions overlap with the analytic approach.  They are closed-form equations  models well suited for the 

study of properties of materials, and to a lesser extent properties of waves.  They characterize entities effectively, by 

abstracting the repetitive patterns of those entities.  This, of course, requires deterministic concepts and equations. 

Even as statistics evolved over the second half of the nineteenth century, the objective was to yield exact solutions, 

usually the moments of a set of points:  mean, variance, skewness and curtosis.  Then the particular form of 

distribution pattern could be selected:  uniform, Bernoulli, binomial, exponential, gamma, Gaussian, Poisson, 

Boltzmann, Cauchy, Weibull, etc., so long as one is satisfied with a parametrized set for a solution.

Conveniently,  the mathematics of stochastic equations, the handling of systems of random variables, reduces to 

partial differential equations.  These perform not as a short cut nor approximation, but are complete.  Nonetheless, 

they work with the aggregates, not the particulars.   They do not attempt to represent instantiated particles within a 

large scale system. 

Concerning biology, how many such layers are there from atoms to whole cells?  Atoms spontaneously form 

chemical systems that evolve into ever greater complexity.  Modeling the neuron requires a multilevel 

representation:  ions, molecules, molecular state changes, molecular networks, membrane surfaces, compartments, 

shapes.   At every physical level there are novel patterns of interaction and association.  Between every two adjacent 

levels there is a transition of chaotic behavior.  This interface (which generates chaos) gives rise to stochastic 

systems, but it also creates an information barrier between layers.  This is why no one layer can serve as the sole 
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basis for any other.     Every layer is a stochastic system to the extent there is variance.  Some types of query can 

justify simplification to exact solution analytic equations, as PDEs.  But tracing information processing is not one of 

them.

The intent of exact solutions is to apply analytic EQs which represent the aggregates.  They are therefore deemed 

inappropriate to this project.

3.3.1.3 Geometric Approaches  

The field of anatomy is heavily invested in the shapes of things, but it is a static study.  Physiology, biochemistry, 

pharmacology and genetics do not normally consider the matter of shape as germane to the processes under their 

study.   As greater biological complexities are tackled, shape does become significant, even within these fields.  The 

caveoli alter diffusion patterns.  Bifurcations in the dendritic arbor alter propagation.   Drug delivery is determined 

by the shapes of compartments and the flow patterns those shapes dictate.  And of course, shape is determinant in 

connectivity of one neuron to its neighbors.  The changing shapes of the developing and “learning” synapse may be 

dominant determinants of function.  As modeling builds towards large scale representations, shape becomes a 

necessary consideration.  

Although the mathematical basis for the several geometric systems is presumed to be well understood and complete, 

geometry is not as model-ready for neuron information processing as was hoped.  The requirement for a 

homogenous membrane (of consistent graininess throughout) disqualifies all Cartesian, cylindrical and spherical 

coordinate systems.  Topological approaches are necessary.   Geometry is a necessary aspect of neuronal modeling 

because it establishes the nearest neighbors between all the actors, and the thickness of the saline above and below 

the membrane.  It is the carriage upon which all else is affixed.

The strong nonlinearities of membranal system dynamics may produce spatial regions that appear continuous but 

none-the-less form functional separatices, whereby the activities on one side are partitioned away from the activities 

on the other side.  This is found, for example in the star burst amacrine cells of the rabbit retina, where one cell acts 

functionally like 12..16 separate cells, related only by their radial positioning.[60]
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The dimensionality of a model neuron is not simple.  There are 3-dimensional volume processes, e.g. diffusion. 

There are 2-dimensional surface processes e.g. capacitance.  There are 1-dimensional processes like axonal 

transport.  Each will require separate mathematical treatment.  And then there is a need for some manner of 

integration of these three into a working whole.

3.3.1.4 Topological Approaches  

The morphometric studies of neuron shapes and connectivities enlisted several geometric approaches, the main 

problems being the statistical algorithms to connect the microtome slices for 3-dimensional reconstructions, and to 

what resolution texture can be captured.    A static shape can be captured down to a resolution of about 1E-8 m in 

electron micrographs, and this data may be represented in digital form.  The computational load to maintain such a 

neuronal 3-dimensional surface in a dynamic model is enormous, and such resolution of shape is not yet practical.   

Neurons consist of several volumes made distinct by closed surfaces.  The cell, the endoplasmic reticulum, vacuoles, 

vesicles, and other compartments.  A neural shape represents a compartment or container, to be bathed in aqueous 

solutions on either side of the surface.  Of the essence for particles in motion is the  volume shape and the detection 

of collisions with the boundaries of each container.    The biological data of cell shapes is often “smoothed” via 

software filters.  Reducing the tortuosity makes the surface more differentiable and requires less computational load 

to represent it.  But care must be taken that the loss in area does not alter the characteristics of the system, especially 

capacitance.

Topology may lend its methods and justifications for certain simplifications of the shape that retain essential 

characteristics.    Topology is a necessary but not sufficient aspect of neuronal modeling.  It is of great service in 

determining which shape simplifications are justified.  

 Projections can collapse 3-dimensional space into 2-dimensional space, assisting in computational load reduction. 

Manifolds, among their many salient characteristics, are concerned with mapping or projecting a surface in 3-space 

(or N-space) onto a 2-dimensional plane.  The distortions of such a transformation are minimized by restricting the 

portion of the surface to be projected to that which is most parallel to the plane of projection.  A series of such 

projections created to variously oriented planes, such that no one of them suffers perpendicular areas nor folded 

areas.  These matrices are then “stitched” together via links at their adjoining edges.  The more torturous the shape, 



149

the greater quantity of such projections are necessary.  The benefits of reducing the dimensionality to two, are offset 

by the artefactual overhead of transitioning between the various planes of projection.   Simplification of shape to a 

convex surface can reduce the number of projections to six in a Cartesian frame or to four in a tetrahedron frame. 

To what extent such simplification is justified depends upon its ability to preserve the nearest neighbor relationships, 

comparative model performance, and acceptable levels of error.

3.3.1.5 Dentograms  

One form of abstraction or parametrization of the dendritic arbor measures the lengths of each leg, the bifurcation 

points, and the synapse locations along these legs.   The visualization of this data usually lays all dendrites parallel, 

with a small lateral offset at each bifurcation.  Diameter data may also be preserved.  This scheme works best when 

all the dendrites converge to single trunk at the soma.    This is essentially a method for collapsing 3-dimensional 

data into 1-dimensional representation.  It is especially convenient for studying the effects of bifurcation locations 

and density, but does not offer much for the soma and axon.  It also offers no adequate means for preserving the 

inhomogeneities of channel and pump distributions along the dendritic surfaces.  This technique, though instructive 

in visualizing the bifurcation patterns,  may have purged too much information to find utility in models of neural 

information processing.

3.3.1.6 Tiling  

If electron communication was involved in NIP, then the whole of the contiguous extracellular fluid would be 

implicated, and the whole of the contiguous intracellular fluid as well.  For that to be the case, there would need to 

be an electron source, such as an electrochemical battery, driving the system.  What is found, however, is that charge 

movement occurs by ion flux through ion channels and ion pumps.   Considering the speed of the neuronal response 

(1E-3 s) and the inertia of the ions known to be involved, it is probable that only liquid components very near the 

membrane are involved.  This would allow NIP models to be construed as a 3-layer sandwich of saline-membrane-

saline.  Some thickness of saline could be chosen, arbitrarily thicker than known ionic involvement in an action 

potential, and from that a “standard model” of membranal NIP could be designated (e.g. 5E-8 m thick extracellular 

saline, the membrane, and  5E-8 m thick intracellular saline).   If NIP is accepted as primarily a phenomena of the 

plasma lemma and its 2 para-membrane solute blankets, then models would necessarily focus on this laminated 
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“surface”, i.e. treating NIP as 2-dimensional phenomena (sometimes referred to as a 2.5 dimensional model.  This 

lends itself to divisions of unity for surfaces.   Each resultant from the division of unity is called a “tile” or a “patch”.

In the pursuit of the molecular basis of NIP, high levels of detail are required at the smallest scale.  It is therefore 

convenient to “zoom in” to model small portions or patches of the cell surface.  This affords the computational 

power to model every particle and molecular protein within that small volume.  Given that the neuron is a densely 

coupled system, the primary challenge with the patch is the boundary conditions.  

The simplest solution is to fold the upper edge to the lower edge and the left edge to the right edge.  This creates 

spatial periodicity (as an artifact).  Though computationally efficient for characterizing certain behaviors of the tile, 

traveling wave fronts across many tiles are not possible in this arrangement without severe distortion.  To the extent 

that patches can feed back as well as feed forward implies difficulties in stimulating the sole patch with realistic 

inputs, outputs, and the reverberations therefrom.   However, if the parametric space of one patch is thoroughly 

exercised, then the output data of that patch may be used as the input data to a neighboring patch, and systems of 

patches can thereby be assembled and tested.

Alternatively, the entire plasma lemma can be divvied up into, say, 1E5 nearly equal patches.  The make up of each 

such patch can be quantified by a set of parametric values: e.g. quantities of various actor types present plus 

membrane capacitance.  The differentials in actor counts and ion counts between adjacent patches reveals the 

gradients.  Where the gradients are small, then few sample patches might well represent a large number of patches. 

Where the gradients are largest, the patch sample rate must be high enough to capture the modal shifts and any other 

nonlinearities of performance.  One can adjust the sampling rate proportionate to the rate of change, which would 

yield variations in sampling densities much like the finite element method does to determine node location.   For 

long stretches of homogeneous membrane, such as with a non-myelinated axon, few patches (maybe as little as 1 in 

1000) would be necessary to characterize the behavior of the entire expanse.  In areas of sharp transition, more 

patches would be necessary to accurately represent, with a worst case of all patches required to be modeled 

individually.   The strong nonlinearities of neuronal behaviors suggest the most important metric is the response to 

natural stimuli.  A superior metric for patch sampling density would be the differential between the responses of 

adjacent patches. 
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By this means some minimal set of patches, called the canonical set,  can be identified as sufficient to reconstruct 

the entire cell by positioning them back to their original positions, then tiling in all the intermediate patches by 

interpolation.  This would require verification testing between the original model and the reconstituted interpolative 

model to gain confidence in the method and establish a relationship between sampling density and error levels.

3.3.1.7 Contours of Rotation  

The simplest of models are the 1-dimensional representations.  These consist of a series of nodes from dendritic 

origin to axonal termination.  Compensation must be made for the lack of circumferential neighbors, as propagation 

is found empirically to not occur without nearest neighbor synergies (sympathetic resonance).   

The 1-d series of nodes can be bent into a contour, i.e. repositioned in 2-space so that each assumes its true distance 

from the axis of the neuron (radius), as well as retaining its true position along the length of the neuron.  These 

points form a thread representing the diameter of the neuron along its length which affords opportunities to 

distinguish by shape dendrite from soma from axon, and to add finer detail such as caveoli.  

Such a contour line can be rotated to generate a 3-d cylindrical shape.   Doing so eliminates the boundary value 

problem of the lateral spaces adjacent to the nodes by forming a closed surface.  Furthermore, a closed surface 

clearly delineates the inside volume from the outside volume, as is critical for any living cell.  While lacking the 

arbor of the dendritic processes, giving the neuron such a shaped volume does support the study of a number shape-

induced phenomena.  (Examples:  thickness of the extracellular fluid, effects of the dendritic trunk signal being 

diffused cross the expansive soma, bifurcation tendencies to back-propagate, effects of increasing the axon diameter, 

or altering the taper of the dendrites, and the channel density variations at bifurcations.)    

3.3.1.8 Tessellation  

An alternative approach to manifold projections is to convert all surfaces into a triangular grid, with the nodes 

determined by the locations of actors.  Tessellation is rather well developed in the Computer Graphics field, and 

especially well behaved for convex hulls.  Neurons, however, are anything but convex, and each exception to 

convexity requires more computation, suffering the same problem of the proliferating projection planes.  Both 
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systems, manifolds and tessellation, enjoy great computational reduction when the shapes can justifiably be 

simplified and smoothed.

Finite element approaches developed by the mechanical engineering field have found application in a variety of  3-d 

models.  The strategy is to represent solids as a finite number of nodes spread sparsely in uniform areas and more 

densely in areas of heterogeneities, sharp turns, rapid changes, etc..  The nodes are then connected by equations that 

express the nature of the coupling between the nodes.  This could be strain, friction, or other effect of force.  These 

couplings to nearest neighbors result in triangles.  Connected triangles in 3-space necessarily produce tetrahedrons. 

So any surface can be represented as a sheet of triangles, and any solid shape can be represented as a large number 

of tetrahedrons.  These nodal relationships provide the structure through which various forces interact.     

The tessellation approach feeds into a finite element approach. (see below) 

3.3.1.9 Dynamical Systems  

The application of general systems theory to biology requires limiting processes and random variables.  Arrays of 

point processes in space may drive the state space matrices solvable with iterative differential equations.  The first 

and common problem is that the wet lab workers do not have a way to observe all of the relevant variables.   This 

results in a model of insufficient observables, even when there are adequate controllables.  The primary benefits of 

this approach are the applicability of Liapunov stability analyses and Riccati optimization methods.  It is a fast and 

efficient representation of complex systems.  Usually, stochastic processes are not included in such models, except 

as “noise” components added to certain variables.

Perfect equilibrium renders a system timeless.  It is the slight disequilibria through networks of interactions that 

produce the sensation of time, the dynamic patterns by which we can measure time.  Therefore, dynamics is the 

study of the consequences of disequilibrium.  Biology has thousands of processes that are on the one hand so 

balanced as to be near the equilibrium point all the time, but on the other hand exquisitely responsive such that they 

tip to either side of the equilibrium to effect vital processes of homeostasis and/or action.  It is a fascinating area of 

study, in its infancy, with much investigation to be done.  Dynamical systems, if expanded to fully embrace 

stochastics can serve this field well.
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3.3.1.10 Finite Element Methods  

The finite element method clones simple mathematical representations into a large scale network of similar 

representations, coupled together by the forces that couple them.  These couplings are not NxN in quantity (which 

would be fully connected), but only connect to nearest neighbors, usually 2 to 6 per node (quantity of links = 

approx. N*4).   The finite element is embodied easily within digital computers because it is a discrete representation 

of what is in reality a continuous solid material. This is to say, the method itself has already born the distortions of 

digitization, and the digital computer  can perfectly carry out what  the method specifies.   This doesn't avoid those 

distortions, it only shifts the blame.  This method is efficient because it provides for a sparsity of nodes where not 

much is happening and a high density of nodes in the most critical and interesting areas.  This approach also tends to 

simulate nonlinearities well, as the node density is automatically increased to the point where a piecewise linear 

representation yields results within error tolerance.

Engineering finite element approaches typically involves converting a homogenous solid of a complex shape into a 

set of nodes and edges.  A significant part of the effort is the optimizing node density to the objectives of the 

problem.  As concerns the neuron, no such routine is necessary because the neuron comes to us with its nodes 

already defined and positioned.  The membranal location of each actor (receptor, channel, vesicle and pump) 

constitutes a node.  And the lipid and saline expanses in between these actors may also serve as couplings between 

nodes.  

Finite element methods include iterative simulations, producing time series as their results.  This method supports 

non linear phenomena modeled as piece-wise linear equations (just as a curved arc can be simulated by a polygon of 

hundreds of short straight edges).   The finite element method has typically not been applied to liquids and gasses 

because nearest neighbors would be constantly changing, requiring rewrites of the nodal tables of triangles and 

tetrahedrons with each dt.  However, it is well suited for the stationary proteins embedded in lipid membranes.

3.3.1.11 Particle Systems  

Particle systems seek to represent real particles as either dimensionless points,or as spheres with fixed radii.  They 

may be built in 1-dimensional, 2-dimensional, or 3-dimensional spaces.  The growth in computation from 1 to 3 

dimensions is not additive as with vector addition and inner multiplication.  This is because 1-dimensional collisions 
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are trivial; 2-dimensional are algebraic, and 3 dimensional require 2 basis conversions, unique to each particle pair 

in collision.    Particles system models may or may not include representation of radius, mass, charge, angular 

momentum, elastic or inelastic collisions, gravity, magnetism, drift, temperature and/or pressure.  Particle system 

representations are a hybrid of continuous Newtonian ballistics and discrete collisions.  Particles collide with each 

other and with the container walls.  Container shape and container wall elastance/absorption may be an important 

feature of the system under test.  The standard diffusion models championed by John Crank[61] succeeded in 

solutions to only basic geometric shapes (cubes, cylinders, spheres) and grew overly cumbersome when attempting 

the irregular shape of a neuron.  

The particle system about the membrane of the neuron is a coupled electrical-mechanical system.  It can produce 

non-stationary cycles.  This can be viewed as mere turbulence, often done in thermodynamics, or as “data 

transmission”, as in the case for action potential propagation.  This difference of “interest” has strong implications 

for the choice of modeling strategy.

The continuous trajectories of particles may be digitized, but at the price of extra computations to detect collisions 

accurately in time and space.  Mass may be conserved, or alternatively particles are added or removed from the 

space according to certain rules or conditions. 

There may be several compartments, with transport between adjacent compartments according to specific processes. 

Particle systems are generally employed to model liquids and gases, but may also model diffusion in solids.

The N-body problem is implied in the charge field acceleration of every non-fixed particle with charge.  Charge 

effects cross over the membrane, so a compartment by compartment calculation yields incorrect results.  

3.3.1.12 Stochastic Differential Equations  

In biochemical systems, there are reaction processes where chemical bonds are made and/or broken.  Chemical 

kinetics may be a zero-order, first-order or second-order reaction., depending upon the sensitivity to the 

concentration of the reactants.  Reactions are stochastic in that there is a randomness as to which particles will bind 

when.  Unbinding experiences a similar random process, perhaps due to collisions from surrounding particles that 

may knock a reactant lose.  



155

Point processes, for purposes of this document, are nodes that consist of state transition rules, that in turn result in a 

time-series of state changes.    There are also point processes wherein a given moiety is regarded to remain the same 

chemical while it in fact changes internal conformation.  Among smaller molecules these are called stereo-isomers 

and enantiomers.   But at the larger scale of membrane proteins, ( > 100,000 Daltons)  conformational changes may 

be machine like: opening and closing gates, pumping particles across a membrane, triggering release of a 

messenger,etc..  While the effects and implications of such changes may be mechanical in nature, the particular 

timing of events are determined by stochastic processes.  All of this is inherently a chemical process, and all the 

rules of chemistry apply.

If a molecule has N states of interest, then there are NxN possible transitions between states.  Some of these may be 

null (impossible).  The remainder have some probability of occurring, some more likely than others.  These 

transition probabilities predispose the instantiation of which and when the next state will be.  These transitions are in 

effect the differentials of the states, and can be expressed as partial differential equations.  The instantiations involve 

a random number generator mapped onto the cumulative distribution function of the next possible states, so as to 

choose one.

The likeliest transitions in large molecules proceed through a series that must eventually complete a cycle by 

returning to some repeated state.  For any molecule to be used more than once this is necessary.  With each state 

assigned a number, there exists one or more paths from state to state that constitute a loop.  This loop along with its 

side chains constitutes a directed graph.  Graph theory develops the characteristics of such duty cycles, their 

stability, variety, speed, and variability.  It can identify limit cycles, attractors, divergence and trapping states.  As 

biology consists of thousands of delicately balanced and inter-coupled equations,  a tool for establishing the 

legitimacy of a model is appreciated.  Graph theory assists in generating Markov chain models of molecular 

conformational changes that are relevant to many membrane proteins.  They can determine what level of complexity 

is possible for the behavior of a single molecule.

3.3.1.13 Kinetic Schemes  

The problem with a consistently atomistic model of the neuron is that while doing so may lead profitably to the 

molecular dynamic models of large molecules, this overburdens the pursuit of information flow along the vast 
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membrane populations of actors.  Workers have responded to this handicap by inventing Kinematics, the study of 

motion in the abstract.  

A system of motion may be characterized in time and space without accounting for the underlying forces that may 

ultimately be responsible for that motion.  In so doing one layer is transcended by entering the next.  In this case 

molecular dynamics is collapsed into kinetic schemes, no one of which perfectly represents the molecular dynamics 

which it abstracts.  The complexity of the chosen scheme must be calibrated to the desired accuracy of the model.

The field of logic is just such an abstraction.  Its discrete set of rules are built out of discrete elements, and as a result 

output discrete decisions.  Such strict determinism fails in any multilevel system.   To cross any chaotic barrier, the 

“clean” analysis of logic must be sacrificed for less certain probabilistic logic.   Stochastic systems are built of this, 

and they more closely resemble reality.  While the culture of science often regards the addition of noise to cause a 

“loss” in precision, formality and elegance,  real systems are far richer and more intelligent than the logical systems 

that have been employed to represent them.   The replacement of deterministic equations with probabilistic 

transitions  gives rise to the “state transition probabilities matrix” for each molecule or subunit thereof (hereafter 

called the “Q” matrix).   Workers may attempt to hybridize simple particle models with stochastic models of 

complex molecules so as to optimize the information exchange between the two.

3.3.1.14 R-C Grid  (Resistance Capacitance Circuits)  

The concept of the Resistance Capacitance grid may be said to begin with the  cable equation.  Because long 

electrical cables, such as the  transatlantic cable were imagined as an infinite number of filter stages in a ladder 

formation, an analytic solution was sought.  

  1/rx∗dV /dx2=Cm∗dV /dtV /ry ;

where:
rx = axial resistance
dx = length constant
dV = the change in voltage with respect to time
Cm = capacitance of the membrane
V = voltage across the membrane
ry = resistance through the membrane
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Passive membranes and non-thresholding active elements  Decremental conduction, graded potentials.  Decrement-

free conduction requires active membranes

Ephaptic transmission to neighboring cells occurs merely through extracellular charge imbalance.  For example, 

suppose two adjacent cells have intracellular conc.Na of 50mM Na and extracellular conc.Na of 0. 150 M.   If one of 

the cells is perturbed such that a sodium flux occurs of one half of the (shared) extracellular Na moves inward, then 

the extracellular conc.Na drops to 0.075 M and the interior or the cell rises (depending upon the ratio of volumes 

intra to extra) to say 0.0 70 M.  The first cell changes in conc ratio from 150/50 = 3 to 75/60 = 1.25.  Meanwhile the 

neighboring cell experienced a shift  from 3 to 75/50= 1.5.   At 293 kelv, voltage = -.02524*ln(conc.ratio) for 

valance=1.  The voltage drop in the first cell is 0.0221 v  (22.1 mV)  and in the second is 0.0102 v (10 mV) 

Neighbors might then  feel about ½ the effect of the disturbance.  This author claims this to not be the case, because 

the voltage disturbance is instantly “capacitated” at the membranes due to the over-powering EM force, whereby all 

charge imbalances are relegated to a near-surface phenomenon, not turned lose into the extracellular volume. 

Therefore there will be no free charges to migrate across the extracellular cleft and alter the voltage experienced by 

the second cell.  QED

3.3.1.15 Constraint-Based Multi-bodies  

Linear programming addresses multidimensional constraints on a system.   If one defines the container shape and 

eminent collisions as constraints, then linear programming can be employed to model a neuron's information 

processing capabilities.   Improved constraints narrow the possibilities for a solution.  The remaining volume within 

and between the constraint planes represents the solution range.  One can stochastically choose any point within this 

volume and yield a correct instantiation.  Multi-modal neurons must have multiple solution volumes.  To the extent 

that a neuron is information generative, constraints alone do not tell the whole story.

The field of differential equations concerns itself with boundary conditions and boundary value problems.  They 

deal with the edges to the main body of interest, and how they might misbehave or cause trouble mathematically. 

But in neuro-informatics, the boundary problem is the whole of the problem.  That is, the membrane is all boundary. 

All the information processing and flows may be deemed as boundary processes.  The major concern is with limit 

cycles (not static rest states, nor unstable explosions).  These “cycles” are near-neutral states, but with a “wobble”. 
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Only non-conservative nonlinear systems can generate limit cycles.  The wobble is complex, and is the “answer” to 

the “query”.  Accordingly, we must be sure that all of this information is preserved.

Containment is of the essence in the construction of information processors.  They occupy a niche of non-conserving 

nonlinear systems that are very nearly conserving, by the nature of their containers.  That is, they are highly 

constrained so that “flows” occur in certain directions and do so over very gentle gradients.  Information is 

represented not by “major leaks” but rather subtle cascades and stops along the way (memory)  that employ tiny 

efficient storage schemes.  These are systems with a minimal amount of energy input, and result in a a maximum 

quantity of state changes.  These state changes are patterned as a function of perturbation types.

Perfectly reflecting walls can produce cycles, as within a flute.  Imperfectly reflecting walls can produce a computer, 

as with a neuron.  The wall contributes to the nonlinear character of the system in widely varying and potentially 

useful ways.  The ability to alter the porosity or texture of the walls changes the limit cycles.  Added to this static 

character, the changing the patterns of channel openings in a neuronal membrane radically alters the system limit 

cycles and provides a means for generating a large number of limit cycle patterns.

Unfortunately, the free path plus collision events of ions in solution do not lend themselves to  Lagrangian 

dynamics.

3.3.1.16 Event-based Modeling  

In iterative models the time slice ( the dt) is a heavy determinant of the computational load to run a simulation. 

During ballistic trajectories  the dt can be extended so long as there are no collisions, thus economizing on 

computation. The calculation of when collisions will occur allows them to be rank-ordered in time, and become 

flags on the time line as to when to trigger the collision algorithms.  This arrangement     Ballistic movement is 

inexpensive wrt the computations involved in collisions.  In models with few moving particles, collision detection 

and event-driven algorithms can realize significant reduction in computational load.   However, in large scale 

particle systems collisions occur at a higher frequency than any practical dt duration.  This allows multiple collisions 

to be processed in 1 dt.
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There are in this model extrinsic events, e.g. mobile particle collisions,  and intrinsic events, e.g. actor state 

transitions due to thermal noise.  If a neuron could perturb an adjacent neuron so as to cause it to “provide a service” 

e.g. action potential, then we might say this is an event driven model.  But if the detailed sequence of events within 

the neuron that carry out that service are of sufficient length of time to overlap with any other perturbation; or if 

those processes are more or less on-going, acting as a carrier for any perturbations, then the model is simply 

dynamic, not event-based.

3.3.1.17 Feature-based Modeling  

A feature based approach to modeling divides the model into stand-alone objects.  Each object, which presumably 

has a single function (providing a service or feature to the overall model), operates according to its needs: its own 

clock, timers, triggers, memory, rate of iterating, etc.  Because most features are not drafted into use each and every 

dt they lie dormant until called, intended to cut the computational load down to only the high runners.   This 

approach is common in social service software, because it is customer driven. The neuron may not fire every dt, but 

there are information processing activities every dt.  That is because diffusion is a time-continuous process, and 

because all of the stochastic actors are generating state transitions continuously in time.   Given that both diffusion 

and stochastics are present large scale, it is unlikely that a feature-based approach can conserve computational load 

to any effect out weighing its overhead.

In some sense, a model of something as complex as a neuron must necessarily evolve.  It may start out with only 

channels, then add pumps, then add receptors and vesicles, then second messenger systems.  Other features sure to 

be desired include sequestration, ATP energetics, Gibbs accounting, dendritic spines, caveoli, ribbon synapses, 

process growth and retraction, plasticity and learning mechanisms, channel turn-over, channel rafting,   In this sense, 

at least, this model is feature-driven.   The core, however, must include an ion particle system, actor kinetics, and the 

effects of charge force fields.  These are “always on”.

3.3.1.18 Volume-based Modeling  

Voxels are the 3-d equivalent to 2-d pixels.  A 3-space model can be digitized by cutting it into voxels, and 

calculating the processes within each separately.  Voxels are often cubes, but can be cut as tetrahedrons.  The 

tetrahedrons are more adaptable to irregular shapes and to the finite element method (FEM).  As some voxels are 
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more important than others, a binary tree approach is often used.  The very largest possible voxels are left large as 

long as they are not near the critical actions of the model.  Else they are divided into 8, then 64, then 512 smaller 

voxels ... 8^n  until the graininess (resolution) is sufficiently detailed to yield results within acceptable error levels. 

For non-moving or slow moving particles, this can be an efficient approach.  There is an overhead of determining 

particles crossing from one voxel to a neighboring one. 

The operation of membranal systems is inherently a surface phenomenon.   As a 2-d structure, albeit a 3-layer 

surface (saline above, lipid in the middle, saline below).  So might not the entire neuron be modeled as a 2-d 

structure?    Perhaps surface area is far more significant than cell volume.  Indeed, most of the volume of a cell is 

occupied by obstructions to ion diffusion.  And the extracellular “volumes” outside of most cells are quite thin and 

somewhat uniform.

One of the problems with collapsing the model to 2-d concerns the behavior of ions near the membrane.  The 

capacitance effects strongly vary perpendicular to the membrane (in the third dimension), and it is not clear that the 

behavior of ions being “spouted” out of an ion channel can be “flattened” without loss of the membrane's 

information processing character.

An alternative to the full volume and b-tree approach to volume management, manifolds can be used to project 

the surface membrane of the cell onto planes, retaining a sufficient thickness of water on either side to perform its 

functions.   All the remainder of the volume is sliced off and ignored.  However, to the extent that the greater volume 

acted as buffer and slow transport, those actions can be simulated by an active membrane at the outer surfaces of the 

water layers.  They can algorithmically remove or add particles so as to mimic the effects of greater volume.

While the voxel approach is the traditional numerical method for 3-d liquid models, it does not optimize to 

information flows.  It may be prudent to allow whole compartments to operate as wholes, with only special 

samplings of nano-environments around each actor.

The wave -particle duality problem of physics has ,this far, found to not to impact the design nor output data of this 

model.16   By moving up the size scale to where probability distributions serve as data sources, we are deprived of 

16Physicists may argue that all particles  are composed of energy and therefore energy is the most important measure 
of the model entities.   Particles, in this view, are discrete packages of energy.  At any subatomic levels wave effects 
and quantum effects must be taken into consideration, as they determine the transformations of the particle.   EM 
waves interact with particle quantum states to determine only the probability distribution that certain atomic events 
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the analytic solutions, such as the heat equation and the wave equation.  From this point forward we must rely upon 

stochastic differential equations to resolve outcomes.

Perhaps the most significant phenomenon to emerge from energy discretely packaged into particles is that particle 

collide.  Most renditions of colliding particles regard the collisions as Brownian motion, closely related to Gaussian 

white noise.  Indeed, when taken in aggregate, there is only noise and temperature to measure.  But what if each 

particle was a unique individual.  It would have a unique trajectory, and a unique series of relationships with other 

particles along its path.  Is the list of interactions true information?  Is the path information?  Is the velocity 

information?  Is the final position information?   Is the timing of arrival of a particle type the information? 

Somehow the neuron is transmitting information through the collisions of ions, and a demonstrative model might 

reveal just which of these, if any, is the significant one to the neuronal role.

3.3.1.19 Information Theory  

Information theory was born of that smallest bit of information, the yes-no decision.  That is, it lives in the base-2 

discrete number system.  Information is defined as the change in state.  One large state, such as an electric power 

switch, is only one bit of information, no matter how large the amperage. We might say that coherence is the 

opposite of information, because by definition, all travelers are in precisely the same state.  What then might be the 

opposite of coherence?  Is it chaos?  What is the difference between white noise of say 1 trillion bits and the library 

of congress 1 trillion bits?   Information requires writable and readable states.   If our chaos is writable, as with a 

random number generator, and readable, as with the random number generator output being placed in memory, then 

that “noise” of randomness has become information.  How can pure noise be distinguished from information if a 

random number can be declared as information?   If I generate a random number and then use that number as the 

password to my bank account, is that not important information?  If it has the quality of write once and read many 

times, then certainly is has the potential of being information.  Of what importance or significance is a function of 

downstream processes, no concern of the generator.  

will take place.  At the slightly higher perspective of whole atoms and whole ions, we see only the probability 
distributions of events, not the underlying wave equation mechanisms, not the energy that drives them.  Such 
distributions are kinetic abstractions of the underlying energetics.   Although losing Gibbs information is mourned, 
the energetics of the molecule is implied in its kinetics.  If the available energy for a transition is high then the 
probability of transition goes to near 1, while if low it drops to near zero.   By this means, it is argued, aspects of 
energy flow relevant to information flows are preserved within kinetic schemes.  Carrying forward the bookkeeping 
of the thermodynamics of each chemical reaction is therefore somewhat redundant, and an unnecessary 
computational burden to the information processing model.  
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And so, with regarding the neuron, we look to measure the maximum input information, no matter how chaotic it 

might look to us, then measure the output information in similar fashion.  The mutual information between the two 

is a reasonable measure of throughput, but how might information have been processed between the two measures? 

Is it possible to generate and  utilize information that would not show in the mutual information metric?  This is the 

challenge of a model of neuronal information processing.  We do not yet know what all is information,  We do not 

yet know how many ways a biological system might “peel off” information along its course.  We do not know the 

“depth” of the information (as in the order of distinguishable patterns).   We talk about temporal, spatial, frequency 

and phase metrics.  But do we know that these are exhaustive?

Were we to model at the subatomic level, quantum theory excludes structureless media. This implies discrete space, 

time and energy levels.  But up at the level of whole atoms and molecules, that handy arrangement vanishes in the 

aggregation, and the space-time behavior is quite continuous.  It may be a significant distortion to impose discrete 

voxels or nodes upon what is genuinely continuous movement and charge fields.

Information Theory does not lend itself to continuous time and space, nor to any analog systems.  One would have 

to contrive a graininess that would surely distort the system.  For systems of continuity, General Systems Theory 

might be the better choice.   Information Theory addresses the discrete while General Systems Theory addresses the 

continuous.  Neurons are hybrids of both.  It has proven difficult to apply either of these to the neuron precisely 

because of their inappropriateness and  weakness at incorporating both.   It might therefore become necessary to 

apply them piecemeal, in discrete-continuous-discrete fashion through the information flows along the membrane. 

If an action potential traversed along an axon,  crossing over 1000 ion channels along the way, then that would 

require a model of 2000 mode changes between analog and digital representations, in series!    It would be superior 

indeed to discover a mathematical tool that could handle and measure the throughput of systems comprised of a 

distributed arbitrary mixture of  both continuous and discrete processes.

It might be possible to discount the informational role of the ion waves radiating out from each open ion channel and 

focus solely on the kinetics of the actors as the most informationally significant features of the neuron.  This is only 

conjecture however, and it remains to be demonstrated and proven that this would be a justified approach. 
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In any case, Information Theory has its utility in evaluating the the throughput of action potentials through a neuron, 

even when the dendritic arbor may not use action potentials.  The mutual information measure allows “skipping 

over”  the analog bits and measure the differential between two discrete nodes.

3.3.1.20 Complexity Modeling  

Physics has done an excellent job of orthogonalizing the variables and standardizing the working set as the 

necessary and sufficient set to completely represent the real system under test to the desired echelon (Newtonian, 

relativistic, quantal, etc).  Accomplishing this for biology is a much larger task, and currently beyond our reach. 

Absent such a 'clean' perspective, it has been overlooked that many representational mathematics do not meet the 

above criteria.  If one represents a fourth order process with a first order equation, then serious information has been 

lost, and the model can only be correct at a few incidental points.  This is especially a problem when ion channels 

are represented as I/V plots or as first order exponential equations.  It is simply impossible to capture the behavior of 

the high order systems by simulating them as low order equations.  To address this we need a metric for the veracity 

of a representation vis-a-vis the living instance it represents.   The first problem is that most biological processes are 

not known completely.  Thus, workers resort to 'kinetic schemes' to reduce that order to some tractable 

dimensionality, for modeling purposes.

Once the practical order of each individual process to be included in the model is ascertained, then the flows 

between these processes must be considered.  If a 4-order process flows only into a 1-order process (in series), then 

most of the informational richness of the former will be lost.   However, at least within the mathematical realm, 

certain tricks can be applied by lower order systems to pass information of higher order systems.  For example time-

sharing.   A  1-channel input can carry all the information of a 4-channel output if the 1-channel system is 4 times as 

fast and can do the bookkeeping to track which time slot is assigned to which channel.  Another sample problem 

would be a mismatch between processes.   If  system A is 4-order and system B is 4-order, each with 4 inputs and 4 

outputs, but the nature of the connections between them can only transfer 3 output channels from A to 3 input 

channels of B, then again information is lost.  For this and similar reasons, it is not sufficient to compare matrix 

sizes alone.  It comes back to channel capacity for each process and  the all-in transduction process between 

processes.
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3.4 MODEL TYPES  

In the past, models have been parsimonious to very restricted queries or purpose.   

3.4.1 DESCRIPTIVE  

Descriptive models may be static, incomplete, simplified renditions of the real thing - for purposes of teaching or 

communicating to others some aspects that would otherwise not be assessable to the casual viewer.  The purpose is 

the appearance of the thing - how it is perceived by others .  May be words only, or picture only representation.

3.4.2 EMPIRICAL  

The objective is to be faithful to the data.  The data is often incomplete, so holes are present.  The purpose is usually 

to present to others in the field a form of progress report:  We have completed this part, but are still missing that part. 

They do not concern themselves with causality, only results.

3.4.3 DEMONSTRATIVE  

Similar to Descriptive, but must include some dynamics or process.  Demonstrations are contrived so as to a very 

high chance of performance success, so so all unreliable data is filtered out, and the demonstration is practiced 

before public presentation.

3.4.4 CONCEPTUAL  

Concepts can be visual, auditory, logical, math equations, or abstract.  A new concept is usually rooted and justified 

in the context of the pre-existing concepts.  A strong biological concept is founded on the concepts of chemistry.  A 

strong chemical concept is founded upon the concepts of physics.  A strong physics concept is founded upon the 

concepts of mathematics.  Concept models are usually not dynamic, although concepts can be extended into a 

demonstrative model by making them dynamic.
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3.4.5 PREDICTIVE  

The standard for a predictive model is quite high.  It must capture the patterns of behavior of the real thing well 

enough to elicit them under similar stimulus conditions.   This can be accomplished via a faithful rendition of the 

underlying first principles,  be a curve fit to the empirical data of input output relationships, or it can be a blind 

optimization of performance to mimic the real thing without any understanding of its mechanisms.  Predictive 

models are often the “holy grail” in modeling, because it is accurate predictions that empower the clinician, the 

economist, the engineer, the psychologist to succeed at their tasks.

3.4.6 NUMERICAL  

Any modeling done within a digital computer necessary involves numerical methods, directly or indirectly.  The 

primary purpose of numerical models is to improve the algorithms and heuristics of getting to the solutions so as to 

minimize resources consumed, especially time and CPU size needed.  Numerical models often enjoy high re-use 

potential and are added to libraries of routines that can be stitched together into many variations and more complex 

models.

3.4.7 PHENOMENOLOGICAL  

Models have the purpose of distinguishing between competing explanations and concepts so as to determine which 

is the most accurate abstraction of the real thing.   These may be regarded as tests of concept.  They seek veracity 

through mimicry.

3.4.8 ITERATIVE  

Iterative models are concessions to the limitations of closed form analytic equations and digital representations.  For 

complex shapes, hybrid processes, unrefined concepts, it is often productive to iteratively “hill climb” toward one's 

goals.  In the digital world where most differentiability is lost, this may be the only option.  Difference equations 

have proven themselves to be powerful in solving very complex problems, but consume huge computational 

resources to do so.   Specialized PDE processors have emerged to fill this niche.  One may argue that continuously 

streaming processors are not iterative, but representing them digitally remains an iterative program.
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3.4.9 STOCHASTIC  

An extension of the PDE processors is to pursue solutions to iterative problems with integral processes involving 

random number generators.  There are many stochastic processes in nature and at the molecular level and below, it 

can be argued that every process is stochastic.  Fortunately the solutions to stochastic differential equations (SDEs) 

is, from the computer's point of view, the same as solving PDEs, and so the transition has been an easy one.

3.4.10 ABDUCTIVE  

Making a case on incomplete information for purposes of making timely probabilistic decisions.  It is a means of 

jumping up a level in complexity, perhaps prematurely, perhaps incorrectly.  We may regard the  output decisions as 

trials, hypotheses or as commitments.  By this means one might “operate at a higher plane” until falsified.  It is yet 

another stochastic process, capable of generating new hypotheses with each falsification of the old.

3.4.11 HYBRIDS  

Increasingly the problems confronting us no longer remain of one type.  We no loner enjoy diffusion only problems 

or ballistic only problems, or edge-detection only problems.  Hybrid models recognize that the nature of the 

implicated computations divide into rather distinct types.  These types require different algorithms, and may be 

optimized on different hardware.  For example their are dense linear algebra and sparse linear algebra,  procedural 

and associative, random search and binary search.

3.4.12 LARGE-SCALE  

With the failure of analytic methods to solve the complex problems, a new approach of massively parallel open-end 

equations is being tried.  Paralleling the development of CPU transistor density, the term “large scale” was picked 

up.  Given the history of chip development, what is today large scale is sure to be tomorrow's small scale. 

Generally, large scale approaches attempt to solve he whole problem in parallel.  Problem types include earthquake 

modeling, weather modeling, astrophysics problems, biological cell simulations, medical diagnosis. 
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3.5 MODELING SCALES  

Consider the following 4 perspectives on size of the model. At about 1E-4 m  there is the local circuit of several 

neurons.  At bout 1E-5 is the whole cell model.  At about 1E-6 m is the excised membrane patch.  At about 1E-8 m 

is the large protein molecule, a channel o a pump.  This model focuses on the physicality of the whole cell and 

patch, and on abstractions of local circuit connectivity and molecular state transitions.  Little will be said about local 

circuits, but molecular state transitions comprise a major, crucial portion of the model.

3.5.1 MICRO-SCALE  

The whole cell present the “main” perspective of this modeling exercise.  Everything else exists to serve this entity. 

The whole cell is a closed membrane living entity that completes the information processing role from input synapse 

to output synapse over continuous forms of membrane and saline.  Every other perspective involves unrealistic cuts 

and/or other  discontinuities.  Therefore, all design effort should first go to a reasonable whole cell as a test case for 

the problem or quest at hand. Once readied, then that problem may be broken down into canonical patches and 

mathematical abstractions as available modeling computers may constrain.

Once the various patches of interest have been modeled at the nanoscale, they comprise a library of re-usable 

elements for the large-scale whole-cell simulations.  It is anticipated that the behavior of patches can be scaled up in 

size (not quantity) without much lost in veracity, per the findings of general physics.  Thus the whole cell model will 

be realized as an assembly of patches, some minimal number that none-the-less captures the input-output 

relationships of that particular species of neuron within tolerable error levels.  The levels of confidence of such 

whole-cell simulations are, of course also dependent upon its constituent lower scale sub-models. 

If the whole cell model is to embody sufficiently large quantities of particles and actors that it cannot be robustly 

modeled at once within available computers, then a select number of canonical patches of membrane are excised 

out, modeled and characterized.  A sufficient number of canonical patches must be chosen such that all the patches 

are accurately represented by gradient forms interpolated between the 2 nearest canonical patches.
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3.5.1.1 Bio-Data Conversion  

The highest veracity model of a living cell is the cell itself.  But the biodata cannot be made dynamic without a 

model.  The modeler receives data on a “catch as catch can” basis. It is always incomplete from an engineer's point 

of view, because it is not yet feasible to observe and measure all the relevant values of a living cell.   Results are not 

always quantified.  Bio-data is not usually in a form that directly applies to the model (must be interpolated, 

extrapolated, converted, normalized and/or estimated). 

 Biologic data as it becomes available will fill in the shape details, locations of actors, state behavior of those actors, 

and constellations of modulators.  As the biologic database is currently incomplete, and the computational loads 

astronomical, the whole cell model stands as fragmentary and weakly operable, except as a few classroom 

demonstrations or great simplifications to elucidate singular events.  It does however serve well as that point on the 

horizon to which workers aspire.  The whole cell may be considered to reside at the micron level, in its full 

biological complexity and diversity, and thus is sometimes called the microscale perspective.

3.5.1.2 Whole Cell Normalization  

The greatest computational load in a whole cell model may not be with the actors, as one might expect.  Actors are 

relatively low in number compared to particle collisions and particle reflections.  The particle quantities as up at 

1E11..1E14.  And so all simplifications which reduce the computation of particle motions without losing the veracity 

of flux, current and capacitance are highly valued.  The argument is made that while the axial shape of a neuron is 

critical, the radial shape is less so.  The greatest simplification of radial shape can be accomplished via a contour of 

rotation.  The computation of particle reflection then reduces to a radius check and a polar coordinates conversion. 

The goblet easily supports 1e5 membrane locations (addresses); 1e5 particles and 1e3 actors.  With larger computers 

these maxima rise 1 to 3 orders of magnitude.  This level, like the first, takes place at the micron level, but strives for 

great simplicity within that realm.  In particular, the computationally intense phenomena are focused upon by 

“zooming in” to a small patch. rescaled where possible to this higher level, and thereby reduced in quantity.

The goblet features an anomaly, and that is the shape of its dendritic “tree” , which is represented as a thin cone. 

What information processing distortions may arise from this shape is yet to be determined.  It is hoped that by 

making the cone thin enough, the lateral “short-circuiting”  between inputs will not distort the neuronal output.  If 
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necessary, radial partitions can be placed within this cone to mimic individual processes and their bifurcations.  The 

great advantage to the cone is computational efficiency in particle motion calculation.

3.5.2 NANO-SCALE  

At the nano-scale is the patch.  It consists of a rectangular patch membrane replete with voxels of water above and 

below, from 8 to 1024 in number.  This third level takes place just above the nanometer level, and is particularly 

faithful to individual ions and channels, as a excised system of particles and stochastic kinetics. It is concerned with 

both 3-dimensional and 2-dimensional processes (diffusion and capacitance).  An isolated patch can faithfully model 

ions and ion channels 1 to 1, and can reproduce Hodgkin-Huxley action potentials and a little propagation thereof. 

The  mission of the patch is to drill down to statistical mechanics for an accurate account of channel behaviors 

interacting in a membranaform system.  The particular pattern of mixed channel types at this scale constitute the 

plaiding of the plasma lemma.

Its secondary purpose is to support the characterization of a select few “high runner” or canonical patch 

configurations, and rigorously model these prior to the simulation run.  If each patch can be exercised through its 

domain, producing a input/output map, sans all the differential equations in between, then  they do not have to be 

completely recalculated real time during a whole cell large scale run.  If canonical patches are chosen careful at each 

end of modest gradient changes in channel densities, then some interpolation of patches in between can save 

immense amounts of computation.  This “short cut”, of course, must be verified as free from non linear surprises. 

Patches should contribute to the computational reduction of larger scale models through compression.  That is, the 

whole cell model might end up being entirely tiled with patches, each of them consisting of look-up tables that 

immediately predict the patch output without computation.    

If all the physical constants are preserved in a nano-scale model of membrane, ions and ion channels,  then the 

causal and spatial relationships between the key elements remain intact.  The price paid is that only about 1 

millionth of a neuron can be modeled this way.  It is possible and advisable to model a smaller portion of the neuron 

where the physics is tractable to computation without scaling.  Patches of 10 by 10 voxels of 0.01 edge length 

would on average have only 1 channel.  In busier areas, near synapses, this density could rise to a max of 25.  A 

patch of 16x16 voxels, 1 layer deep on either side of the membrane, would allow the study of Hodgkin-Huxley type 
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action potentials.  A typical rendition of this size would have about 92,000 particles, 256 membrane addresses and 

12 channels.  Note that this is 10 times the average channel density but typical of the more informationally active 

regions of the neuron. 

3.5.2.1 Relevant Chemistry  

Zero order reactions are controlled by some factor other than reactant concentrations.  Usually, they are catalyzed 
reactions, especially fixed surface catalysts.  
dA/dt = -k;            % where k =  reaction rate that the catalyst produces whenever reactant is present.

First order reactions are by far the most common, suitable for particle-actor reactions.  They have specific 
reaction rates according to:
dA/dt = - k*A;     % where A = concentration of the reactant, k = reaction rate, t = time

Its solutions are:
A =  A0 * exp(-k*t);    % where A0 = initial concentration,  A = final concentration 
tau = (1-1/e) / k;        % where tau = time to 50% of reaction,  e = natural log.   tau = approx(0.693/k)

Second order reactions have reaction rates according to:
dA/dt = k*A*B;  % where A and B are reactant concentrations, suitable for particle-particle reactions

t = 1/(k*(A0-B0))  * ln((B0*A) / (A0*B))

Most reactions are first order and most second order reactions can be computationally broken down into 2 first order 

reactions in series (multiplied).

3.5.3 MULTISCALING  

3.5.3.1 Spatial Multiscaling  

For those problems inherently too large for today's computational devices, certain compromises can be made if at 

the finest granularity of the problem, small bits or patches can be modeled intensively, and then represent a large 

number of the other one's similar to the patches.  These many cloned and graded bits can then be re-assembled into 

the whole.  It is possible to maintain several levels by this means.   For example, modeling the human body down to 

the molecular level would certainly require a multiscale approach: molecules, organelles, cells, tissues, organs, 

whole.  At each level only a representative sampling of its components would be modeled.

The solution to the overwhelming computational load of rigorous whole-cell simulations is multiscale modeling.   I 

use both the Microscale and Nanoscale simulations in combination. Certain representative “patches” of membrane 
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can be incrementally increased in size and counts until a point of diminishing returns is reached in the input/output 

relationships.  This nanopatch can be expanded until propagation is consistent with up-scaling.  That is, if increasing 

the number of components does not add appreciably to the generated results, then that patch can be held at its point 

of diminishing returns.  Such an exercise provides valuable insight for both ANN and BNN designs.  

1. When such a size is reached it can be “cloned” around the circumference of cylindrical shapes as an 

accurate predictor of what actually transpires in an axon.  

2. To the extent that the parametric space is exercised and consistent between ANN and BNN, such patches 

can be collapsed into look-up tables, and then stitched together in much larger quantities. accurately 

modeled at the nanoscale of ions and ion channels, including the nearest neighbors, membrane capacitance 

and chan type mixes/patterns.  

3. A design can mix-and-match canonized patches to mimic the BNN distribution patterns.

4. patches that do not add anything to the output signal can be eliminated.  For example, can a  thin radial 

slice down the entire length of a neuron accurately mimic the BNN performance?  If not, can the edge-

dissipation effects be negated via mathematical stitching so as to improve the model’s veracity?

Multiscaling modeling will play an important role in capturing the information processing capabilities of neurons. 

Because a full-scale model will involve  1e12 particles, 1E8 locations, and 1E6 actors, over a series of 1E6 time 

steps. every opportunity to reduce computational load in the ANNs is to be fully exploited.   Aside from the 

Computer Science  contributions to numerical methods, there are several higher level strategies that can gainfully be 

employed.  

1. Minimizing patch size to their informational character.

2. Eliminating all patches shown not to contribute to the out put

3. Cloning all homogenous patches alone a wave front (only the locations of the wave front need be 
computed)

4. Correcting for edge artifacts allows modeling of only a radial slice  of circular profiles

5. Studying complex local phenomena and then collapsing the results into look-up tables to be archived in the 
library for future use.
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6. the ‘digestion’ of  relevant phenomena at a lower levels for pre-processed use in larger quantities at higher 
scales.

7. the automatic detection of violations of canonical forms.  This is critical to avoid bad science.  Any 
emergent phenomena not consistent with previously characterized behavior must be detected and alerted. 
This should trigger additional intensive study into the local behaviors so as to add more possibilities to the 
library of low level routines.  The essence of multiscale modeling is that the unanswered question drops 
down to a lower level of analysis, on a type-by-type basis

8. At each level, parametric sweeps need to be performed across each of the likely permutations in assembly 
of parts.  Distinct modes, if any, should be mapped.  

3.5.3.2 Temporal multiscaling  

There are at least 3 distant time domains relevant to the neuron.  The fastest is the particle collisions, taking place in 

picoseconds.  The second is action potential generation and propagation, taking place in milliseconds.  And the third 

is adaptation/learning, taking place in seconds to hours.  It is not at all feasible to accommodate all 3, or even 2, in a 

single model run.  However is is possible to focus on 1 of the 3 at a time, characterize the performance patterns, and 

capture them in such a way as to render them portable to the slower process runs.

The strategy is to capture the results of each run in such a form that it can be rescaled temporally.  Given a diffusion 

pattern resulting in a run of 1E-6 s, is there as function that can accurately extend that pattern to 1E-3 s without lose 

of veracity?    The key to multiscaling is to avoid surprises.  So long as a process is applied iteratively, without 

change in parametric values, then it becomes predictable and amenable to such extensions of results. 

Temporal multiscaling is expected to be especially useful when the model is applied to adaptation and learning.  As 

the molecular processes are complex, great in quantity, and tend to accomplish adaptation over immense numbers of 

cycles, heuristics will be necessary.

3.5.4 MODELING UNITS  

Modeling requires consistent units which are compatible with the various simplifications and digitization of the 

problem space.  Use of conventional macro units results in a heavy computational load over whatever units might be 

most “natural” to the model.  For example, amperage, which is based upon Faraday's conversion from the mole, 

which is based upon Avogadro's number of molecules, implies carrying around 1E-19 with every count of particles. 

It is much more straight forward to simply track N, an exact particle count per dt.   This new unit for current is 

named  'ea'.
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The original and various sources of voltage definitions were reviewed.  Most were simply based upon some 

historical standard.  Two candidates present themselves for model voltage: Coulomb's law and the Nernst equation. 

The Nernst is quite relevant to ion channel flux, and is specific to each ion type.  But it is peculiar that the Nernst is 

temperature dependent, while Coulomb's law has no temperature dependence.   A configuration with one charged 

particle on one side of a barrier and zero particles on the other side calculates to an infinite voltage, according to 

Nernst.   A configuration with one charged particle on one side of a barrier and one particle on the other side 

calculates to a zero voltage.  The very simplest configuration of particles that yields a practical voltage value would 

be two charged particles on one side of a barrier, and one charged particle on the other side.  This yields :         

voltage = (kelvin/valance) * log(2/1)  * arbitrary constant; 
 

     Note: Following MatlabTM conventions, log = ln.

If we remove the old constants because they are unit conversions and therefore arbitrary, then replace ln with log2, 

for cause and for a basis set kelv=1, then

ev = (kelv/z)*log2(2/1) = 1;    % new unit of ionic voltage, where 1 volt = 16742 ev, and 1 ev = 5.973E-5 v.

Nernst voltage is proportional to temperature, so there is no natural unit, and it is stable where temperature varies. 

This is characteristic of differential forces, like pressure.  Because this model deals with discrete particles to 

calculate voltage, rather than some continuum, log2 is preferred over ln (natural logarithm).  Log2 is also useful for 

its role in information theory EQs.   Thus it is trivial to read the change in ev voltage (derived from log2) directly as 

information.   For charged particle concentration ratios of 4:1 the ev voltage = 2, and for 8:1,  ev = 3   (when kelv 

=1, and valance =1).   This is computationally quite compact and lends to intuitive interpretation of results in model 

design and performance.  (Note that this applies during the design phase where temperature is set kelv =1.  During 

the Run phase, at kelv =293 or 307, ev values will be proportionately larger, with values in the  thousands.)

Capacitance then is merely the bound charges / membrane unit area / ev volt.  The unit of capacitance is defined 

herein as the binding of one charge pair across a barrier per ev.  

Alternatively, voltage is defined by Coulomb via his   F = (1/4*pi*e0)*(q1*q2)/r^2;

Strictly, voltage is the field potential impinging upon an infinitesimally small test charge, and so acts as a half cell:
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V =  (1/4*pi*e0)*(q1/r);

 However the model is interested in the explicit force been specific particles.  And so Coulomb's law applies.  

Modeling at molecular scales and entailing large numbers of particles necessitates the use of units optimized to 

computational algorithms.  The hydrogen atom was chosen as a basis for all model units.

 As the published data is presented in hundreds of varying unit systems, all will first be converted to SI units for the 

sake of standardization. This is the human-readable format of choice, and supports the comparison between sources 

and mergers of data sources into a coherent whole.   Then that data must be normalized to the extent that two sets are 

incompatible with a merge for any of a variety of reasons.  Compatibility and interoperability within a single model 

is necessary, or else the concept of a library of types is flawed.      

However, the human-readable form of SI units can be terribly inefficient in large scale computer simulations at the 

molecular scale. Because the model is particle oriented, it measures by counting particle quantities instead of amps 

or moles.  Forces must scaled down to transport events, such that voltage tells how many particles will pass through 

a channel per 1E-3 s.

Although several popular physics units systems are based upon the electron, that does not work for ion systems, as it 

places everything 3 to 4 places off.  This model needs units based upon the ion, and so a common ground was 

selected in the Hydrogen atom:

distance = angstrom

charge = electron

time = frequency of Hydrogen ( 1 cycle)

temperature = Kelvin (in terms of melting and boiling points of Hydrogen)

quantity = particle count
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quantity SI unit converted to model unit

distance Meters nm nm =  1.00E-9 m

mass Kg         Daltons em  =  1.660565586E-27 kg

time Seconds (frequency of H) et = 7.04024183762482E-10 s

temperature Kelvin ( no change) kelv = 1.0E0 K

chemical quantity Mole Quantity of molecules qm = 1.6605400000E-24 M

electrical quantity Coulomb e- qe =  1.60218E-19 Coulombs

electrical force Volts Not electron volts ev = 5.9727065680E-05 V

mechanical Force Newtons en = 2.5634272968E-25 newtons

electrical current Amps charges/et q/et = 2.2757456874E-10 amps

TABLE 3: BASE MODELING UNITS AND FACTORS

Such a unit system does not guarantee against large exponents.  It only provides a very immediate measure of 

quantities of particles in the system, and a 1-to-1 basis for the operators.  This system of units greatly improves the 

intuition during the experimental design, because one is working with specific particles and the response of each to 

its immediate force vectors.  The SI system requires dealing in aggregates that blur the notion of atomistic 

phenomena, or else require and endless effort of converting and de-converting units with each of about 100 

operations per time step.  See chapter “ Design Elements” for a full development of units.  Note that in the model 

units, most constants are dispensed with:  no more Avogadro's number, Faraday's constant, gas constant, 

Boltzmann's constant, coulomb, mole, nor farad.  These were all crutches to allow the SI system to reach the 

molecular scale from the macro units.

These selections carry through the SI Base Units and SI Derived Units with significant impact, especially because 

time is no longer in seconds.  Mechanical force (the SI newton) is redefined as the attraction between 1 electron and 

1 proton separated by 1 nm. Voltage (the SI volt) is redefined as the force between 2 protons on one side of a barrier 

and 1 proton on the other side.  Voltage is proportional to temperature.

New model units will each be a 2 letter code beginning with e. ( ea, ef, eg, ej, en, ep, et, ev, ew ) 
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All source data shall be converted to SI units and stored in the Types library.  This is to support comparisons 

between held data and new literature within a singular, widely accepted unit set.

Model units, however, are geared to efficient computation of molecular scale events, and as such are quite different 

from SI units.  SI are automatically converted to model units when the bio-data libraries are read into the 

Experimental Design and Build.

Note:  It is common practice to apply statistical techniques to  biodata so as to compress it and to standardize the 

metrics for comparison purposes.  However in this modeling process, fitting the raw data to commonly used 

distributions, such as means, standard deviations, and normal curves, is undesirable.  The model requires the raw 

data, instantiations.   Given the diversity of bio-data, it is prudent to let go of the canned distributions like uniform, 

Bernoulli, binomial, Poisson, beta, F, gamma, etc.. but rather accept the distributions as empirical.  This is to avoid 

the temptation to impose preconceived notions about what the data “should look like”, and to avoid squeezing out 

the “best part”.   Just take the direct measures of natural conditions and store them without collapsing any of the 

dimensionality until it is to be applied to a specific model function.  At that time care must be taken to preserve the 

salient features as represent the intended function.  There are a LOT of interesting distributions out there, and it is 

often the unique distribution of things that characterizes the function of those things.   That is, distributions in space 

and state are not incidental, but are definitional.  The phenomenon of modalities implies more than one distribution, 

so care needs to be taken to capture all of the modes in uniform units, and keep them associated as a single state 

transition set.
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3.5.4.1 Base Units  

Measure                  Unit               Action

length                      nm adopt existing unit

mass                      amu         adopt existing unit (amu = Dalton)

time = et               et            create new unit from frequency of Hydrogen

electric current     q/et          create new unit by switching time unit

temperature              K           adopt existing unit ( H melt = 14; H boil = 20)

amount of substance q             adopt existing  mole/Avogadro's number

luminous intensity photon/et create new unit as photons / et (at std freq)

TABLE 4: BASE UNIT ACTIONS

1.  The frequency of Hydrogen (as measured in coherent maser for the most accurate clocks to date) is: 
1.4204057518E+09 Hz.  Accordingly, model time = 1 et = 7.0402418376E-10 second

2.   Amps are replaced by  charges / et   =   6.2414959618E+18 / 1.4204057518E+09  coulomb/second

3.  1 Candela17  = 1.9682193364E+09 photons/et  at freq  5.4E14 Hz  (3.8E5 /et)3.

By convention, all model units will be named as 2-letters, the first of which will be “e” and the second of which will 

be derived from the macro unit of its type.  Thus:

1. Newton  :: en

2. Voltage :: ev

3. Joule  :: ej

4. Pascal  :: ep

5. Farad  :: ef,      where  :: = is proportional to

17  the candela is the luminous intensity, in a given direction, of a source that emits monochromatic photons of  
frequency 5.40E14 hertz and that has a photon intensity of 6.81E13 moles of photons per second per steradian.  
(cone of 32.77o), equaling  radiant intensity of 1/681 watt per steradian.
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Measure SI           model     factor 

Distance   meter      Ang         1.00E+010

Mass      kg           amu         6.02E+026

Time       second    et            1.42E+009

Current   amp         q / et       6.24E+018

Temperature Kelvin     Kelvin      1

Quantity mole        q             6.02E+023

Luminosity Candela photons@3.8E5 /et 1.9682193364E+09 photons/et

TABLE 5: CONVERSION FACTORS

3.5.4.2 Derived Units  

3.5.4.2.1Derivation of EM Force Unit  
Coulomb's law states:  

1. F = 1/( 4pi*e0)*(-e*e/r^2)           ( kg m / s^2 )       where  

2. e0 = 8.85418781762E-12 * c^2   ( 1 / N m^2 ) 

3. c =  3E8                                         ( m / s ) speed of light

4. e0 =  7.9687690359E+05  ( F / m )

5. r = 1E-10                                      ( m )

6. e =  1.60218E-19                          ( coulombs )

Therefore, the force between 2 charges 1 angstrom apart = 2.5634272968E-25 Newtons

Define  en  = 2.5634272968E-25 newtons

3.5.4.2.2Derivation of Voltage Unit
  The Nernst equation, used for determining the partial voltage contributed by 1 species of ion, states:

1. V =  R * T / ( z * F ) * ln(conc2/conc1)  where

2. R = 8.314 Joules / mole Kelvin

3. T = kelvin 
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4. z = valance of ion

5. F = 96486

In the case where there conc2 = 2 and conc1 = 1 (no matter the units) at K = 1 and z = 1

V = (8.314 * 1 ) / (1 * 96486) * ln (2/1)  =  8.6168E-05 * 0.693147 = 5.9727065680E-05 volts

Define  ev =  5.9727065680E-05 volts

From these new Force and Voltage units, all others can be derived algebraically.  Unfortunately, the time unit of 

1.42E+009 s is going to have to wait for larger computers.  Compromises must still be made to get the simulation dt 

to about 1E-4 s.   And so the time unit de facto is the dt of the RUN.  It may for convenience be defined in terms of 

seconds, but as far as the computer is concerned dt=1, period.  1 timestep = 1 iteration.  The key is to adjust all 

velocities, accelerations, state transition frequencies and conductance units to dt.  This also affects the readout, such 

as current (q/dt) and propagation velocities (nm/dt)

derived quantity SI Unit       Model to SI       SI to Model Model Unit

distance meter 1.0000000000E-10 1.0000000000E+10 Ang

mass kg 1.6605400000E-27 6.0221373770E+26 Daltons

time second 7.0402418376E-10 1.4204057518E+09 et

charge coulomb 1.6021800000E-19 6.2414959618E+18 e-

quantity mole 1.6605400000E-24 6.0221373770E+23 q

temperature kelvin 1.0000000000E+00 1.0000000000E+00 kelvin

luminosity candela @ 3.8E5 5.0807345578E-10 1.9682193364E+09 photons / et

area m^2 1.0000000000E-20 1.0000000000E+20 Ang^2

volume m^3 1.0000000000E-30 1.0000000000E+30 Ang^3

velocity m/s 1.4204057518E-01 7.0402418376E+00 Ang / et 

acceleration m/s^2 2.0175524997E+08 4.9565005132E-09 Ang / et^2

density kg/m^3 1.6605400000E+03 6.0221373770E-04 Dalton/Ang^3

concentration mole/m^3 1.6605400000E+06 6.0221373770E-07 q / Ang^3

plane angle radian 1.0000000000E+00 1.0000000000E+00 plane angle

frequency hertz 1.4204057518E+09 7.0402418376E-10 1 / et

force newton N  2.5634272968E-25 3.9010273521E+24 en

pressure pascal N/m^2 2.5634272968E-05 3.9010273521E+04 ep
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derived quantity SI Unit       Model to SI       SI to Model Model Unit

energy,work Joule N m 2.5634272968E-35 3.9010273521E+34 ej

power watt N m/s 3.6411068766E-26 2.7464175974E+25 ew = ev*q/et

current amp C / s 2.2757456874E-10 4.3941640999E+09 q/et

emf volt N m / C 5.9727065680E-05 1.6742828207E+04 ev

capacitance farad C / V 2.6825024497E-15 3.7278623925E+14 ef = q/ev

resistance ohm V / A 2.6245052780E+05 3.8102419087E-06 1 / eg

conductance Siemens A / V 3.8102419087E-06 2.6245052780E+05 eg = q / ev et

catalysis katal mole / s 2.3586405670E-15 4.2397303513E+14 q / et

viscosity pascal s 1.8047148103E-14 5.5410416887E+13 ep et

moment N m 2.5634272968E-35 3.9010273521E+34 en Ang

surface tension N / m 2.5634272968E-15 3.9010273521E+14 en / Ang

angular velocity radian / s 1.4204057518E+09 7.0402418376E-10 radian / et

angular acceleration radian / s^2 2.0175524997E+18 4.9565005132E-19 radian / et^2

specific heat capacity J / kg K 1.5437311337E-08 6.4778119593E+07

specific energy J / kg 1.5437311337E-08 6.4778119593E+07 ej / Dalton

thermal conductivity W / m K 3.6411068766E-16 2.7464175974E+15

energy density J / m^3 2.5634272968E-05 3.9010273521E+04 ej / Ang^3

electric gradient V / m 5.9727065680E+05 1.6742828207E-06 ev / Ang

electric charge density C / m^3 1.6021800000E+11 6.2414959618E-12 e / Ang^3

electric flux density C / m^2 1.6021800000E+01 6.2414959618E-02 e / Ang^2

permittivity F / m 2.6825024497E-05 3.7278623925E+04 ef / Ang

permeability H / m

molar energy J / mole 1.5437311337E-11 6.4778119593E+10 ej / q

molar entropy J / mole K 1.5437311337E-11 6.4778119593E+10 ej / q K

catalysis concentration katal / m^3 2.3586405670E+15 4.2397303513E-16

speed of light c  m/s 3.0E+08 2.1120725513E+09 4.7346858392E-10 c Ang / et

TABLE 6: MODELING UNITS

Note that the largest unit reduction, 2.56E-35 J = 1 ej, is quite close to plank's constant, which gauges the energy of 

a photon in Joule seconds.  Most reductions are fairly intuitive, reducing by Avogadro's number or charges per 

coulomb.
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Working in a straight forward manner with quantities of particles dispenses with moles, coulombs, gas constant, 

Faraday's constant, Boltzmann's constant and Avogadro's number.  Furthermore, the units of amps, farads, and 

Henry's are reduced to mere quantities of particles per unit force and/or unit time. 

3.6 UNITS FOR ACTORS  

3.6.1 ACTOR KINETIC SCHEMES  

Out of range of of SI units are the kinetic schemes of the actor state transitions.  While most of the phenomena down 

at the nano-level obey physics conservation laws and are otherwise stochastically well-behaved, the large protein 

molecules are cities unto themselves, rife with far more complexity than is relevant to NIP.  So called point 

processes are considered to  have zero physical dimension, but this is misleading regarding their informational 

dimensionality.    They act finite state machines, and their dimensionality corresponds to their internal degrees of 

freedom.  

If an analysis were to be undertaken as to the optimal kinetics for a given actor type regarding its role in the neuron's 

information processing; there would need be full parametric sweeps for empiric data,  sensitivity analyses, 

simplification of the state space to purge irrelevant but computationally costly states, and design to fill in the gaps 

with reasonably conceived duty cycles for each modality.  There would need to be careful mapping of all possible 

modulation combinations to their effects upon the kinetics, and vice versa of the impact upon the kinetic state upon 

the bindings and unbindings of the modulation sites.

In general, the modeler is at the mercy of the biologists' findings, and usually will not be in a strong position to 

advance the knowledge of the correct kinetics without collaboration with biologists or molecular dynamicists.  

3.6.2 ACTOR POSITIONAL RELATIONSHIPS  

How sparse of a representation of reality is statistically sufficient to reveal the patterns of diffusion and charge 

behaviors typical of neuronal information processing?   This question is answered empirically.
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About 1E2 actors and  5E3 particles are implemented in the first series of instantiations.  After debugging, 

verification, and multi-core machine availability, these numbers are increased to as high as 1E6 interactors and ten 

thousand actors.   Before reaching such high scales it is expected that at least some of the quantities will have 

reached their points of diminishing returns.  Such discoveries are of import, as quantities can be held to their optimal 

levels and thus free up computational resources for particular phenomena of interest.  

Further simplifications are justified where ever there is a homogeneity or repeating pattern of Actor distributions.  It 

is further hoped that certain gradations of actor densities can be interpolated without nonlinearity problems. 

Sensitivity tests are performed to validate that such reductions do not incur loss of predictive value for the model. 

For example, if a representation of an axon happens to have a uniformity of channel distributions along its length, 

then it is easy to design a series of runs that will determine how short that axon can be made and still preserve the 

shape of the propagated signal. Then all of that axonal length in excess of that minimum can be collapsed into a 

simple delay function.

It should be possible to study the plaiding patterns so as to determine the “unit” of pattern.  If this is successful it 

will, in very straight forward fashion, determine the optimal scaling factors.

3.7 UNITS FOR PARTICLES  

3.7.1 REPRESENTATIONS OF IONS AND MESSENGER MOLECULES  

Having determined that the actors need be represented individually and in 3-space, there is next the question of 

how best to represent the freely mobile particles in aqueous solution, including ions and messengers.  As the 

information of the actors is determined to equal the number of states, how is that quantity of information to be 

communicated via the interactors?   If there there are n actors with m states each changing states at a peak significant 

rate of r; then the rate of particle interaction (bindings and unbindings might need to be n*m*r.  In a membranal 

system with 1000 actors, and average of 10 states each, changing states at a peak rate of 1E5/s, then particle 

communication requires a collision capacity of  1E9/s.  However, in a stochastic system, 1 collision does not mean 1 

binding event.  In a plume or bolus of particles, not every one can collide with an actor binding site.  Therefore we 

need to add the factors of fraction collided c, and fractions of collisions that bind b.  Particle incremental motions Bt 
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= n*m*r/c/b.  If c = 0.01 and b = 0.1, then Bt = 1E12/s.  If dt = 1E-4 s, then the quantity of particles = 1E8.   Also to 

consider is the communication distance between actors, because for short hops the same particle can serve multiple 

messages in a second.   If the drift velocity is 1E7 nm/dt, and the average distance between actors is 100 nm, then 

one particle can visit 1E5 actors/s !  That reduces the required particle quantity from 1E8 to 1E3.  So at a very 

minimum, the model must support 1E3 separate independent representations of information carriers between actors. 

This rules out analytic solutions to the diffusion EQ.  Some form of particle systems is indicated.  Their individual 

ability to carry information must be some function of the particle's type, position, velocity, and whether or not it is 

bound, because ions do not have any internal states.  That is, mobile particles can only carry information by their 

external states, most likely their position, because velocity is continuously disrupted by water molecule collisions. 

Velocity expresses itself by impact force.  Position expresses itself by binding events.  We know that binding events 

serve to modulate actors.

It is therefore concluded that diffusion and drift must be represented as a particle system, not by the conventional 

aggregate equations. 

3.8 ELEMENT SIMPLIFICATIONS  

In addition to the specifics of neuron simulation there are the considerations inherent to digital modeling. 

1. Scaling Factors

2. Digitization & Numeric Methods

The subset of neurophysiology that applies to this modeling effort is constrained in scope by the following:

1. Limited number of types of elements:  Membranes, four types of embedded proteins, and the adjacent ionic 
solutions are modeled.  Other cytological structures are not included.

2. Simplified shapes:  Membranes have shape, and those shapes determine both the actor nearest neighbors on 
its surface, and the define the ceiling and floor of each volume compartment.

3. Limited number of processes:  Those processes directly implicated in the information processing role of the 
neuron are included: diffusion, charge fields, binding/unbinding, conformational changes, voltage-induced 
drift and torsion.

4. Down-scaling of quantities:  To model a neuron at nanometer scale poses computational difficulties unless 
a reduction in the number of Patches (and processing steps) can be justified and effected without loss of 
veracity and reliability.  Therefore multiscaling is employed.  Nanoscale patches of membrane are modeled 
one-to-one wrt ions, channels and distance.  
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5. Re-use of oft-repeated computations:  Once characterized and verified to the biologic literature, patches 
may be cloned and collapsed from a system of equations to data mappings, for use in large scale tiling over 
closed membranes at the micron scale, to effect whole-cell models. 

6. Log-scaling of time and space:   Because of the very large compass in time (1e-12 .. 1e0) s and in space 
(1e-10.. 1e-5) m, some form of compression is needed.  Log scaling may be justified empirically through 
the use of multiscaling between patch and whole cell models.

Only those processes taking place on timescales near to that of the action potential are considered. 
Typically events between 1E-4 and 1E-1 seconds are included.  Nanosecond molecular vibrations, and 28 
day learning cycles are far out of scope.   It is possible to have the Patch sub-models and the whole-cell 
Goblet sub-model calculating at different time resolutions.

3.8.1 SCALING CONSIDERATIONS   

Scaling within the model is of great import.  There are several aspects that need be distinguished:

1. time scaling

2. space scaling

3. quantity scaling

4. force scaling

3.8.1.1 Time Scaling  

Simulation Time scaling:  because real-time speed of ion collisions and diffusion in solution cannot be modeled, 

some conversion is selected.  Typically microseconds of nano-scale events are expanded to seconds in presentations, 

and milliseconds of micron-scale events are expanded to seconds in presentations.  These are arbitrary and of little 

consequent because they do not alter the mathematical consequences.

1. Biological time 

2. Simulation time

3. CPU time

4. Time Resolution

3.8.1.1.1Log Scaling of Time
Time cannot be log scaled dynamically without awkward acceleration distortions.  Although these can be corrected, 

it adds to the computation that log scaling was meant to reduce.  However, because of the existence of very fast 

processes (1E-12 s)  and very slow processes (1E1 s, both within the same model, it is proposed that the time 

constants of these processes be rest, according to formula, so as to compress the compass of frequencies of 
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phenomena.  If the 1E-12 s events were compressed so that they were modeled as 1e-4 s events, and everything else 

geometrically scaled for consistency, then such a model becomes computationally tractable.

If transport takes place in vivo at much higher rates than the dt of the simulation can possible negotiate the various 

state changes implied in the duty cycle, either the model is tolerant of the sluggish digital simulations, or else special 

small dt's must be used for such actors, separate from the normal dt used for particles and capacitance.  

3.8.1.2 Spatial Scaling  

  Spatial scaling addresses the question as to how can the size of a neuron be reduced while preserving its functional 

role precisely?  Can the same job be performed with less water, fewer ions and less lipid to make a smaller 

membrane-enclosed compartment?  

3.8.1.2.1Volume Scaling
A voxel is typically 10 nanometers ^3 and this is scaled to ~ 1 cubic centimeter in visual presentations.  The utility 

of voxels is limited when implemented in a realms of cylindrical coordinates.  It may be computationally efficient to 

calculate only hemispheres around active actors, the size of which is determined by their attractor radius.  The 

attraction radius is an artificial construct that adjusts the model to attract particles of types on the binding profile of 

that actor.  The attractor radius is set so as to effect a collision rate equivalent to the in vivo rates, in compensation 

for when the particle quantities have been scaled down.

3.8.1.2.2Volume Resolution
The voxel serves several purposes.  Reducing the computation for collision detection.  Calculating (counting ) 

concentrations.  Determining flux and current.  Determining voltage across each actor.  Harvesting pools for 

affinities.  The voxel must be small enough to represent a single actor's nano-environment, but large enough to yield 

reliable counts for voltage and concentrations, the values of which are modulators.  Voxels are especially useful in 

the construction of patch models.

3.8.1.2.3Size scaling 
One can reduce the gross size or increase the voxel size, and either way, the picture becomes more grainy.  In a 

complex system of non-linear equations, such “simplifications” are fraught with dangers.  
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One hundred  patches of axon, 1E-8m^2 in size, can be replaced by a single patch scaled such that the action 

potential retains the same shape and the propagation time across the length is 10 times as long.  Each particle would 

represent 10 ions, and each simulated channel would have a flux 10 times the amperage of the in vivo  channel. 

With such scaling, there are implications for radius, mass, charge, and delay functions.   Uniform scaling in all 

dimensions may be intellectually pleasing but may not be the most computationally efficient use of resources. 

surface to volume ratios are distorted by such “uniform” scaling.  Verification is necessary for mixed scale 

combinations.  Recommended is gradual deviations from real numbers, sizes, and speeds noting performance 

similarities, until the extent of unacceptable error levels (in comparison to the highest veracity RUN).

3.8.1.2.4Membrane Surface Scaling and Smoothing
Biological membranes often have significant irregularities and texture.  These have caused great problems in the 

morphometric efforts, because when tissue is sliced it becomes quite difficult to correctly assign continuity.  A small 

fragment of membrane could even be assigned to the wrong cell, or be recorded inside out.  Such roughness 

increases the surface area, and probably hinders diffusion.   The modeler can design a smooth differentiable 

membrane and then parametrically add texture until model performance matches in vivo performance. 

Mathematicians have developed metrics for tortuosity of a surface.   This may be summarized by the increase in 

surface area.  Increased tortuosity implies increased capacitance, and that can be a dramatic factor in membranal 

system performance.  

On the other hand, building a model with genuine surface texture is feasible but computationally costly.  In many 

cases, large computational savings can be realized by smoothing the membrane down to a contour of rotation.  This 

may measure to a smaller membrane area  than is needed, so a scaling factor on capacitance may be needed to 

compensate.

3.8.1.2.5Membrane Surface Resolution
The quantity of addressable nodes on a membrane must produce a density high enough to accommodate the highest 

actor density in the experiment.  When specific actor plaiding patterns are specified, the nodal density may need to 

be higher  to reasonably coincide with the pattern.  For a list of reasons, the membrane needs to be represented as a 

homogeneous surface of a quantity of nodes several times larger than the total count of all actors.  This allows 
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distribution patterns that are not compromised by competition for scare nodes.  The nodes are not expensive because 

they play a role only in the build.  After that it is the quantity of actors that determines computational load.

3.8.1.2.6Membrane Thickness Scaling
Membrane thickness determines dialectic strength.   In reality, the polarization of molecular heads of the lipids 

comprising the membrane alter the effective electrical thickness.  However for modeling purposes  the extra 

computational load does not seem warranted.  One can merely set the model thickness to the effective thickness. 

The thickness may easily be varied from node to node, when experimental purpose warrants this.

3.8.1.2.7Shape Scaling
We do not often think of altering the shape as “scaling”.  Shapes have spatial frequencies.   Scaling back on the 

frequency range of a shape often smooths the shape (at the high end) and flattens it out (at the low end).  The latter is 

useful for manifolds.  The projection of some portion of  shape onto a plane has the same effect.  

Another approach is to assume some degree of radial symmetry.  Although not valid for the dendritic field, once a 

signal is summed in the soma, then a single wave front proceeds down the axon.  For most of the length of the soma 

and axon, radial  heterogeneity effects may be minimal, although not zero.  

In any case, when shape is simplified to a contour of revolution the computational load is greatly decreased.  

The task then is to select a contour which best captures the topological relationships between all the actors, and 

provides for particle movements between those actors in realistic patterns.

3.8.1.2.8Spatial Log Scaling
It is proposed that all of the above spatial aspects may be uniformly compressed via log scaling.  Thereby the 

smallest entity of 1E-10 m and the whole cell of 1E-4 m might be compressed to 1E-7 .. 1E-4 m.  This will distort 

the timing of all phenomena that transverse space, including diffusion and drift.  This will require empiric studies to 

to account for the effects and distortions to determine if they can be compensated for without adding back the 

computational load that was to be saved by compression.  The effects of spatial log scaling and temporal log scaling 

tend to correspond so as to cancel out each other's distortions.
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3.8.1.3 Quantity Scaling  

A reduction of particles by 1E-6  would result in about qB = 3.6E5, a tractable number on today’s PC’s.  The 

consequences of such a reduction are considered. The many impacts include:

1. channel flux becomes highly quantized, and incapable of passing less than 500,000 ions in an action 
potential, or other gating phenomenon.  This could result in very grainy transport.

2. shot noise is greatly increased and distorted, in magnitude and altered frequency

3. Membrane capacitance is zero for less than 1 million particles, and

4. very "chunky" thereafter.

5. Diffusion to nearest neighbor may be altered in speed and delay.

6. The effects of water upon such chunky ions needs to be re-evaluated (solvation shells, charge smear, etc.)

Thus, much verification and recalibration work are needed to justify a model with its quantal nature rescaled one 

million times.  

If the ion channels are to be scaled accordingly, what should be their relationships to the modulators?  Lowering the 

concentration of particles that bind to actors would reduce the collision rate irrespective of the quantity of actors.

3.8.1.3.1Water Scaling 
Water molecule quantities are too high to be modeled.   They must be simulated by their effects upon the interactors. 

This implies pseudo collisions that conserve momentum.

3.8.1.3.2Interactor Quantity Scaling
Each computer, as a function of core count, has a practical limit to the number of particles that can be simulated in a 

charge field.  It is not a matter of waiting twice as long when you double the particle count.  Once the RAM memory 

is exceeded, performance may drop 100-fold, waiting for disc calls every dt.  Each relocation to a different computer 

should be tested for its own particle count limit.  This determines the practical ratio between biological counts and 

simulated counts.  This ratio determines the graininess of the model.  If such graininess is unacceptable, then the 

model must be cut down in volume, or moved to a larger computer.  The neuron can be shrunk, of the neuron cut 

into Rall-like sections.  The latter presents interface problems (boundary value problems) between the sections.  It is 

possible to record the particles leaving each section, but not always know which are entering, except by a rather 

torturous iteration of simulation sets.  It is advisable to restrict model complexity to the capabilities of the machine 

that will run it.  Patience will not compensate for an element count set too high.
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3.8.1.3.3Actor Quantity Scaling
When actors are homogeneously distributed, and the signal measured in vivo to be “propagated” rather than 

processed, then considerable reduction in actor quantity can be effected without loss of information.  Taken to the 

extreme the entire length of the axon can be replaced by a lag function.  But in the case of information processing 

(as opposed to transmission), small changes in the positions of actors, longitudinally or circumferentially, or in the 

ratios between actor types, can have profound effects upon the output signal.  It is the purpose of this model to 

provide a platform for investigation of the effects of actor quantity reductions upon model veracity.

3.8.1.4 Force Scaling  

3.8.1.4.1Concentration Field Scaling
This is implied by the ion quantity reduction factor.  The problem is that concentration is used to determine flux 

rates through open channels, and care must be taken to preserve the net effects of that flux upon both voltage and 

concentrations.  Concentration also has implications for diffusion rates.  And saturation levels for actors.  And 

starvation levels for transport phenomena.

3.8.1.4.2Voltage Field Scaling
The Nernst voltage is determined by the log of the ratio of charges across a membrane. This nonlinearity makes 

scaling the concentration proportional to scaling the voltage impossible.  Therefore, voltage must be calculated, not 

off the model interactor counts but rather off the in vivo counts which they represent.  The true voltage pressure on 

the membrane is determined not by the Nernst, but by Coulomb;s law.  The Coulomb's calculation and the Nernst 

calculation are not reconcilable because only the Nernst is proportionate to temperature.  The Nernst can only apply 

to chemical like generation of voltage and applies only to one type of particle at a time.  Coulomb's law applies to 

free ranging particles, whether of one type or mixed.  Nernst applies to channel pores and Coulomb's applies to 

membrane capacitance.  To the extent that these do not predict the same outcomes, empirical tests may be necessary 

to resolve them.

3.8.1.4.3Affinity Scaling
In chemical reactions, each molecular type is said to have an affinity for its substrates.   This is a misconception as 

the actor has no such power to “attract” interactors at a distance.  Rather, the interactor speeds are so high  (say 

1E12/s) that many collisions occur with the actors, but only a portion of them actually result in a binding event. 
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Affinity, therefore, is a collision yield.   In modeling, however, with slower and fewer interactors, the archaic notion 

of “affinity” regains its usefulness.  In order to effect a frequency of bindings equivalent to that of in vivo binding 

rates, it is necessary to “attract” freely diffusing interactors to the binding site.  Although this could be done by 

choosing the closest interactor of the right type, that would violate the stochastic nature of the process (eliminating 

the accidental bindings of “similar” interactors as sometimes happens between Mg++ and Ca++.    The attractor 

concept preserves the chemical stochastics, not by predetermining which exact interactor will bind, nor even when a 

binding will occur.  It merely increases the chances of a binding across the actor type binding profile until an event. 

It borrows the mathematics of a charge field to accelerate interactors towards the binding site.  Those which do not 

bind are reflected off the membrane and return to freely diffusing.  The affinity then is a force, and that force 

magnitude can be adjusted to compensate for fewer and slower particles.

3.8.1.4.4Transport Scaling
The number of particle in vivo per unit area of membrane per unit time should normally be preserved.  Therefore the 

number of interactors is transported according to their scaling ratio, corrected for any change in actor density.

3.8.2 DIGITIZATION & NUMERICS  

For practical reasons, numeric methods are always near the surface when implementing digital models involving 

time and space.  It is not the purpose of this model to develop numeric methods for efficient use of computational 

facilities, nor to develop new algorithms to facilitate models of neurons.  If either happens they are incidental to the 

quest to model information through a neuron, regardless of the characteristics of the computer used in the 

implementation.  Each of the functions is intended to demonstrate proofs of concept, leaving optimization of 

computational resources for others in the computer science disciplines.   The model is intended to be an accurate 

representation first, and computationally straightforward, if not efficient, second.   There are occasions when 

computational speed is disregarded in favor of exploring emergent behaviors or any relevance to how the neuron 

might be processing throughput information.  Because this project is an exploration of both phenomena and 

methods, documentation is necessary and copious.  Documentable code must be readable for the uninitiated.  But the 

most efficient code is the most unreadable.  Because the greatest amount of function is packed into the fewest large 

matrices, to all but the expert, the code looks like a black box.  Thus, for the early versions, code is often less 

efficient for the sake of traceability and understanding. 



191

3.9 METRICS  

The adaptation of the mathematics of electronic circuits to neurons  may more properly be called the "ionics of 

liquid state information processors”.   In a neuron, there is no clock, no wires, and only one large capacitor. Its 

power source is distributed. Conduction takes place in a 3-dimensional liquid shared by all, and there at least five 

flavors of charge.  Gating logic is driven by thermal noise. There are many mechanisms of modulation.  There is 

rapid turn-over of the gating elements (short life span).  The architecture is in a constant state of reshaping. 

Communication between cells is chemical. So how best can a mensuration system be applied to this variety?

Modeling particle by particle expresses, without any particular intent to do so, for example, the shot noise of ions 

passing through ion channels, complex wave phenomena in irregular vessel shape, the vagaries of ionic particle 

diffusion via elastic, momentum-conserving collisions, graded capacitance of charged particles along the membrane 

surfaces, and non-linear resistance through saline.  Flux is easily collapsed into "amperage", which integrates into 

dynamic charge potentials, regardless of shape.

The imposition of preconceived mensuration blinds us to things we do not know are there.  For example using the 

FFT to find sines will blind us to any patterns in the signals.  We will hear the chord, but never the music.  Using 

curve-fitting and exponent peeling algorithms blind us to the presence of any pattern recognition abilities of the 

actors.  Measuring channel open time fractions blinds us to any pattern generation  that's driving those open times.

The primary contribution of this model is the merging of 3 previous approaches: diffusion, RC grid, and stochastic 

molecular states.  In reality, these each operate on different time scales (periodicity of significant events), and thus 

an argument can be made for operating three separate computers, each optimized to their task.  However, the 

universe consists of highly coupled particles, forces and events.  The interchange between these three sub-models is 

sufficiently rich that synchrony becomes a  critical requirement.  Given that, there is no longer much advantage to 

running the three sub-models asynchronously, except maybe as even multiple in speed.  Given the current 

technologies of Linux cluster realizations, there will not be much choice in this matter anyway.  The various CPU 

cut through, cache and buffer memory designs will dictate.  

Back propagation can be a significant mechanism of the cell, particularly the dendritic arbor.  How will you measure 

that, and its effects?
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The base measurements must be particle positions and actor states.  Just those and the original compartment 

positions should capture the entire system.  From those three, all other metrics should be derivative.  Of course, 

some of these derivatives will be more convenient and telling than others, but they will come and go with the nature 

of the query.  It is therefore recommended that the metrics be standardized as positions and states, following by a 

terse library of function available to quickly generate the derivatives of choice.

Of special interest at this time are metrics that detect the higher order patterns above the first order exponentials and 

second order sines.

3.9.1 COMPLEXITY  

Because knowledge of the information processing role of the neuron is imprecise, various computational statistical 

metrics can be applied in the search to discover a more complete accounting for neuron functions.   The neuron can 

be characterized as highly dimensional, computationally intensive, highly nonlinear, makes extensive use of 

iteration, is highly robust in the face of damage and structural variation, is highly non-homogenous an irregular in 

the distribution of its elements, and is somewhat uncertain as to how many input and output ports it may have.  Such 

ignorance of the system under study requires very broad and inclusive approaches, because preconceived and over 

simplified assumptions have in the past purged out many of its known behaviors.   The usual distributions do not 

apply,  but instead must be empirical to the neuron type.  The sampling methods must be pursued to high 

dimensional very large sample sizes.   Parameter estimation must proceed  via maximum likelihood estimations and 

similar approaches.  The multivariate computational processes require large computers to handle the high 

dimensionality.  The random variables must be generated by authentic physics-based simulations at the molecular 

level.  Precautions must be taken to determine the presence of memory or hysteresis in living neurons before 

applying Markov processes in representation thereof.  

Models must be justified and verified, evolving from the simplest viable forms, and gradually adding the 

complexities of living cells.  Error detection and correction techniques are a necessary part of the modeling process. 

Designing across incomplete data sets is a necessary risk to further the field.  Therefore each model based upon 

hypothetical values used to fill in missing wet lab data must be so construed and tested to reveal the consequences of 

various possible ranges of hypothetical values.  What is learned from such exercises should be brought back to the 
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wet labs to assist in determining future experimentation and data collection.    The presence of “trees” explicit in the 

dendritic arborization and the abstract “trees” implicit in the “decision” processes of neurons with action potentials 

greatly complicates the interpretation of model behaviors.  It is therefore prudent and probably necessary to begin 

with the simplest of arborization and actor plaiding patterns until this factor is understood and becomes predictable. 

Although this model is intended to be parametrically controlled, it is acknowledged that such highly non-linear 

systems as neurons can operate in sparse realms where parametric control is not appropriate nor feasible.   Although 

such challenges can only be addressed once incurred, it is prudent for the investigator to be watchful for complex 

behaviors that exhibit modalities, and that these not be discounted as noise.

3.9.2 PERFORMANCE  

Because only the ion channels and ion pumps are emphasized in this first version, critics may voice concerns about 

the inadequate treatment of the many other membranal proteins which in toto comprise a whole for the membrane’s 

information processing capabilities.  Indeed there well may be non-channel proteins which have fast enough time 

constants ( approx 1E-3 s) to qualitatively alter the “transfer function” of the whole cell.  In this first version, 

however, all such effects will be bundled as “modulators”.  To the extent that the model cannot reconcile with the 

bio-data, that gap may indicate the nature of missing components, and hopefully will be suggestive of what needs to 

be corrected and/or added.  In any case the model supports such additions.

Despite the immense complexity of such an undertaking, the real world cell exhibits some number of "high runner" 

states, that are constantly in play and determinant of the role that the cell plays in the nervous system.  The other 

approx 99.9 percent of the possible states are low impact events, and can safely be regarded as noise, until proven 

otherwise by biological phenomena of note.  Low probability states are mathematically problematic, as they can 

serve to shift the “mode” of a complex molecule to some completely different behavior pattern for a while.  Thus, 

low frequency is not a criteria for dismissing it in the model.

Neural Ionics is intended for the investigation of parametric sensitivity, stability and mode identification of whole-

cell filters.  It will serve in the design of novel channel/membrane systems towards increasingly competent neural 

networks, by evolving membranal systems behavior towards useful patterns.  Neural Ionics offers the possibility of 

specifying simplified artificial assemblies of cytological elements, that none-the-less capture most or all of the 
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information processing capabilities of the living cell counterparts.   For example, once a channel location pattern has 

been verified to propagate a particular in vivo signal shape at a particular velocity (presumably consisting of 

thousands of channels), one can then find, via Neural Ionics, the minimum number of actors to duplicate this effect.

This model serves to discover the minimal number of elements plaiding a molecular pattern to achieve a desired 

reliability of any of hundreds of novel biologic neuron behaviors.  This is useful information in at least three ways: 

the screening out of hypotheses which map channel constellations to neuronal function;  the design of artificial 

neurons;  and in the design of therapies for dysfunctional living neurons.  Because nature is bountiful in its 

quantities of components (1E6 ion channels and 1E13 ions), it is presently impossible to model all of the molecules 

on a one-to-one basis.  It is therefore necessary to discover how few of these components will retain the information 

processing characteristics of the larger numbers.  Such found minimal quantities allow for more efficient modeling, 

which in turn makes possible building to ever higher levels of organization.  The most obvious application of such 

whole cell models as these would be assembly of quantities of them into local circuit networks.  

Information theoretic analyses are applied so as to insure that the several simplifying assumptions that do not 

compromise the output behavior of this dynamical model of a complex 3-d shape of significant heterogeneity.  

We do not yet have an accounting of the neuron's information processing capacity by a quantitative measure.  We do 

not  yet have an account of the information processing capacity of constellations of ion channels via their stand-in 

kinetic schemes and the peculiar interactions between adjacent channels of differing types as they may be variously 

distributed across the membrane.  We do not yet have each of the functional areas of the neurons (distal dendrites, 

proximal dendrites, dendritic spine, soma, initial segment, axon, node of Ranvier,  myelinated internode, bouton) 

characterized for their modalities and information processing capacity.  We do not yet have the effects of shape upon 

all of the above, their modalities and information processing capacity.   A programmer's workbench is needed that 

will support a full compliment of receptors, channels, vesicles and pumps, distributed in a realistic fashion over a 

neuron shaped compartment, filled with a particle system of ions that are transported across the membrane.

3.9.2.1 Viability Testing  

Viability requires one or more forms of stability.  Viable ranges are achieved by enacting upper and lower limits on 

the physiologically significant parameters.  These are curbs to activity.  The region between the curbs is “free”, in 
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that any possibility and combination is allowed.  But having reached a curb, the system will expend energy to resist 

any further deviation and will return to values within the curbed domains (if possible).  We call this homeostasis. 

Two nearly equal but opposing forces leave a band of freedom in between, the width of which is a function of the 

inequalities.  

Viability testing for biological parameters grows out of physiology.   Physiology has produced a number of system 

models that are predictive of organismic function.  But their viability is usually determined empirically, not yet by 

criteria within the model.   Lyapunov stability makes significant contribution to our understanding of systems that 

“crash”.   Iberall contributed a general theory of viable systems in 1972.[62]   It is yet a young science.  Because a 

living cell consists of a biochemical network of hundreds of thousands of types of molecules, systems biology does 

not yet rise to the challenge of determining the viability of any configuration or modification thereof.   So far we 

have only grossly simplified systems like lung capacity and kidney clearance, but Bayesian Networks are making 

strong headway into predicting the behaviors of ever larger quantities of elements and their relationships.

As a base case for viability, a model needs to conserve matter, hold Boltzmann temperature, pass energy such that 

energy in = energy out; conserve momentum; be capable of maintaining rest tonicities by pumping across the 

membrane; and in order to qualify as a neuron, show some effect at the output synapses in response to perturbations 

at the input synapses.  In addition, one might add that neither particles nor the actors should lock up (become frozen 

in some position of state that would thwart their ability to serve as a neuron).

3.10 SCOPE  

This project provides a test bed for ion channel constellations.  Ion channels and their receptors critically determine 

both the trans-cellular information flows, and the trans-synaptic information flows.  Biological neural networks 

receive complex natural stimuli via a huge variety of bio-transducers.  These transducers each have unique “filter 

functions” or “nonlinear transfer functions”, and may have unique synaptic chemistry and geometry as well.  They 

are wired into the neural networks with complex phase and spacial relationships across perhaps thousands of inputs 

per neuron.  The connectivity patterns between neurons may be repetitive but are always complex.  Nature offers a 

large library of such patterns to study. Neuroscience therefore needs a simulation environment that gives equal 

weight to both the mechanisms of synapse and the mechanisms of propagation along shaped, bifurcating 
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membranes.  Both synaptic and cell surface processes consist of diffusion, kinetics, and electrical phenomena.  A 

broad physics-based approach can smoothly incorporate both synapses and whole-cells into an information-flow 

model. 

This model supports the design of novel (hypothetical) ion channels engineered to specific functional requirements. 

The ability to create a full constellation of functional types of neurons by design, becomes tractable when modeling 

takes place at the molecular level.  There are direct one-to-one correspondences between model elements and 

molecular species, although actual amino acid sequences may or may not be capable of replicating desired 

conformational stabilities, and to this extent limit designs.  The model is initially  built of representations of 

molecular types already known and synthesized.  It then directly supports efforts by others to design new functional 

types of channels, pumps, and receptors by providing  a simulation of molecular system performance and behavior. 

It provides the tools and test bed for the development of new computational functions for neurons.

Engineered neurons following biologic designs are valued for 4 important features.  

1. They can process up to approx.10,000 inputs in a great variety of mathematically distinct ways; 

2. They can be wired together into a huge number of possible schematic patterns which predispose their logic 
and function;

3. They can be chemically modulated in function and mode, speed and priority (locally to globally in effect); 
and 

4. They can learn over a variety of time constants, from short-term to long-term, via a very long list of 
plasticity mechanisms.  

5. Theoretically, at least, a fifth function would be that they can evolve in the Lamarckian sense into a better 
processor to the task, and then be cloned. 

There are several advantages to this (admittedly tedious) approach.

1. Robust and representative molecular physics and kinetics reveals the biological nuance, even if not 
understood, so long as the shape chosen is adequately representative of topological relationships between 
actors.

2. Multiscale modeling lends itself to assembly of synapses and membranal patches into whole cells; whole 
cells into local circuits; local circuits into ‘cortex’, and cortical organs into nervous systems.  

3. Advances in large-scale computing do not require the model to be re-designed; only several global 
parameters adjusted, like dt, dx, N.

Some of the impediments to progress in the study of cells that compute have been self inflicted.  For example, the 

metrics of channel capacity (rather than computability) were often applied to computational machinery.  That is like 
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trying to measure how much a computer is like a copper wire!   A great computer cannot be a great conductor. 

Already mentioned: treating variance as noise, and treating thermal energy as noise.  Also: treating ion channels as 

I/V plots (current on the y axis, voltage on the x axis), and ignoring the fact that neurons have shape, which is highly 

determinant of information flows, strengths and phase. 

In the view of analytics, the terse equations of the “integrate and fire” neuron are potent in that they can 

simultaneously represent millions of elements, as the cable equation represents millions of lipid, protein and ion 

particles within an axon.  Analysis seeks the most deterministic, stable, repetitive aspect of the item under 

examination, such that it may be 'reduced' to a few short equations.  But in the analysis of biological neurons, those 

aspects which often lend themselves to being culled out as redundant are precisely those which are informationally 

significant.  That which is 'analyzable' (capable of being collapsed) is the carrier (in the sense of radio transmission 

consisting of the station frequency carrier, modulated by an audio signal).  The carrier is the underlying structure and 

matrix for transmitting information.  Note that the carrier is not the content.  Information theory – particularly 

coding theory – makes this clear.  Information is distinguish-ability; changes in state, the uniqueness of the thing in 

time, the variance.  The carrier is stationary, while the content is volatile.  Therefore, the information is that which is 

abstract-able from its carrier,  and the information content of an entity is independent from its stationary physical 

embodiment.  Information content is likened to surprise value.  If  a  neuron could be stripped of all its analytic 

information (all the patterns inherent in aggregates), one would be left with a remainder of novel, unpredicted 

patterns, the variance.  This variance is the very quality a responsive organism requires for alerting to the changes in 

its environment, and is the essential activity of computational cells.  This has implications.  It requires the 

abandonment of the Hodgkin and Huxley model, and of the I/V plots representing ion channels.  This project 

responds to that awakening. 

3.10.1 OUT OF SCOPE  

The model shall be of a sufficiently general basis to be amenable to eventually include nutrient systems, 

electrochemical signaling systems, cell development, plasticity and learning systems, cellular housekeeping, turn-

over and repair systems, and molecular memory systems.
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NOT considered in this version: Development, Genetics, Proteonomics,  Enzymology, Pathology, Structural 

considerations, channel turnover, and vesicle production/recycling. Processes not included because they typically are 

not dynamic determinants of the computational information flows through the neuron are:  osmosis, hydrostatics, 

pH, aquapores, metabolism, growth, actin/kinesin/myosin mechanical effects upon shape and connectivity, acidic 

vacuoles, endosomes and lysosomes, cytoskeleton, contraction, support cell interactions, respiration.  

Processes that typically are not dynamic determinants of the computational information flows through the neuron are 

NOT considered : Development, Genetics, Proteonomics, Enzymology, Pathology, Structural considerations, 

hydrostatics, channel and pump turnover, and vesicle production,  osmosis, pH, aquapores, metabolism, growth, 

actin/kinesin/myosin mechanical effects upon shape and connectivity, acidic vacuoles, endosomes and lysosomes, 

cytoskeleton, contraction, support cell interactions, respiration.  

Also out of scope are the many artifices that comprise the tools of neurophysiology:  micro-electrodes, patch clamps, 

EM stimuli, pharmacological agonists, blockers and mimetics.



4 SOURCE ELEMENTS

4.1 BIOLOGICAL SCIENCE OF ELEMENTS TO BE MODELED  

4.1.1.1 Whole Cell  

 Cell morphology among nerve cells is as varied as in any aspect of biology, except perhaps the complexities of the 

immune system.   The shape of the various neuronal features may have either excitatory or inhibitory influences, 

spatially and/or temporally.  The pattern of ion channel distributions is expected to interact with shape to produce a 

characteristic behavior of the membrane in response to stimuli.  The axonal fan out provides an obvious distribution 

in space, with some implied phase discrimination along the varying lengths.  The fan out also provides the 

opportunity for differentiation (between the signals of two parallel or perpendicular axons, immediately or 

temporally).   The radius of a bifurcation crotch may determine antidromic propagation, or lack thereof.  Caveoli are 

yet to be investigated as to their effects upon signal processing.  They increase surface area, therefore capacitance, 

and tend to isolate each “pocket” of such area electrotonically, encouraging local effects without far reaching 

propagation. 

For these and other reasons, it is useful to design a model that represents the channel distributions realistically 

positioned upon a simulated membrane of various shapes typical of neurons.  To capture only the topological aspects 

of neuronal shape, simplification is indicated.  To study the exact intricacies of neuronal shape features, partial 

models, called patches, are indicated.

4.1.1.2 Shape and Texture  

The fine texture of the plasma lemma as appears in micrographs often is rough and perhaps distorted by the fixative 

or other handling.  In any case, such texture makes it difficult to follow the membrane as a continuous 2-d sheet. 

Computer algorithms often must make creative leaps to assume membrane continuity between the slices. [63]   As a 

result it has come into practice to smooth the membrane texture data sufficient to make the continuity obvious in all 
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modeling calculations.  Such a reduction in tortuosity has the unintended effect of reducing the surface area, which 

in turn reduces the capacitance per channel unless the channel quantity is reduced proportionately.

To support varying shapes of neurons and their processes, various algorithms were trialed to generate stochastic 

shapes. [64]   By 1999, dendritic tree bifurcation points were being randomly simulated, parametrized to mimic 

several neuron types.

Membranes of interest are closed-surface vessels and support lateral diffusion of ions both over and under the 

membrane, by virtue of the thickness of the extracellular space, and an implied “thickness” of the intracellular space 

due to the presence of the nucleus and reticulum.   Where ever ion channels provide ion diffusion through the 

membrane, “complete circuits” (in the electrical sense) are prolific.  Unlike electrical circuits, there are no formal 

input or output ports, academic notions of  boutons not withstanding.  Despite the conception that dendrites are 

inputs and axons are outputs, the membrane itself is continuous and “circular” (spherical, closed surface).  An input 

occurs anywhere there is a receptor, and an output occurs anywhere there is exocytosis.   As the inputs are chemical 

signals acting as modulators and the outputs are again chemical signals, it is not electricity that is being passed on 

from neuron to neuron. Indeed, when there is voltage being produced, as in the electric eel, it is emitted from the 

entire plasma lemma, not limited to axonal boutons.  Thus, the membrane shape does not imply a ported linear 

system, as do man made electronic circuits.  Antidromic conduction is trivially accomplished in a quiescent cell by 

stimulating it at arbitrary locations.  In theory, at least, the membrane serves as an excitable surface upon which one 

can insert input signals or “exsert” outputs at almost any location (tap into the system to realize an output signal).  It 

is the patterns of those locations which in good measure determine the flow patterns of information, and therefore 

the role of that neuron type.

4.1.1.3 Extracellular Compartment  

Extracellular water between neurons (not in blood nor lymph) is estimated to be about 14% the total brain water 

volume.[65]   This model is interested in only that water which is juxtaposed to the neuron plasma lemma, on both 

sides.  As a starting point, it may be assumed that equal volumes of water inside and outside the membrane 

participate in ion exchange across it.  Thus, doubling the 14% to 28% indicates how much of  brain water volume 

must be accounted for in modeling membranal function.  It may be demonstrated via physics-based models of the 
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zeta potential that somewhat less volume is active in neuronal information processing because of membrane 

capacitance which holds a large number of ions very close to the membrane.  The rapidity of transmembrane 

transport also tends to keep active ions close to the membrane.  

The thickness of the extracellular compartment is about 10 microns.  It contains not only the ions as determined by 

the pumps and channels on the neuron under study, but also by all of its adjacent glia and neurons; their pumps and 

ion channels.  The synaptic clefts are rather specialized patches of extracellular fluid, rich with vesicles, ligands, 

receptors and ligand-pumps.  The cleft thickness is evidently held rather constant by protein structure.  The 

remainder of the membrane is likely to consist of a set of:  channels and ion pumps embedded in the membrane with 

ions and ligands on either side of it.  The tonicities of course are not the same outside and inside, and there is a 

higher protein concentration inside.  Intracellular ligands are necessarily for intracellular communications and 

extracellular ligands for cell to cell communications.  It is likely that the glial cells, which outnumber the neurons 

are pumping both ions and nutrients into the extracellular spaces, as well as removing metabolic byproducts.  For 

purposes of this model, such housekeeping functions will be ignored.

4.2 MEMBRANE   GEOMETRY  

The membrane may be smooth , rippled, folded or convoluted into caveoli.  Fold overs are problematic for the 

morphometrics.  Workers often apply smoothing functions to flatten out the bio-membrane in an effort to avoid 

mistaking a fold for a neighboring cell.  One can view the spatial Fourier transform of a whole cell membrane and 

see that the highest frequency components represent the texture or nano-folding.    In the mid frequencies are the 

bifurcations and terminations.  The lowest frequencies represent the overall shape of the cell.  

Geometrical representations are not trivial, as digitized geometry algorithms are not yet advanced enough to 

generate neuronal shapes without tedious manual work.   In addition to a geometric surface, the membrane serves as 

the boundary to the volume within.  Thus, the surface is the differential of the volumes on either side.   As one 

zooms in on any particular location on the cell membrane its curvature becomes more planar.  This suggests 

employing manifold theory to reduce the three-dimensional patch to two dimensions for computational purposes.  
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4.2.1.1 Manifolds  

3-D shapes maybe mapped onto 2-d matrices if there are no sharp corners and if there are no fold-overs in the 

projection.  There is a significant computational advantage to doing so: 2/3 *N.  However the gain is partially offset 

by the extra bookkeeping of stitching the several patches together again.  A greater gain is realized when the 

projections (accomplished by merely ignoring one of the x,y,z dimensions) can be processed so as to avoid the 

forward/backward transformations of basis from Cartesian to polar every dt.

4.3 MICRO SCALE ELEMENTS OF THE NEURON  

By microscale is meant those features of a neuron that are typically measured in units of microns, as opposed to 

nanoscale, intended to address molecular features.

4.3.1 SYNAPSES  

As synapses are concentrated nodes of information transfer between cells, they are very high in NIP relevance.  The 

synapse is characterized by membranes and actors similar to the general plasma lemma, except that the actor density 

is typically much higher, especially receptors and vesicles.  Therefore, concentrations of neurotransmitter can rise 

much higher, and the pumps and catalytic mechanisms to recover spent neurotransmitter must also be much denser. 

There may be types of actor that are present only in synapses.  Biologically the synaptic cleft is not a separate 

compartment from the extracellular fluid.  However, for modeling purposes there might be reasons to treat it as a 

separate compartment. Cleanup computation of specialized synaptic particles that leak out the edges of the synaptic 

cleft into the extracellular fluid can thereby be avoided, unless such leakage is a feature of what is to be modeled.  

Diffusion time across the synaptic cleft is less than 5E-4 s.  Therefore the model distance cross the synaptic cleft 

cannot be greater than what model particles can cross in that time.  The time smear from first arrival to last arrival 

also may be informationally significant, forming the temporal envelope of the signal.  A model of this process must 

include ligand recovery else they go on to create spurious signals (echoes).  There are some open questions about the 

role of charge effects within the synapse.  The presence of any ions at all implies an EM force is present.  Creative 

use of drift could speed the transit of particles.
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4.3.2 DENDRITIC ARBOR  

 For several decades, dendrites were thought of as Rall compartments strung together, each performing as an RC 

node, or according to the cable EQ for the longer compartments .  Such embodiments supported a deterministic 

response curve to be propagated along a dendrite, but left no room for the dozens of ways that living dendrites 

modulate, adapt, alter modes, and fine tune the balance between competing, synergistic and canceling signals.  In 

other words, all of the information had been purged from the model by design.  [Note that information is the 

“surprise” value of a system.]

It was found in 2000 by Archie, that the distal dendrites serve functions different from the proximal dendrites.[66] 

This is obvious in one way: there is no need to inhibit anything until there is something there to inhibit. 

Accordingly, inhibitory synapses are usually found more proximally in the dendritic arbors, and on the soma as well. 

Inhibitory inputs can be processed to increase the contrast, and to sharpen the frequency tuning. 

There are numerous ways to collect morphometric data for modeling.  Electron micrograph slices were traced and 

reconstructed into 3-d models of arborization.[67]   Shapes can be three-dimensionally complex, with the important 

feature being their connectivity.  Once connected, the significant features suspected of signal processing are 

diameter taper, length and bifurcations.  The length and bifurcations are captured in dendritic profiles similar to the 

genetic dendrograms.

Geometry, by virtue of conduction velocity times segment lengths, determines phase relationships between the 

branches, and phase can make a huge difference in neuronal response.[68]   Whether or not there is back 

propagation also depends upon dendritic geometry, and upon channel positioning patterns.  Changing the shape of 

the dendritic tree can alter the propagation threshold and wave shape, without any change in the channel densities.

[69]   The dendrite diameters, taper rates and bifurcation points influence firing patterns and basal rates.[70][71] 

All of this implores the modeler to find ways to include the effects of shape in whole cell models.

Randomness (variance), in diameter, length between bifurcations, and channel placement, all contribute to a graded 

response.  Rigidity of form yields narrowness of responses.  If the dendritic branching and actor placement pattern 

was perfectly homogeneous, then neurons could offer little more than an “all or nothing” response.   In the lower 

animals (turtle) randomness is a primary strategy for information processing, whereas in higher forms (rabbit) 
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differential inhibitory fields are more responsible for information processing (creating moire patterns between 

excitatory and inhibitory arbors ).[72]  

The initiating nodes are depicted by spherical coordinates on the soma.  Then lengths are denoted in 1E-6 m 

(microns).  Note that the vertical lines are considered to be of zero length.  Bras in 2003 determined that the 

bifurcation pattern is the single largest determinant in dendritic tree performance.[73]   Dendrograms can then be 

embellished with diameter data, and locations of synapses.

Additional necessary information to embody the dendrite is the actor distribution densities.  This is often 

accomplished by fluorescent marker micrographs, and verified by random patch clamps.  In particular: the number 

of vesicles and their contents, the number of receptors and their fan out capabilities, the number of ion channels, 

their locations and their types, the number of pumps, types and locations.  This information at synapses serves to 

determine whether a synapse will function in an inhibitory manner, or excitatory.   This information, along the 

dendrites between synapses serves to characterize the excitability and the speed of response, the propagation 

velocity, and whether a response is graded or an action potential (digital spike).  When the dendrite composition is 

consistent in pattern from soma to distal tip, then only one representative segment need be mapped as to actor 

densities.  This pattern can then be mapped onto all the other neuron shapes and sizes, scaled in length and diameter, 

stretched between bifurcations.

Some dendrites have spines, which are small hollow processes budding out from an otherwise smooth cylindrical or 

conical shaped membrane.  Spines may be spherical or irregular in shape, but are usually characterized by a stalk 

diameter smaller than the head diameter.  

Dendritic spine shapes:                buds                      spheroids                     irregular   

FIGURE 5: DENDRITIC SPINE SHAPES
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This complicates the diffusion problem, as spines act to isolate much of ion diffusion from the main channels.   The 

capacitance of the spines has been measured at 1.5e-2 farads / m^2.[66]

In pyramidal cells, the spines contain four times higher channel densities than the rest of the shaft.  The excitable 

dendritic spines are found to be necessary to effect back propagation in the dendritic arbor.[74][75]

4.3.2.1.1Inhibition
When the mathematics of signal transmission along a neuron is considered, a rather delicate consideration arises. 

The amount of inhibition needs to be quite accurately matched to the amount of excitation.  Every process described 

above, though described as a stimulus, most likely consists of two types, excitatory and inhibitory.  The role of two 

inhibitory neurotransmitters is well known ( glutamate and GABA), but systematics reveals that inhibition can be 

accomplished any of a long list of ways.  A complex system can be disrupted from passing an excitatory (or basal) 

signal by any of a variety of disruptions, each of which can classified as inhibition.  Too great a distance between 

channels; too long of a refractory period; fatiguing out the pumps, allowing chloride to cancel out the positive 

charge differential; too much capacitance per channel; membrane texture (shapes) that tend to dampen out the signal 

as sinks; allowing in the Potassium too soon will cancel out the Sodium in rush; diffusing the signal across the great 

expanse of the soma; geometry that causes a split signal to collide with itself; too high of a propagation threshold; 

too small of a channel conductance; molecules that tend to block the channels shut; pumps that make type of 

messenger molecules unavailable; glial the modify the extracellular tonicity.  There are probably many more 

opportunities to reduce a signal.  From a modeling point of view, getting the excitatory mechanisms to all work 

properly is the challenge.  Inhibition is easy, just break something.  To be faithful to the biological mechanisms of 

inhibition, the modeler chooses which way to break things in correspondence to the biological effect.  One can 

modulate ion flow or actor kinetics.

4.3.2.1.2Back propagation
Although a theory of back propagation is available for networks, the role of back propagation within a single cell is 

a largely unexplored area.   Where ever the output of one channel (ion flux through the membrane) is sufficient to 

serve as an adequate input for its neighboring channels, then a “chain reaction” (via voltage thresholds being 

crossed) can occur, thereby sustaining a wave front of channel openings along the surface of the membrane. 

Because the axis of the channel is always perpendicular to the membrane surface, the channel has no capacity to 
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sense which way is “forward” (towards the axonal bouton output vesicles).   Channels should be considered as 

omnidirectional receivers and as radial transmitters.  Despite that the receptor sites on the channels may be eccentric, 

that does not make them unidirectional.  Ligands arrive by random walk processes due to collisions with water 

molecules,  so the direction of the hit is unpredictable, therefore lacking in information.   This raises the profound 

question: given an excitable membrane consisting only of of lipid membrane and such channels, how does it reliably 

produce dromic propagation of signal from dendritic end to axonal end?   

First of all, there must be initiators.  The loci of initiation are typically at the dendritic synapses.  The various 

receptors initiate ion channel openings, which in turn initiate the voltage wave.  Though the voltage waves radiate 

out in concentric rings, the only channels responsive to these waves are those not in refraction and close enough that 

the wave strength is greater than the channel threshold.  For the signal to propagate, there must be signal repeaters. 

An ion channel type is a repeater if its output is of the same character as the input stimulus.  Most commonly, a 

voltage change from high negative numbers to near zero values will cause the channel to open, and such opening 

also causes a similar voltage change.  Clean repeaters can continue high fidelity signal transmission over very long 

lengths of membrane.  Then there must be terminators.  The vesicles are sensitive to rather weak signals, in the form 

of a few Ca++ ions, which trigger exocytosis of a significant quantity of neurotransmitter molecules into the 

synaptic cleft from the presynaptic side.  There is one other feature of this system of propagation.  There needs to be 

some mechanism of dampening echoes.  Without this feature, one disturbed channel would trigger all its neighbors 

in all directions, which in turn would trigger all their neighbors.  And so forth, ad infinitum.   This would be a sort of 

nano-epilepsy, with no way to stop it short of exhaustion of the energy supply.  However, ion channels have a 

solution to this problem.  It is the refractory period, the effect of which is to fail to respond to an echo, and thus to 

quench any back propagation over areas the wave front has just covered.  

That works fine for the singular axon, but what about the arbor of dendrites?  If a small number of branches are 

stimulated and a wave proceeds toward the soma, what happens at the bifurcations?  There will be some branches 

not participating in the original stimulus, therefore not in their refractory period when the wave arrives.  Based upon 

the  repeater model the wave should proceed both ways: onward toward the soma, and around the corner, back up 

the quiet branch.  The channels on the quiescent branch will respond to the propagation even when serving to move 

the wave backward toward dendritic tips of the unstimulated branches.  This particular form of antidromic 

propagation applies only to peer branches that did not receive the initial dromic signal.
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Therefore back propagation is possible.  Some types of neurons might employ such back propagation in adaptation. 

Other may dampen out the signal such that back propagated waves quickly die out and have no effect.  Some may 

recruit the quiescent branches simply to build the strength of the wave front.  Some may use the back propagation as 

a way to put the quiescent branches into refractory period so as to block out competing (but slightly late) signals 

from other locations on the arbor.  The model must accommodate all of these possibilities, as a function of channel 

types, channel densities, shape of the dendritic bifurcations, tonicities at the bifurcations, and the possible presence 

of modulator particles at the bifurcations.

4.3.2.1.3Arbor Fan-in, bifurcations
The dendritic arborizations typically channel information towards the soma, and perhaps also antidromically to 

adjacent dendritic branches.  How much information is propagated antidromically and what becomes of it is 

something models like this one should be capable of answering.  

4.3.2.1.4Arbor Shape  
A dendritic tree is often assumed to communicate information from the distal synapses towards the soma.  Why a 

response wave proceeding alone one branch does or does not turn at the next bifurcation with another branch is 

determinant on  the channel distribution pattern around the bifurcation.  One measurable difference between the 

orthodromic wave and the antidromic wave is increasing diameter vs decreasing in diameter.  Can such a shape 

gradient quench anti dromic discharges?  If the larger diameter responded quicker, can this quicker response serve to 

mute the sightly slower response of the upstream branch?  Theoretically, it is possible to place ion channels of 

different kinetics on the larger downstream segments, than on the sister upstream segments.  Kinetics that are such 

that all the upstream segments respond with a slower lower voltage and the downstream large section responds with 

a faster higher voltage.  If the low voltage signal arrives first and then the channels respond normally to propagate 

the wave, strong enough to depolarize only a few of the sister branch putting a portion into refractory state.  Then 

the larger fast signal is triggered, on the downstream branch then the sister branches will receive the higher voltage. 

But given that a portion of them are in refraction, the response will be incomplete and fail to back propagate.   

 Bursting neurons tend to be larger with thicker dendritic arbors.[76]   Can shape determine the presence of the 

bursting modality, or is bursting determined by the channel types and distributions?  It is possible for one ion type 
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(calcium) to bind and thereby modify another channel type (sodium) so as to shift modes ( from spiking to bursting).

[77]  

4.3.2.1.5Arbor Size
Dendritic arbors vary almost a hundred-fold in size.  The axons vary at least 10000-fold in length.  This raises an 

issue of scaling factors.  Is the arbor strictly a mono-signal carrier to get from point A to point B?  Is an arbor only a 

bifurcation map?  Can a dendritic arbor 100 times as big be made to perform exactly the same NIP function?  If so, 

what changes in tonicity, channel density and channel kinetics compensate for changes in length?  In diameter?? 

These are valid and important questions for the model to answer.  It should be capable of sweeping parametric 

values so as to “hill climb” (optimize) toward answers to these questions.  The challenge remains to determine what 

effect sweeping the value of each parameter has upon the NIP behaviors of the cell.  A cautionary note:  to the extent 

that the arbor is an information processor, as opposed to an information conveyor, necessitates a much more 

intricately faithful model.  Parametric tradeoffs that preserve conveyance may disrupt or alter the processing 

function. 

4.3.3 SOMA  

Somas, though usually located axially,  in some cell types are off to the side on a stalk, out of the information flow 

ways (e.g. bipolar cells).  Each cell type will require a mathematical function that can generate the soma shapes and 

placements over the domain of variability.  Synapses on the somas often play inhibitory roles or otherwise modify 

the signal that has been integrated by the dendritic arbor.[78]   Some cell types receive both inhibitory and excitatory 

synapses on their somas.[79]  

4.3.4 HILLOCK  

The axonal hillock, also called the initial segment, is noteworthy because it often hosts a special selection of channel 

types in high density so as to effect an analog to digital conversion of the signal.   This requires the following:  First 

that an analog (graded) propagation wave arrives (usually from across the soma), converging and concentrating at 

the initial segment.  Second that the next channels downstream have a rather high threshold.  If the signal falls short 

of this threshold, they do not respond at all, and the signal fails to propagate.  It damps out to zero.   If the signal 
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voltage exceeds the threshold, then this concentrated mass of ion channels all respond strongly.  The response is a 

Hodgkin Huxley type that is fixed in its strength and duration.  The shape of the response is determined by ion 

channel internal kinetics, not by the strength of the incoming signal.  Therefore, any further increases in the graded 

input signal above the threshold will not alter the height nor the speed of the response signal.    The temporal shape 

of this response is called the “action potential”.    It is strong enough, that in the presence of the same type of ion 

channel evenly spaced downstream, it will reliably propagate down the entire length of the axon.  Thus, the hillock 

is the a2-d convertor of the cell.  It is expected, but not proven, that the quantity of actors to accomplish the A2D 

conversion will be the necessary and sufficient set, i.e. near the minimum so as to conserve metabolic energy.

4.3.5 AXON   

In those neuron types that sport action potentials, the axons are populated by very uniform identical ion channels and 

channel densities all along its length.  Although a neuron is typically depicted as having a thousand synapses on its 

dendritic tree, and only one lonely axon, simple logic dictates that the aggregate of all axons must have just as many 

synapses as the  aggregate of all dendrites.  For every connection there must be a presynapse and a post synapse. 

The only exceptions are at the two edges of the network, the connections to the sensors and to the motor end plates 

(muscles and glands).  

Therefore, models must begin to accommodate this fact of connectivity.  A complete nervous system will fan out for 

the first half and fan in for the second half.  If there happens to be five layers in and five layers out, and a  1:10 

overall fan-out , then the first half neurons will have on average  1:10^(1/5) ratio of dendritic connections to axonal 

connections.  That is 1.58 times as many axonal synapses as dendritic synapses on each of those neurons.  For the 

entire second half, this ratio will be inverted.    For completeness, it is mentioned that certain nerve types specialize 

in horizontal connections.  In the horizontal plane, there are no constraints as to the ratio between inputs and outputs. 

Decisions are made by fanning in, and general alertness is effected by fanning out.   For stability a horizontal plane 

may be modeled from a low quantity with a 1:1 ratio of dendritic to axonal synapses, and then parametrically swept 

as the quantities increase to note the effects.  The quantities of horizontals simply are in addition to the quantities of 

verticals, with no implied displacement.  Of course, the vertical cells must sport what ever additional synapses are 

needed to connect the horizontals into the network.
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4.3.5.1.1Nodes of Ranvier
The myelinated axon may be interrupted by any number of Nodes of Ranvier.  They are characterized by a sharp 

increase in capacitance, and dense clusters of Na channels.  Myelin adds many layers ( 5 .. 200 ) of lipid membrane 

wrapped tightly around the axon, but only for discrete, partial lengths of axon, leaving a short gap of nude axon (the 

node of Ranvier) before another myelin wrap begins.  These many layers have the effect of greatly reducing the 

capacitance of the axonal membrane over myelinated portions.  Capacitance acts as a low-pass filter in the neuron, 

so long naked axons will lose their signal within about 1E-3 m.   Longer lengths of axon can carry a signal by virtue 

of a very high channel density, high pump density, high energy consumption, and high transport rate of the energy 

source molecules (ATP) to drive all of this.  The increased axial transport requirements to fuel all of these 

mechanisms force the axon diameters to get quite large.  Such is the case of the giant squid axon.  At some point, 

such arrangements become impractical (too high energy consumption) or even impossible (not enough cross 

sectional area for the needed transport).  The larger life forms (think giraffe and blue whale) require axons several 

meters long, and myelin makes them possible.  The effect of myelination is to create a concentrated spike at the 

nodes, followed by a long stretch of very low resistance, low capacitance, saline conductors to the next node.  This 

arrangement increases conduction velocity while decreasing energy consumption.

 For myelination to greatly extend functional axon length, good conductivity is needed both axially within the axon 

and extracellularly along the length of the axon extracellular saline.  These two support a “complete circuit” from 

node to node.  Every node is packed with ion channels so as to concentrate current  flow at the node, which in turn 

creates the largest voltage disturbance practical (so the signal can make it to the next node).  Saline conduction 

occurs much faster than channel kinetics, so length, per se, does not slow delivery times very much.  Channel 

kinetics are rate limiting and therefore determine conduction velocity.   To a lesser extent increasing channel density 

increases conduction velocity, and lengthening the node-to-node distance of course increases conduction velocity 

(but decreasing the quantity of channel kinetics in series).  Nodes of Ranvier can be modeled by distributing 

channels at the nodes only, and decreasing the internode stretches to the very low capacitance value by setting the 

membrane thickness to a much higher value.  There are some ion channels under the myelin, too, but they cannot 

move many ions in their smothered situation.  Consider that after every action potential, pumps are necessary to 

reset the “rest” voltage, and where they are located will determine the extent of axial current.
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4.3.5.1.2Boutons
The receptors of the post synaptic bouton are part of the so called G-protein systems which fan out a signal via 

catalysis of messenger molecules, which then travel under the membrane until they bind to ion channels with the 

complimentary receptors in the vicinity.  The vesicles of the presynaptic bouton, by releasing a bag full of 

neurotransmitter molecules into the synaptic cleft, realize a fan out of the signal, so as to stimulate receptors across 

that cleft.  The biological perspective sees vesicles as very different mechanisms from receptors.  Their mechanisms 

are radically different.  Their sizes are radically different.  The complexity is radically different (vesicles being the 

more complex).  From a strictly information theoretic view, however, they are both transducers, that effect some 

chemical leverage of the signal across a membrane.  The modeling considerations for axonal boutons are quite the 

mirror image of that of the dendritic boutons.  

There are several issues concerning the synaptic cleft.   Apparently, the gap is held at a fixed consistent  distance, 

perhaps by protein chains or pillars.  The diffusion across the gaps is fast and the diffusion out of the cleft at the 

perimeter is slight.  The reuptake mechanisms must be as fast as the release mechanisms, else the cleft will become 

polluted with lingering messenger molecules (echoes).

Presynaptic boutons must accommodate vesicular traffic.  These are either produced locally or conveyed over the 

length of the axon.  Either way, significant machinery must be present, requiring space and support. Post synaptic 

boutons usually operate catalytically.  There must be sufficiently large “ways” for the flows of precursors and 

product, that typically transpire in bursts.  In addition, even if the mechanisms of the postsynaptic bouton could be 

packaged smaller than the presynaptic bouton, there is a requirement of mating surface matches in size, shape and 

opposition.

4.3.5.2 Glial Membrane  

Role of the glial cells in NIP.

The outer most membrane of a whole cell model contains the extracellular fluid.  This fluid is often about 2.0E-8 m 

thick.  This outer container may be modeled as a larger than, but similar shape to, the whole cell plasma lemma. 

However, it is most representative of the glial cells which surround and support the neurons.  Therefore, the so 

called “extracellular membrane” should operate as the glia do: providing nutrients, and removing waste products, 
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and maintaining tonicity of the extracellular fluid.   The effects of the glia are not restricted to housekeeping chores. 

Glia are found to employ ion channels to buffer K+, and in so doing modify the potassium repolarization after an 

action potential.  The glia therefore alter the voltage, alter the firing patterns of the neuron, alter the duration of 

firing, and can move the foci of spreading depression.[80][81][82]

4.3.5.2.1Glial Ion Channels and Pumps
A  demonstrative model of receptors, channels, vesicles and pumps on a neuron would probably not be viable 

without the contributions from the adjacent glial cells.  The extracellular membrane in the model will typically 

represent glial neighbors.  As it becomes known which pumps and channels are present on glial membranes facing 

neurons of interest, their membranes can be modeled so as to serve in regulation, modulation and recovery of the 

tonicity of the ions and messengers in the saline fluid between the cells.  From a modeling standpoint the glial 

membranes are treated nearly the same as the neuron membranes.  However there need be no diffusion compartment 

on the other side.  The glial will use ion pumps to maintain tonicity, and messenger pumps to recover and recycle 

messenger molecules.  Particles could be released and absorbed much as receptors do (without transport).  

4.4 NANO SCALE ELEMENTS OF THE NEURON  

1. Water:     determines mean free path of particles, determines temperature 

2. Ions:    monatomic and polyatomic (mass, radius, charge)

3. Ligands:   modulators, messengers and neurotransmitters (mass, radius)

4. Membranes:  closed surfaces, consisting of lipid mixtures (thickness is of the essence, also polar heads)

5. Receptors:   transduce chemical message,  includes associated second messenger mechanisms

6. Ion Channels:     modulated, selective permeability, kinetically gated

7. Vesicles:    triggered stochastic release of ligand packages, includes mechanism to fill those packages 

8. Ion Pumps:     modulated, kinetic transporters of ions, ligand combos to steady state, needs energy

4.4.1 WATER   

1. Moles water per liter = 55.45 at 293K

2. Water molecules per micron^3 = 55.45 * 6.022144E23 *1E-9  =  3.34E+016

3. For contrast, a type of ion present at a concentration of  0.100 M  =  6.022E+013
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4. Water molecules per neuron of 1000 micron^3  =   3.34E+019

5. Radius of a water molecule is about 2 Ang .  The equivalent mean free path is about 10 Ang

6. Ions per neuron of 1000 microns^3 = 6.02E+016

7. Radius of an ion is about 1 Ang .  The equivalent mean free path in water is about 10 Ang

8. Neuron volume range  (1000:50000) micron^3

9. Extracellular volume range  (100:10000) micron^3

As the total quantity of ions is too great to model 1:1, and the quantity of water molecules is about 3 orders of 

magnitude greater than that of ions, it will be beneficial to develop a way to simulate the effects of water other than 

instantiate every individual particles.

4.4.2 IONS, MONATOMIC  

1. TYPE = { monatomic forms     polyatomic forms  }

2. TRAITS = { name  atomic_number  mw  atomic_ radius   hydrated_radius  valance  mobility_e 
mobility_m  }

3. DIST = { list of typical concentrations for various species> cell types> compartments; include also sea 
water, pond water }

4. Special treatment of ions: aqueous diffusion, drift, transport through pores, capacitation, charge transfer in 
chemical binding, water hydration shells that vary in ratio H20:1 ion.  

The monatomic ions vary considerably in size.  This is particularly important with respect to the ion channel pores. 

There is a 6-fold variation from smallest to largest atom.  
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TABLE 7: PARTIAL LIST OF MONATOMIC ION TYPES

A
to

m
ic

 N
u

m
b

er

F
o
r
m
u
la

A
to

m
ic

 #

m
a
s
s
, 

a
m

u

v
a
la

n
c
e

ra
d
iu

s
 c

a
lc

u
la

te
d
 n

m

ra
d
iu

s
 V

a
n
d
e
rW

a
lls

 n
m

ra
d
iu

s
 A

to
m

ic
 n

m

1 H+ 1 1.00 1 0.156 0.120 0.025
2 H- 1 1.00 -1 0.150 0.140 0.031
3 Li+ 3 6.94 1 0.263 0.182 0.123
4 Be++ 4 9.01 2 0.223 0.350 0.089
5 B+++ 5 10.81 3 0.205 0.200 0.082
6 C 6 12.01 4 0.196 0.170 0.070
7 N--- 7 14.01 -3 0.179 0.155 0.056
8 O-- 8 16.00 -2 0.171 0.152 0.060
9 F- 9 19.00 -1 0.165 0.147 0.050
10 H2O 0 0.00 0
11 Na+ 11 22.99 1 0.277 0.227 0.180
12 Mg++ 12 24.30 2 0.242 0.173 0.150
13 Al+++ 13 26.98 3 0.240 0.125
14 Si 14 28.08 4 0.226 0.211 0.117
15 P--- 15 20.97 -3 0.214 0.180 0.110
16 S-- 16 32.06 -2 0.206 0.180 0.100
17 Cl- 17 35.45 -1 0.205 0.175 0.099
18 0 0.00 0
19 K+ 19 39.10 1 0.302 0.275 0.220
20 Ca++ 20 40.08 2 0.278 0.990 0.180
21 Sc 21 44.96 2 0.262 0.160
22 Ti 22 47.87 2 0.244 0.140
23 V 23 50.94 4 0.227 0.135
24 Cr+++ 24 52.00 3 0.223 0.117
25 Mn++ 25 54.93 2 0.225 0.140
26 Fe++ 26 55.84 2 0.227 0.140
27 Co+++ 27 58.93 3 0.225 0.135
28 Ni 28 58.69 2 0.223 0.163 0.135
29 Cu++ 29 63.55 2 0.227 0.140 0.128
30 Zn++ 30 65.40 2 0.224 0.139 0.135
31 Ga+++ 31 69.73 3 0.241 0.187 0.130
32 Ge 32 72.64 4 0.232 0.125
33 As--- 33 74.92 -3 0.225 0.185 0.115
34 Se-- 34 78.96 -2 0.218 0.190 0.115
35 Br- 35 79.90 -1 0.205 0.165 0.114
36 Fe+++ 26 55.84 3 0.227 0.140
37 Rb+ 37 86.47 1 0.315 0.244 0.235
38 Sr++ 38 87.62 2 0.294 1.480 0.191
39 Y 39 88.90 2 0.271 1.120 0.180
40 Zr 40 91.22 2 0.257  0.155
41 Nb 41 92.90 1 0.145
42 Mo 42 95.94 1 0.145
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This 6-fold span of atomic sizes has implications for collision rates, viscosity, and transport.

4.4.3 IONS, POLYATOMIC  

1. TYPE = {  polyatomic ions }

2. TRAITS = { name  atomic_number mw   atomic_ radius   hydrated_radius   dipole  valance  mobility.e 
mobility.m  }

3. DIST = { list of typical concentrations for various species> cell types> compartments; including sea water, 
pond water }

4. Special treatment of ions in water, diffusion, electrophoresis, movement through pores, capacitation, loss of 
electrons

TABLE 8: MONATOMIC RADII COMMONLY 
ENCOUNTERED IN BIOLOGY

Element radius ratio2H

F 0.57 1.16
O 0.65 1.33
N 0.75 1.53
H 0.79 1.61
C 0.91 1.86
Cl 0.97 1.98
S 1.09 2.22
P 1.23 2.51
I 1.32 2.69

Si 1.46 2.98
Zn 1.53 3.12
Mg 1.72 3.51
Fe 1.72 3.51
Mn 1.79 3.65
Al 1.82 3.71
Li 2.05 4.18
Na 2.23 4.55
Ca 2.23 4.55
K 2.77 5.65
Ba 2.78 5.67
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TABLE 9: PARTIAL LIST OF POLYATOMIC PARTICLES 
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115 NH 15.0 -2
116 NH2 16.0 -1
117 OH- 17.0 -1
118 NH4+ 18.0 1
119 H3O+ 19.0 1
126 CN- 26.0 1
128 CO 28.0 2
130 N2H3 31.0 -3
131 CH3O 31.0 -3
132 NHOH 32.0 -3
133 HS- 33.0 -1
134 N2H5+ 33.0 -1
142 OCN 42.0 -1
143 CH3CO 43.0 1
144 CS 44.0 2
145 C2H5O 45.0 3
146 NO2- 46.0 1
147 ONO 46.0 1
148 NS 46.0 3
149 PO 47.0 3
150 CH3S 47.0 -3
151 SO 48.0 -4
157 CH3CO2 59.0 -1
158 CO3-- 60.0 -2
159 CO3 60.0 -2

Urea 160 (NH2)2C1O1 60.1 0
161 HCO3 61.0 -1
162 C2H5S 61.0 3
163 NO3- 62.0 -1
164 PS 63.0 3
165 SO2 64.0 2

TMAO 175 C3H9N1O1 75.1 0
176 N2O3 76.0 -4
179 SO3 80.0 0
180 PHO3 80.0 0
181 HSO3- 81.0 1
182 PH2O3 81.0 1
188 C2O4 88.0 0

lactate 190 C3H6O3 90.1 -1
195 PO4--- 95.0 -3
196 SO4-- 96.0 -2
197 HSO4- 97.0 -1
212 S2O3-- 112.0 -2

betaine 217 C5H11N1O2 117.1 -1
239 ClO 138.9 0
243 IO 142.9 2
259 IO2 158.9 0
271 ClO2 170.9 4
287 ClO3 186.9 2
303 ClO4 202.9 0

Carnosine 326 C9H14N4O3 226.2 -1
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4.4.4 SALINE SOLUTIONS  

 As stated above, water is a challenge by virtue of the large quantity of molecules.  The simplest hard sphere particle 

systems are tractable to about 1E7 quantities of elements in a common computer.  That is, patch models qualify. 

Attempts to model saline as it pertains to a neuron have employed diffusion by hard sphere collisions.  Later 

additional features were added:  an electric current [83]  and Monte Carlo methods [84], radial distribution 

functions, and force field  for n-body solutions have been described by [85].  Saline solutions are driven by at least 

five forces:  thermal vibrations,  linear momentum, angular momentum, concentration gradients, electrostatic force 

fields acting upon all charged particles, and the bindings and unbindings of solvation which form shells of varying 

radii around charged particles.   In addition, some bound particles may be transported across the membrane.

There must be a container, and there will be one or more interaction types with that container wall:  reflection, 

absorption, or transport through it.   Lipid membranes are very good insulators, with resistances to ions in the 

vicinity of 100 ohms / m^2.    ( = 1E7 ohms per cm^2 = 1E14 ohms / micron^2 = 1E20 ohms / nm^2)  

As long as a cell is alive, ion tonicities are different on each side of the membrane (plasma lemma).  These tonicity 

differentials produce potentials in voltage and concentration that are sufficient to drive a variety of cellular 

functions, especially ion transporters and flux through ion channels.  

Full electrodynamic simulations employ all four of Maxwell's equations.  However at the molecular level the 

magnetic forces are minuscule which leaves only the two electrostatic equations.[86]

The mean squared velocity of an ion in thermal equilibrium does not decay due to friction, nor does it accelerate due 

to the force field.  It engages in endless elastic collisions but remains near an average velocity of  <v^2> = 

3*boltz*kelv/mass.  The velocity distribution of each ion type, in liquid water, is determined by Boltzmann's 

velocity distribution as a function of mass and temperature:

vel = 4*pi*v^2 *(0.001*mass/(2*pi*boltz*kelv)).^(3/2)*exp(-0.001*mass*v^2/(2*boltz*kelv));  
The modal velocity of water at 293K is 505 m/s; the mean free path is 1E-9 m.

Individual ion velocities can be realized by instantiating its Cumulative Distribution Function (CDF) This action is 

sometimes referred to as the propagator function.  It is generated as the integration of the PDF of velocities for each 

type.
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4.4.4.1 Saline resistance/Conductivity  

Understanding ion behavior at the nanoscale requires knowing mean free paths and effects of a charge field through 

water.  While gaseous systems enjoy copious studies, the mathematics of liquid state particles is sparse.    Monte 

Carlo methods are perhaps the most common method of modeling liquids, but these do not track individual particles. 

Individual particles become important when serving as messenger molecules, i.e. serving as information carriers. 

While it is possible to avoid tracking individual particles, whatever short cuts might be realized through analytics 

might fall short of the information capacity to communicate between the actors, and also may squelch emergent 

phenomena that might be vital to biological arrangements.  Given how little is known about information processing 

in neurons, the discovery of such emergent phenomena is highly regarded. 

The concepts of mean free path and incompressibility of liquids are mutually exclusive concepts. 

A straight forward physics approach calculates the electrostatics each time step, and derives the net force on each 

charged particle.[83]  These forces accelerate the particles until they collide with another particle, charged or not. 

Most frequently they collide with water.  Conservation of momentum dictates that collided particles reflected at an 

angle that resolves the transfer of momentum along the axis of collision.  Collisions disrupt coherency, thus 

appearing as deceleration for a coherent group.  By this means, three dimensional flux is accomplished, and there is 

no need for a viscosity factor to set maximum velocities for particle types.  Viscosity, for purposes of this model, is a 

function of size, temperature and density.  Long chains that can knot up to increase viscosity, and charge stiction are 

not considered.

When examining phenomena at the molecular level, ideal gas laws do not hold.  Even Ohm's law becomes non-

ideal.  [87]  The effective radii of ions vary with their environment.  Pauling found that Van der Waals radii closely 

match the ionic radii, before solvation.[88]   This is where continuum theories must break down, and quantum 

effects begin.   When a neurotransmitter molecule nears a complex protein, the fixed charges in the protein come 

into play, and these charges may be altered by induction.  As contact is made, shape plays a critical role, and 

Molecular Dynamics may be necessary to depict an accurate account of what is happening.  Some models switch 

modes from continuum theory to stochastic dynamics as a particle approaches a fixed protein at the Debye 

interaction distance.[87]   This is usually somewhat less than 1nm.  
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While stochastic dynamics can capture the statistical properties of the fixed large proteins it does not track 

individual particles in diffusion.  It is assumed that the largest mobile particles are too slow to be significant in NIP. 

Diffusion times between actors must be fast enough to execute the functions of information processing in a timely 

manner.

For ion flow through an ion channel it is necessary to take into account a variety of three dimensional charge effects 

along the path.  They create energy barriers and repulsive accelerators.  They are believed to competitively strip off 

the water molecules of hydration such that the bare ion moves faster and more selectively through the pore. 

Brownian Dynamics has been employed to model ion channels but falls short of generating the energy barrier 

profiles needed for accurate depiction.  So far, only the most detailed structural models of the pore, e.g. Molecular 

Dynamics, have been predictive in ion flux as a function of protein conformation.[87] 

The underlying physical concepts of translation in fluids are four:  diffusion, charge field drift, chemical kinetics, 

and solvation (which dynamically alters the size and mass of each ion).  To the extent that a model can faithfully 

represent these, it is likely to have excellent predictive value.  The simple reason why this is never done for a 

complete whole cell is the immensity of the computational load.

Saline is represented as a thermally driven set of particle velocities interrupted by collisions with water molecules. 

This makes for very short mean free paths between momentum transfers.  At 293K, the equivalent mean free path is 

about 1E-9 m.  We speak of equivalent mean free paths because in a incompressible fluid the path must be 

serpentine.  It is the change in net vector that represents an equivalent collision.  Conductivity of saline is 

proportional to the concentration of charges in solution, times the cross-sectional area of conduction.  But a 

nonlinearity occurs when the sources and sinks are significantly smaller than the cross-sectional area of the 

conductor path, because the electrical forces to concentrate at the sink are significantly greater than the force 

necessary to effect drift along the conductor path.  Therefore the local conditions are dominate in determining point 

to point resistant, with distance apart having little effect.  Heavier mass ions move more slowly, according to 

Boltzmann's distribution of velocities, and therefore must carry less current (charges per unit time arriving at the 

sink).  



220

The Nernst Equation is fundamental to neural function.  It expresses the electrical pressure through an ion channel as 

applies to each type of ion.  It relates the ratio between the two concentrations to voltage, proportional to absolute 

temperature.  Unlike Ohm's law, this voltage equation is non-linear, being derived from first order chemical kinetics.

V = K*kelv*log (C1/C2)/z, 

and derives directly from the electrostatics of charge, where z = valance of the ion.  Because Nernst forces are 

critical to ion flux, the extracellular fluid is a necessary part of the model of a neuron.

The velocities of individual ions as an ideal gas are predicted by the Boltzmann  distribution equation: 

n = n0*exp(-e*v / (k*kelv), where  n0 = average density of particles in solution; 

In a liquid, such velocities are not apparent due to the high packing density, which by virtue of numerous collisions, 

randomizes the path of each particle.  The net movement by random walks is considerably slower that a ballistic 

trajectory.  At  the macro scale, the high velocities appear to be clipped, as per the measure of viscosity, about 1000 

times slower.    In aqueous solution, the mean squared velocity of an ion is:  

<v^2>  = 3 * boltz * kelv / mass;

4.4.5  LIGANDS  

1. TYPE = {urea TMAO lactate Gly GABA  Ach GLU HIST NE 5HT  Epi DOPA  cAMP  cGMP  IP3  ADP 
ATP}

2. TRAITS = { name   mass  size  charge  mobility}

3. DIST = {conc's intracell extracell actor_bound and sequestered in vesicles } 

4. PATH = physiologic domain for all relevant factors: kelv pH concs, mods, kelators, bindings, membrane 
polar heads, production rates, release mech's and speeds, re-uptake mech's and speeds, 

Ligands may be any mobile particle that is capable of binding to an allosteric site on an actor.  For convenience, 

within the context of this model, the term ligand will be narrowed to apply to particle types with zero charge, so as 

to address that group of particles whose motion is driven by diffusion, not by drift.  The ligands of primary interest 

are the extracellular hormones and neurotransmitters, and the intracellular second messengers.  That set of second 

messengers called G-proteins require special treatment because they are known to move along the surface of the 

membrane, rather than diffuse 3-dimensionally.  This may be due merely to the fact they are small molecules with 

charge, and become capacitated at the membrane, or may be due to more complex mechanisms.  In either case, the 
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motion of these particles more efficiently arrives at target molecules than they would when diffusing in 3-d.   G-

proteins consist of alpha, beta and gamma subunits, originating from at least 33 genes.  The combinations are too 

many to catalog here.  Hopefully, a G-protein system can be represented as a 2-dimensional diffusion along the 

membrane, or as 1-dimensional vectors straight towards their target actors.  
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TABLE 10: PARTIAL LIST OF LIGAND PARTICLE TYPES
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136 Gly 75 GlyR Cl
137
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139 hpo4 HPO4 96
140 h2po4 H2PO4 97
141
142 AABA 103
143 GABA 103 AMPA, NMDACl
144
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146 Ach 130 nicotinic Na K Ca
147 Glu 147 AMPA, NMDANa K Ca
148 Hist 153
149 NE 166 Beta, Alpha2 G-protein
150 5HT serotonin 172 5ht3 Na K
151 Epi 180
152
153 dopa 194
154
155 cAMP G-protein1 chans K down Ca up
156 cGMP G-protein2 chans Ca down
157 G-protein3 chans K up
158
159 ADP
160
161 PIP2 Kg chan K
162 ATP purineP1 Na K
163 MgATP
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4.4.6  MEMBRANE,   AS MATERIAL  

Membranes consist of self assembling molecules of lipids. The most common of these are:

lipid neuron plasma 
lemma

thickness protein affinity capacitance dielectric 
strength

cholesterol 1 to 20 %

sphingomyelin 3 to 12 %

phosphatidylcholine 30 to 60 %

phosphatidylethnaolamine 15 to 25% 

phoshatidylserine 2 to 8 %

phosphatidylglycerol 0 to 2 %

phosphatidylinositol 0 to 12 %

diphosphatidylinositol 0 to 2 %

phosphatidic acid 0 to 1 %

glycolipids 10 to 20 %

TABLE 11: MEMBRANE LIPID CONSTITUENTS

The types of lipids found in membranes may number more than 1000, according to Raetz, 1986.   Values for blank 

fields are not yet found to be reported.

Membranes also consist of 20% to 50% protein, but these proteins are best treated as separate entities, inserted and 

removed actively from an otherwise relatively stable lipid matrix.  For purposes of this model, all lipids are 

considered as membrane, and all proteins are considered as actors (see below).   The above table is incomplete, as 

the author has not found reports of variations in capacitance and thickness as per the listed chemical constituents.  It 

is probable that the thickness is proportional to the molecular hydrocarbon backbone lengths, and for modeling 

purposes this is an acceptable point of departure.

The dielectric constant of a vacuum =1; for a lipid membrane  Dm = range (3 : 5)

The capacitance of lipid membranes  Cm = range (0.4  : 1.0) F / m^2.
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Membrane (phosphadydalcholine +cholesterol) capacitance:  5.4E-7 F/cm^2.[89]

The resistivity of pure lipid membranes  Rm = range (1 : 1E3) ohm m^2

Most relevant to the model, data is needed of the capacitance of the various mixtures of lipids tabulated above. 

Ideally, one could parametrize the capacitance value per unit area, and a model function would calculate what 

mixture of lipids would result in that capacitance value.   

4.4.6.1 Membrane Thickness  

Membrane thickness determines the minimum distance opposite charges will be held apart.   This distance 

determines the maximum force of attraction between the those particles (per the inverse square of that distance). 

The maximum force determines the maximum acceleration, and the maximum acceleration determines the terminal 

speed, as a function of viscosity.  The maximum speed determines how small dt must be to detect collisions. 

Because the triglycerides have polar heads, and voltage differential across the membrane will tend to charge those 

heads.  This has the effect of increasing the capacitance by reducing the effective distance between the two surfaces. 

In effect the charge density has penetrated the membrane somewhat.  So long as the non-polar portions of the lipid 

membrane are strong enough that the charges cannot break through the membrane, then the membrane is said to 

have a high dielectric strength.  The voltage across the membrane is usually 0.1 volts and never greater than 0.5 

volts.  The thickness of the membrane is 7.5E-9 .. 1.25E-8 m.  The portion of that thickness fatty acid polar heads 

comprise is about 2E-9 m on each surface of the membrane, leaving a minimum charge free insulative barrier of 

only 3.5E-9 m, based upon stained tissue viewed under the electron microscope.  But staining techniques for the 

electron micrographs may exaggerate the polar layer thicknesses.  Molecular space models suggest the pure lipid 

center portion is at least 4.5E-9 m.  The polar heads of the fatty acids form a thin film conductor of tethered but 

somewhat mobile electrical charges.   Though tethered, the flexibility of the fatty molecule allows the polar head to 

move as though a free ion.  This movement supplements the capacitive effects. This increases capacitance because 

the polar heads are closer together across the membrane than the ions can get.  In computer models, over 

representation of the thickness of the pure insulative portion is of little consequence, but too thin leads to excessive 

computation and possible breakdown of the membrane.  The thinner is the membrane, the greater the attractive 

forces, which increase acceleration, which increase maximum velocities, which require shorter dt values to model 

without physics-violating behavior.
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4.4.6.2 Membrane Structures (rafts)  

Note that the capacitance values are for lipids only, not taking into account the variously spaced embedded proteins. 

Increasing the protein content reduces the lipid area remaining for capacitance.  Because proteins have charged 

radicals all along their length, it is a bit like having a “polar head” that penetrates all the way though the membrane. 

It then acts as a high pass filter, passing high frequency charge shifts, but muting low frequency shifts.  Put another 

way, voltage changes tend to put shear forces on the molecule.

The lipids, and the proteins “floating” in those lipids, can diffuse laterally.  Vertical diffusion (from inside to outside 

the cell, or vice versa) is extremely rare.  Floating molecules may be tethered together by protein strands to form 

rafts.  Protein molecules may be tethered to underlying structures to form cellular “poles” or stationary specific 

function sites.

Protein affinities are relevant to the existence and operations of second messengers.   Charged messenger molecules 

tend to move via 2-dimensional “diffusion” along the inner surface of the membrane, and therefore encounter target 

ion channels at a high rate.   Uncharged messenger molecules tend to diffuse 3-dimensionally to all parts of the 

compartment, and are useful for broad spectrum effects (multiple types of targets located both in the membrane and 

at reticulum membranes below).  

4.4.6.3 Transmembrane Transport  

Passage through the membrane by ions or molecules is possible by five means:

1. Dissolution into and through lipids.   EX  anesthetics

2. Open Pores made of protein subunits.  EX  water through aquapores

3. Ion passage through gated channels.  EX  KcaV channels which pass K+ when CA++ is present.

4. Gradient driven exchangers and co-transporters.  EX  all gradient driven exchangers and co-transporters

5. Energy-driven pumps:  EX sodium ATPase pumps

A sixth possibility is mentioned:  tears or perforations in the membrane by mechanical damage or by disease.  But 

these are not sustainable and kill the cell.

The forces attempting to move particles across a membrane are three:  concentration gradient, charge gradients.



226

phi = potential gradient                %
E = del(phi);                                 % defines the 3-d force field due to charge.   phi>0 indicates anions
rho = quant ions/m^3                   % density of the ions
vd = t*e*E/mass                           % drift velocity at time t, until a collision occurs
g =  rho*e*vd;                               % conductivity of the electrolytic solution

Membrane conductance:  1.381E-6 /ohm cm^2  (resistance: 1.85E14 ohms/micron^2).[89]

Each polar head on a lipid molecule occupies about 7E-9 m^2 of membrane area

Each ion channel occupies about 3.8E-8 m^2 of membrane area.  This allows the calculation of remaining capacitive 

area as ion channel density is increased.

4.4.7 KEY PROTEINS  

A neuron must have information inputs.  These may be electrical, but the dominant mode is chemical.  Although 

there are many variations, let us consider the standard case.  A chemical messenger molecule binds to a receptor, the 

first type of membranal actor.   The receptor triggers events that either open an ion channel or send out messenger 

molecules that modulate ion channels.  Specialized G-protein second messenger systems are the second type of 

actor.  Ion channels are the third type of actor.   They are sufficiently active that they often set off chain reactions 

that cascade down along the membrane.  There are often mixed types of channels along the way.  Eventually the 

neuron must output its information.  This is usually accomplished by vesicles, the fourth type of actor.  They emit 

chemical messengers when triggered to do so.  Because energy was depleted in this process, especially 

concentration gradients are reduced, pumps are needed to restore “rest conditions”.   The “rest state” is defined as 

that state which is ready to receive and process the next incoming signal.  Pumps are the fifth actor type.

4.4.7.1 Receptors  

Receptors have been designated as Actor class 1.

1. TYPE = {  A1. type#  }

2. TRAITS = { name species family modulator_profile kinetics conductivity_profile releasing_function 
messenger poles }

2a.  bindings with stimulus molecule,  function of ligand concentration

2b.  release/catalysis of messenger molecules,  how many? 
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2c.  release of stimulus molecule, must free up the receptor for next time.  Is there a refractory period?

2d.  reset messenger generator. The messenger molecules must somehow be recycled

2e. messenger target types.  Where are the messenger molecules going to? 

2f. messenger velocity to targets.  How fast, How far?

2g. messenger limits (maximum distance).  messengers cannot be allowed to wander around (spurious 
signals)

2h. messenger reset speed, the entire second messenger system must recycle to reset

3. DIST = { membrane axial distributions complexes development_age }

4. PATHOS = physiology/pathology domain for all relevant variables: kelv, pH, concs, mods,

The entire receptor and its second messenger system acts as a fan-out leverage to some quantity of ion channels.  It 

takes a certain minimum of time to accomplish this.  There must be some time spread to the arrivals at the target 

channels, and the duration of the modulation effect upon them must be limited.  The receptor must get ready for the 

next signal, and there is some minimum time necessary to complete a message cycle.  Can the receptor reset faster 

than the channel?  The system would work best if the receptor took slightly longer to reset than the channels.  That 

way the receptor would never waste a whole batch of messengers being sent to channels that are still lingering in a 

non-receptive state.

Receptors bind chemical messenger molecules allosterically.  The resulting conformational change in the receptor 

plus the subsequent release time determine the period of the transduction cycle.  The inverse of this period is the 

maximal frequency that a single receptor can receive.  To avoid echo signals after the receptors release the 

neurotransmitter molecules, there must a local, rapid re-uptake mechanism, by pumps, catalysis, or other means of 

sequestration. 

The significant function of receptors is that they kinetically bind certain messenger molecules allosterically (a 

stochastic process, not a deterministic one); and this binding causes a shift in the state transition probabilities for 

conformational changes of the large protein assembly of the receptor.  

The life sciences literature classifies receptors into metabotropic and ionotropic types.  The ionotropic types are 

actually part of the ion channel, while the metabotropic receptors are stand alone membranal proteins.  Because most 

or all ion channels may be modulated by ligands and force fields, the term “ionotropic receptor” is just another name 
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for “ligand modulated ion channel”.  For purposes of modeling, it is convenient to reclassify all ionotropic receptors 

as ion channels.  In this paper, all mention of receptors refers to metabotropic receptors.  

4.4.7.1.1Second Messenger Representations
These are associated with their affiliated Receptor mechanisms.  There have so far been found 20 types of G-protein 

systems that give leverage to a neurotransmitter signal arriving at a metabotropic receptor.

The change in state in (metabotropic) receptors alters the release of secondary messenger molecules, that may be 

produced enzymatically or by simple release.  There are at least 20 found “G-protein” chemical systems by which 

receptors leverage their signal into multiple messenger molecules.  These messengers may diffuse two 

dimensionally, trolleying along the surface of the membrane; or diffuse three dimensionally in the cytosol.  Such 

secondary messengers may bind directly to some ion channel types or may bind to some intermediary enzyme which 

further leverages the signal, by producing multiple output molecules for every one input.  By such multiple 

leveraging, a ratio of up to 30,000 :1 may be reached.

For modeling purposes, we can say the receptor is a finite state machine of transduction.  It usually does not operate 

as a simple one-to-one  pass through.  It may delay signal transmission, combine two or more signals logically, 

prolong transmission, or be modulated in its response by other allosteric bindings.  It most often serves to leverage 

transmission by releasing many times more messengers than it received.  Its broadcasting capacity is large, but 

comes at the price of several milliseconds delay for each step to accomplish this.  Therefore, simple linear models of 

receptors cannot mimic the behaviors of the more complex receptors.[90]

The mechanisms and timings by which a metabotropic receptor change conformations and eventually release 

messenger molecules shape the ion channel response.  Additionally, a flood of messenger molecules from a receptor 

will likely prolong the channel opening where a single messenger molecule would not.  These are significant effects 

impacting the the phase and shape of action potentials, and even if there will be an action potential.[91]

Some receptors participate in longer term processes, like learning.  They are part of logical systems that trigger 

restructuring of the synapse when certain conditions are met.  In particular NMDA and AMPA receptors are found to 

be instrumental in neuron plasticity.  They trigger more than one response, some moderately fast and others much 

slower (up to 28 days).  In addition to the slower restructuring of synapses, they may also participate in modulating 
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the fast ion channel responses to signals.[92]   Long term potentiation is accomplished via elaborate chemical 

systems involving AMPA and NMDA receptors.  To model the effects of this system upon ion channel distributions, 

receptor quantities, synaptic growth and shape, generation of new neural processes and synapses - requires simulated 

time of minutes to days.[93]    

Real time information processing requires 1E-4 s (or less) time steps, and plasticity requires perhaps weeks of 

simulated time.  Practical limits in computational load dictate that action potentials be modeled separately from 

plasticity. The compass between the fastest processes and the slowest is sufficiently great to make it rare for them to 

be accomplished in the same model.

Receptors may have more than one allosteric binding site for signal inputs; and may have more than one type of 

output messenger.  One receptor type may impact several types of ion channels and  pumps.  They may affect 

numerous other processes off the membrane (development, housekeeping, turnover, plasticity, etc.) [94]

Ligands may bind to receptors as a second order reactions.  When there are two sites, and the sites have identical 

affinities, the order remains second order.  But as Hill described, when the affinities are unequal, the reaction rates 

fall short of ideal, effectively reducing the reaction to some fraction less than 2nd order.  

                                                           Bound fraction = conc.B^2 / (conc.B^2 + dissoc.B^2);

The Hill EQ  varies the exponent :    Bound fraction = conc.B^h / (conc.B^h + dissoc.B^h);    %  where 1>h>2;

Receptors are usually comprised of about 5 subunits.  Some receptors have all five subunits the same (homomeric), 

and other are something of a  “mix and match” of subunit types to vary the functions (heteromeric).  There are at 

least 20 different G-protein systems that communicate between receptors and other actors, to determine modulator to 

channel function.  A single G-protein system may involve ten or more stationary proteins that are modulated by a 

single incoming event, and involve 3 or more messenger molecule types moving between the ten.  Receptors may 

modulate ligand-gated ion channels and/or voltage-gated channels.[95]   Thus, the naming of receptors and channels 

after one dominant modulator is usually an over-simplifications of their complex interactions.
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The receptor-messenger complex may be repeated in series to effect a cascade, whereby one type of receptor has a 

messenger output that becomes the ligand input for another (nearby) type of receptor.  In this way, the information 

fan out of the 2 G-protein systems are multiplied.  

The operation of a second messenger system requires the physical supply of the precursor particles, the turning on 

and off of a catalytic process which converts the precursor particle type into the messenger type; the diffusion of the 

generated particles towards the target bind sites on neighboring actors; the bindings of messenger particles to those 

actors with corresponding bite sites (high affinities for that messenger type). 

4.4.7.1.2Receptors on Ion Channels
Many ionotropic channels have multiple modulator sites, for ligands such as Mg++, Ca++, Zn++, Cu++, H+, 

phosphorylation, and glycosylation.  These are allosteric modifiers of ion channel opening, and they usually reduce 

opening probabilities.

4.4.7.2 Ion Channels  

Ion channels have been designated as actor class 3.

1. TYPE =  A3.type# = { 1100 types over at least 43 families, according to Hille }

2. TRAITS = { name species family subunits modulator profile kinetics conductivity profile gating function 
poles }

3. DIST = A3.type#.dist# = { membrane axial distributions complexes development_age }

4. PATHOS = physiologic domain for all relevant variables: kelv pH concs, mods

Channels are more thoroughly studied than receptors.  Sufficient data is available to organize the following table.  In 

the literature the kinetics and modulation effects upon state change probabilities are usually shown combined into 1 

kinetic scheme.  For modeling purposes these two must be separated because state to state changes require an s x s 

square matrix and special treatment of the diagonal (hold states); while modulation effects requires a B x d 

rectangular matrix and no special treatment of the diagonals.   Bind/Unbind probabilities are contained in R.  State 

change probabilities are contained in Q.  These two are interlinked.  They in fact point to each other.  The output of 

R points to a page in Q.  The output of Q points to a page in R.
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TYPE Chan 

Name of type subunits modulators kinetics Gating func Conductivity

AQP/MIP R3.001 Q3.001 O3.001 G3.002

CIC R3.002 Q3.002 O3.002 G3.002

CFTR R3.003 Q3.003 O3.003 G3.003

SUR R3.004 Q3.004 O3.004 G3.004

Kir R3.005 Q3.005 O3.005 G3.005

Kv R3.006 Q3.006 O3.006 G3.006

TRP R3.007 Q3.007 O3.007 G3.007

CNG R3.008 Q3.008 O3.008 G3.008

Cav R3.009 Q3.009 O3.009 G3.009

Nav R3.010 Q3.010 O3.010 G3.010

GluR R3.011 Q3.011 O3.011 G3.011

GABAaR R3.012 Q3.012 O3.012 G3.012

GlyR R3.013 Q3.013 O3.013 G3.013

nAChR R3.014 Q3.014 O3.014 G3.014

5HT3R R3.015 Q3.015 O3.015 G3.015

IP3 R3.016 Q3.016 O3.016 G3.016

RyR R3.017 Q3.017 O3.017 G3.017

ENaC/degen R3.018 Q3.018 O3.018 G3.018

Connexon R3.019 Q3.019 O3.019 G3.019

Proton Ch R3.020 Q3.020 O3.020 G3.020

Cl(Ca) R3.021 Q3.021 O3.021 G3.021

mAchR R3.022 Q3.022 O3.022 G3.022

GlyR - NMDA R3.023 Q3.023 O3.023 G3.023

Kv1.1 R3.024 Q3.024 O3.024 G3.024

Kv2.1 R3.025 Q3.025 O3.025 G3.025

Kv3.1 R3.026 Q3.026 O3.026 G3.026

Kv4.1 R3.027 Q3.027 O3.027 G3.027

Kv5.1 R3.028 Q3.028 O3.028 G3.028

Kv6.1 R3.029 Q3.029 O3.029 G3.029

Kv8.1 R3.030 Q3.030 O3.030 G3.030
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TYPE Chan 

Name of type subunits modulators kinetics Gating func Conductivity

Kv9.1 R3.031 Q3.031 O3.031 G3.031

HCN R3.032 Q3.032 O3.032 G3.032

CNG R3.033 Q3.033 O3.033 G3.033

eag R3.034 Q3.034 O3.034 G3.034

BK(Ca) mslo R3.035 Q3.035 O3.035 G3.035

SK(Ca) SK1 R3.036 Q3.036 O3.036 G3.036

KCNQ R3.037 Q3.037 O3.037 G3.037

Kir1 R3.038 Q3.038 O3.038 G3.038

Kir2 R3.039 Q3.039 O3.039 G3.039

Kir4 R3.040 Q3.040 O3.040 G3.040

Kir5 R3.041 Q3.041 O3.041 G3.041

Kir7 R3.042 Q3.042 O3.042 G3.042

Kir6.2 - ATP R3.043 Q3.043 O3.043 G3.043

Kir3 - GTP-aa R3.044 Q3.044 O3.044 G3.044

TWIK R3.045 Q3.045 O3.045 G3.045

KA R3.046 Q3.046 O3.046 G3.046

Nav1.1 R3.047 Q3.047 O3.047 G3.047

Nav1.2 R3.048 Q3.048 O3.048 G3.048

Nav1.3 R3.049 Q3.049 O3.049 G3.049

Nav1.4 R3.050 Q3.050 O3.050 G3.050

Nav1.5 R3.051 Q3.051 O3.051 G3.051

Nav1.6 R3.052 Q3.052 O3.052 G3.052

Nav1.7 R3.053 Q3.053 O3.053 G3.053

Nav1.8 R3.054 Q3.054 O3.054 G3.054

Nav1.9 R3.055 Q3.055 O3.055 G3.055

Ca1.x HVA L R3.056 Q3.056 O3.056 G3.056

Ca2.2 HVAN R3.057 Q3.057 O3.057 G3.057

Ca2.1 HVAQ R3.058 Q3.058 O3.058 G3.058

Ca2.3 HVAR R3.059 Q3.059 O3.059 G3.059

Ca3. LVA T R3.060 Q3.060 O3.060 G3.060
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TYPE Chan 

Name of type subunits modulators kinetics Gating func Conductivity

TRP R3.061 Q3.061 O3.061 G3.061

CRAC R3.062 Q3.062 O3.062 G3.062

GABA R3.063 Q3.063 O3.063 G3.063

Gly R3.064 Q3.064 O3.064 G3.064

Glu R3.065 Q3.065 O3.065 G3.065

Gly NMDA-Ca R3.066 Q3.066 O3.066 G3.066

nAch R3.067 Q3.067 O3.067 G3.067

mAch R3.068 Q3.068 O3.068 G3.068

Ry-Ca R3.069 Q3.069 O3.069 G3.069

IP3-Ca R3.070 Q3.070 O3.070 G3.070

SO Ca R3.071 Q3.071 O3.071 G3.071

TABLE 12: CHANNEL TYPE DATA MATRICES

 Modulation tables map possible ligand bindings to each allosteric site of a molecule and modulate the forward and 

backward binding rates as a function of molecular state.  The Q matrices contain state transition probabilities as a 

function of current binding combinations and prior state.  The O table maps internal state to external expression (e.g. 

channel openings, pump transports, etc.)   The O values are maps from internal configuration to external effect.  The 

G values are conductivity profiles for channels, catalytic rates for receptors, pumping rates for pumps, and vesicular 

contents for vesicles.

Channel type variations may be produced by:  alternative splicing, subunit permutations, phosphorylation, disease-

induced alterations, or pharmacological blocking and agonist agents.[96] 

4.4.7.2.1Channel Subunits
Channels are built of four to six protein subunits around the pore, and sometimes additional subunits attached 

thereto.  Each channel gating function belongs to an individual subunit type.  It may be efficient to maintain the 

details of channel function on a subunit basis, and define a channel as a list of subunits from that library. Doing so 

feeds into the logical results of multiple openings and closings. 
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Some of the subunits assemble so as to form a tight grid of pores from one cell straight into a neighboring cell, with 

no leakage to the extracellular fluid.  These gap junctions allow electrical conductivity between cells.[97]   They 

consist of hundreds of channels arranged in a tight circular grid, and are stacked two high, to accommodate the two 

plasma lemmas of adjacent cells.

Available subunits data is incomplete.  When available, it may facilitate mix-and-match characteristics of 

hypothetical receptors. 

4.4.7.3 Vesicles  

1. TYPE = A4.type# = { size contents staging triggers restore_speed  }

2. TRAITS = { name species family modulator_profile kinetics conductivity_profile releasing_function 
messenger poles }

3. DIST = A4.type#.dist#  =  { membrane axial distributions complexes development_age }

4. PATHOS = physiologic domain for all relevant factors: kelv pH concs, mods,

Vesicles are the output mechanism of the neuron.  They are extremely complex systems of molecules that effect : the 

construction of vesicles; filling them with a mixture of neurotransmitters; the hair trigger release of the vesicular 

contents via exocytosis; and the recycling of the membrane for the next cycle.  In addition, there are other 

mechanisms found: vesicular delivery conveyors for rapid fire (ribbon synapses)[98][99]; partial releases (kiss and 

run); and re-uptake of the neurotransmitter soon after its release (est 1e-2 s).  All vesicles found to date are triggered 

by one or a few calcium ions.  The calcium binding sites of vesicles are held physically very near to the voltage 

gated calcium channels that will admit calcium into the cell, insuring rapid and reliable messenger communication. 

Despite their complexity, vesicles are primarily a chemical transduction mechanism, not performing much of an 

information processing role except fan out.  They do introduce some lag, some temporal spread, some variability of 

contents quality and quantity, and some randomness in the number of vesicles released per action potential.  Vesicles 

are not often portrayed as being allosterically modulated, except as triggered by the presence of Ca++.  But it is 

certainly possible.  Modulators could theoretically slow the release of vesicles, reduce or increase the contents of a 

vesicle, randomize whether or not a vesicle will be released.    All of these can be modeled with the components 

already described above.   The most dominant form of vesicle modulation is the tight control of Ca++ ions in the 

vicinity.[100]
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The modeling of a single vesicle in molecular detail would be a significant project unto itself.  Therefore, vesicles 

are not modeled in detail as part of whole cell models. They are simplified.

Although vesicles and metabotropic receptors appear to be quite different in shape and methods, they are 

surprisingly similar wrt NIP.  

The conductivity profile G of particles available to an actor assists in setting up the relationships between actors and 

particles.  Just as R concerns itself with particles as input devices, G concerns its self with particles as output 

devices.   G determines the quantities and ratios of particles to be processed.  In the case of a receptor, G reveals the 

type and rate of messenger release.  In channels, G reveals the  through the pore conductivity values of each particle 

type.  For vesicles G reveals the contents of each vesicle. And for pumps G reveals which particles are to be 

transported.   A non-zero variance value causes randomization of the actual particle counts per release packet.  G is 

based upon a single master list of all the particle types in the system.  This list is ordered by molecular weight, and 

the position in the vector indicates the type of particle.

G =  

H Li Be B C N O F Na Mg Al Si P S Cl K Ca
0 0 0 0 0 0 0 0 5 0.1 0 0 0 0 1 1 1  

...

Fractional values in G force an instantiator to randomize the transport, with the indicated probability of success. 

In a mass conserving system, particles must be retrieved via pumps and sequestration.   In the case of a sparse 

particle system, it may be necessary to set up a reverse vesicle process, whereby the receptor sets very high affinity 

radii within which it collects the particles it needs for future release. 

4.4.7.4 Ion Pumps  

This Class includes electrogenic pumps, co-transporters, exchangers, passive transporters.  

Energy sources may be chemical or gradient.

1. TYPE =  A5.type#  = {  Those transporters which participate in determining the ion and ligand 
concentrations in each compartment.  
There are about 20 type of pumps considered for modeling}

GABA Ach Glu Hist 5HT Epi Dopa cAMP cGMP G2 G3 G4 I1 ADP ATP MgATP
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
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2. TRAITS = { Stage1 Affinity1 Bind1 Stage2 Affinity2 Bind2 state_kinetics  un/bind_kinetics  poles  }

3. DIST = A5.type#.dist#  =  { membrane axial distributions complexes development_age }

4. PATH = physiologic domain for all relevant factors: kelv pH concs, mods,

name in-bind out-bind energy 
source

mods kinetics gating

NaK 3 Na 2 K 1 ATP R5.001 Q5.001 O5.001

Ca high 1 Ca 1 ATP R5.002 Q5.002 O5.002

NaCa 1 Ca 3 Na Na conc R5.003 Q5.003 O5.003

NaHCO3 1 Cl 1 Na 1 HCO3 R5.004 Q5.004 O5.004

NaKCl 1 Na 1 K 2 Cl R5.005 Q5.005 O5.005

Cl HCO3 1 HCO3 1 Cl R5.006 Q5.006 O5.006

TABLE 13: COMMON PUMP MODES

The term “pump” for purposes herein is intended to include all forms of active transport, including ATPases, co-

transporters, exchangers, electrogenic transporters,, electroneutral transporters, ion transporters and ligand 

transporters.  Every material entity in the cell must be recycled.  Although there are many “down hill” (energy wise) 

cascades, there must be a corresponding equal amount of energy consuming processes to close the loop on each 

entity.  

Concerning the propagation of information across the neuron, Crotty in 2006 calculated how much energy it takes to 

effect a single action potential.[101]   He found, not surprisingly, that energy cost is a function of diameter and 

channel density.  His model axon, with diameters: 4.07e-4 .. 5.5e-4 m  consumed 3.8e-6 .. 5.0e-6 Joules/m length, 

after optimizing the channel density for minimum consumption to: 1.7e3 .. 1.6e3 S/m^2.  This exercise reminds the 

modeler that hypothetical arrangements far off the energy minima are increasingly unlikely to exist in nature.

Once such an energy requirement is established, then the need for pumps is likewise established.  If the pumps are 

present in surplus pumping capacity to the channel drain, then the neuron will recover from bursts almost 

immediately, and never fatigue.  If they are short in capacity, when ever the neuron is firing at or near maximal rate 

the cell will experience fatigue via the gradual depletion of the Na partial voltage. How long this takes depends upon 

the two volumes of saline (the larger the slower).  Fatigue is proportional to the drop in the Nernst potential.  Be 

aware that the sodium pumps serve to drive mush more than the sodium channels.  There are numerous exchangers 
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and co-transporters which are driven by the concentration gradient of sodium.  The sodium pump load must add 

these in as well.

Pumps require 2 G matrices, one for the transport from comp1 to comp2, and one for transport from comp2 to 

comp1.

In a deterministic transporter, G values are whole numbers.
G = 

In the case of pumps the transported ions also act strongly as allosteric ligands, modifying the transition probabilities 

significantly.   Of course, there are still regular ligands, like ATP, Mg++, Zn++, PO4.  

In a probabilistic transporter, G values may be fractional.
G = 

These will be further elaborated upon in the next chapter.  

4.5 BIOLOGICAL DIVISIONS  

We may now summarize and formalize the above tour of the elements.  There are 4 classes of actors:  { receptors, 
channels, vesicles, pumps }  (G-proteins may be considered a separate fifth class)

Each Class consists of a library of  Types:    1:256 types are supported

EX:   B.Ions = { Na K Cl Ca  ... },  

Each Type may have any number of Traits:      1:256 traits are supported

H Li Be B C N O F Na Mg Al Si P S Cl K Ca
AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
BA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

NT1 NT2 NT3 L1 L2 L3 M1 M2 M3 G1 G2 G3 G4 I1 I2 I3 I4
AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H Li Be B C N O F Na Mg Al Si P S Cl K Ca
AB 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 1.9
BA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

NT1 NT2 NT3 L1 L2 L3 M1 M2 M3 G1 G2 G3 G4 I1 I2 I3 I4
AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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EX:   intrinsic traits:   B.Ion.Na.type = { #  mass  radius charge mobility }

EX:  extrinsic traits:  B.ion.Na.dist = { position, velocity, acceleration, compartment#, bindings, transports }

The intrinsic traits of a type of actor, interactor or compartment are supplied from the literature.  The extrinsic traits 

are initiated based upon data from the literature, but then are rendered dynamic, instantiated, moved and tracked.

4.5.1.1 Element Distributions  

a) actors are assigned node locations on the Surface of shapes 

b) particles receive Compartment Assignments

c) membranes are assigned Shape

d) particles are set at an initial temperature

e) particle accelerations are initialized by the physics of the EM Force field

f) the EM force determines gradients, divergence and curl of particle flux

4.5.1.1.1Assemblies
Shapes are assembled to form membranal systems (e.g. neuron, core, extracellular envelope, boutons)

Neuron shapes may be created via the concatenation of primitive shapes:  cone, cylinder, sphere .

Actors may be assembled into rafts that can drift around in the membrane.  Rafts may be tethered to restrict region.

Each Experimental Simulation is an assembly of elements, parametric values, and driver input signal

4.6 GENERAL DESIGN DATA FOR A WHOLE CELL MODEL  

To drive the model with biological data, the following table can be completed, once for each cell type.  A diffusion-

based approach to surface smoothing is presented. Surfaces are represented as scalar functions defined on the 

sphere. The approach is equivalent to Gaussian smoothing on the sphere and is computationally efficient since it 

does not require iterative smoothing. Furthermore, it does not suffer from the well-known shrinkage problem. 

Evolution of important shape features (parabolic curves) under diffusion is demonstrated. A nonlinear modification 

of the diffusion process is introduced in order to improve smoothing behavior of elongated and poorly centered 

objects.
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Neuron design dimensions units min max
volume of entire neuron micron 3̂
surface area of entire neuron micron 2̂
volume of juxtaposed extracellular compartment micron 3̂

quantity of water molecules intracellular moles
quantity of ions intracellular, by type
quantity of water molecules extracellular moles
quantity of ions extracellular, by type
diameter soma, mean & variance micron 4 100
volume, soma micron 2̂
diameter nucleus  core micron 3 18
volume nucleus core micron 3̂
thickness of extracellular fluid, distribution micron 5 20
dendrite bifurcations, length distribution micron 0  5
dendrite taper rate ratio
plasma lemma tortuosity (fraction area increase) ratio
area, one synapse, mean and variance micron 2̂
volume of dendritic arborization micron 3̂
surface area of dendritic arborization
volume of axonal hillock (initial segment)
surface area of axonal hillock
volume of axon 
surface area of axon
quantity of nodes of Ranvier

Thickness of neuronal membrane micron 0.01 .01
capacitance of bare membrane F/micron 2̂
capacitance of myelinated membrane F/micron 2̂

synaptic cleft distance across micron 0.01 .02
quantity of dendritic synapses 1000 10000
quantity of soma synapses 
quantity of axonal synapses 
ratio of inhibitory inputs to excitatory inputs, distribution ratio
length axon(s) micron 5 5e6
resting potential  -130 -20
conduction velocity of action potential micron/msec 600 120000
internodal Length  (depends on fiber diameter) microns 150 1500
quantity of types of receptors in a single neuron
quantity of types of channels in a single neuron
quantity of types of pumps in a single neuron
quantity of types of vesicles in a single neuron
quantity of types of channel modulators in a single neuron
quantity of molecules of neurotransmitter in one synaptic vesicle 
quantity of types of pump modulators in a single neuron

1/sq micron 1e-7 .. 2e-7 

Bind & Conformation kinetics for each receptor type
Bind & Conformation kinetics for each channel type
Bind & Conformation kinetics for each vesicle type
Bind & Conformation kinetics for each pump type

Single sodium pump maximum transport rate ions/msec 0.200 Na
Single potassium pump maximum transport rate ions/msec 0.130 K
Single chloride pump maximum transport rate
Single calcium pump maximum transport rate

 1E6 .. 5e6

micron

20 : 4000

quantities of neurotransmitters in 1 vesicle, mean & variance  1e4 .. 1e5
diameter of synaptic vesicle, mean and variance micron 0.050 .. 0.200

micron/msec 2e-3 .. 5e-3
micron/msec 1.5e-1 .. 6e-1
micron/msec 2e-12 .. 4e-12

mM

mM

volume of node of ranvier
surface area of node of ranvier

mV

Axial pdf for each receptor type 
Axial pdf for each channel type
Axial pdf for each pump type
Axial pdf for each vesicle type

quant sodium pumps per neuron 
quant potassium pumps per neuron
quant calcium pumps per neuron
quant chloride pumps per neuron
quant receptors per neuron
quant synaptic vesicles
fanout factor of each second messenger mechanism

fast axoplasmic transport rate  (peptides, glycolipids)
intermediate axoplasmic transport rate  (mitochondrial protein)
slow axoplasmic transport rate (actin, tubulin)



5 SOURCE PROCESSES 

5.1 ELEMENT TRAITS  

5.1.1 ELEMENT TYPES  

a)  Actors are stationary proteins, embedded in and through the membrane, and operating as finite state machines; 

b)  Interactors: Water, Ions & Messenger molecules filling each compartment, operating as a particle system; 

c)  Membranes, serve as surfaces and volume delimiters; compartments and capacitors; voxels and surface nodes. 

d)  Forces:  Thermal Energy and EM force; generating diffusion and drift. 

5.1.2 ELEMENT PROCESSES  

5.1.2.1 Particles  

a)  position, velocity  (velocity profile arises from thermal energy)

b)  motion and particle-particle collisions
collisions are necessarily elastic, else the system quickly depletes to absolute zero
diffusion is emergent from collisions

c)  particles may possess charge
charges come in only 2 values:  + and -
charges are discrete, equivalent to the charge on one electron
charge is conserved. Each system cannot create nor lose charge.

d)  voltage gradients and concentration gradients
these are emergent phenomena resulting from thermal motion and the EM force

e)  drift and diffusion are additive
it is critical for modeling that:
the sum of the forces on one particle add and convert to an acceleration per its mass (A = F/m)
the instantaneous accelerations are added to the current velocity
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5.1.3 ACTORS  

5.1.3.1 Conformational kinetics  

Every large protein can be represented as a transition probability matrix.  Each possible conformation has some 

probability of occurrence.  When it does occur, then the consequences of that conformation can can impact the 

immediate surround.  The duration of each conformation is determined stochastically.   State instantiations are 

derived from transition table probabilities.

In addition, there are usually allosteric binding site affinities.  Release phenomena is emergent from the backward 
rate coefficients.

These 2, states and bindings, represent the internal transitions and external transitions, respectively.  As these two 

aspects play major roles in this model, they deserve some thoughtfulness as to their traits and ramifications.

ACTOR relations External Internal

state d   Binding sites s   Conformations of  the molecule

quantity at any one time  0 .. d 1

quantity of possibilities d * B s

driver collisions,  B hitting A Thermal energy

static bind combo = 1 of R states State = 1 of Q states

dynamic R kinetics Q kinetics

mass + with bind,  - with unbind constant

matrix size B*Rstates*Qstates Rstates*Qstates*Qstates

TABLE 14: ACTOR INTERNAL AND EXTERNAL EVENTS

Given s states, then the state transition table Q = s x s.  If there are allosteric binding sites,  then Q = s x s x dc, 

where dc is the quantity of possible binding site combinations.   Th is necessary because each binding combination 

constitutes a unique modulation state.  By definition, modulation means to alter the  s x s  matrix.  This is 

conveniently handled by increasing Q to a 3-dimensional matrix and using dc to point to a page in Q.
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5.1.3.2 Membrane – Actor Interactions  

a)  Actor positions,   imply:  Actor density, Actor nearest neighbors,  Actor patterns

b)  Actor drift,  rafts, turn-over, tethering.

5.1.3.3 Membrane – Particle Interactions  

a)  particle collisions with compartment walls, elastic reflections

b)  membrane capacitance charge  (membrane determines capacitance, particles determine voltage)

5.1.3.3.1Absorption
A particle striking a membrane might be reflected, bound, or absorbed.   Absorption is an option when the 

membrane is modeled as a compartment, albeit a thin one.  The substrate of membrane compartments is not water, 

but viscous, nonpolar lipids.  The diffusion rates within the membrane are determined by molecular weights and 

sizes.  The hydrophobicity is determined by the forward and backward kinetics of the particle type across the 

water/lipid interface. 

5.1.3.3.2Water/Lipid partition coefficient
For membrane studies where particles pass from the saline into the lipids via solvation, the lipid layer is treated as a 

separate compartment.  The water collisions are replaced with lipid collisions (of considerably greater mass).  The 

partition coefficient is treated according to kinetics similar to the standard forward and backward rate reactions. 

Because of the self-assembling nature of the fatty acids, variations in chemical makeup of the lipid layer non-

uniformly over the cell area, various rafting structures of proteins present in the lipids additional code will be 

required depending upon which aspects of the membrane are to be modeled and what is the query.

Generally, there are three considerations.  The first is the percentage of membrane collisions that penetrate into the 

lipid layer, for each particle type (and the reverse of this reactions, escaping out of the lipid layer).  The second is the 

transit time across the membrane via diffusion.  The third is the diffusion rate horizontally within the lipid layer. 

The second and third considerations are not identical because the lipid layer is not isotropic.

5.1.3.4 Actor – Particle Interactions  

a)  particle bindings and unbindings to actor binding sites  (see R Tables )

b)  actor ability to catalyze conversion of particles (requires a function to convert particle types)
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c)  transport capability by channels and pumps  (impacts the particles)

5.1.3.4.1Transport
Transport concerns the movement of one or several particles from one compartment to another by the mechanics of 
certain actor types.  Transport is one form of an actor's impact on its environment (a/k/a  actor “expression”).

a)  mechanisms which move individual particles across the membrane against the gradient are called pumps

b)  mechanisms which open pores to release bulk movements of particles across the membrane are called channels 

c)  pump transport requires bindings and unbindings of each particle to be transported

d)  flux through open pores requires voltage gradient and/or concentration gradient to transport particles

e)  unbinding of multiple particles at once constitutes a messenger package release (as with vesicles and receptors)

e)  second messenger transmission of particles constrains the paths of released particles towards their targets

5.2 DIMENSIONALITY OF THE VARIOUS PROCESSES  

For purposes of planning a software project, it is helpful to classify each of the process types according to their 

dimensionality and usage rate.  Usage rates must necessarily be determined after the algorithms are established.

5.2.1 0-DIMENSIONAL PROCESSES  

Zero-dimensional processes are a convenience for calculations of change that do not express as physical 

displacement at the resolution of the model.

1. Molecular conformational changes

2. chemical binding

3. point charges 

4. 2-point convergence for charge neutralization by co-location

5.2.2 1-DIMENSIONAL PROCESSES  

1. point-charge to point-charge  force vector

2. velocity vectors

3. accelerating force vectors

4. voltage across a barrier

5. molecular shuttles
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6. energy barriers through channels

7. conductance,  net current

8. pumping across membranes (transport)

9. axial transport

5.2.3 2-DIMENSIONAL PROCESSES  

1. membrane capacitance

2. membrane associated diffusion

3. containment barriers

4. nearest neighbors on a surface

5. solvation (varying quantities of water molecules forming hydration shells around ions)

5.2.4 3-DIMENSIONAL PROCESSES  

1. diffusion

2. emf fields

3. flux:  gradient, divergence, curl 

4. particle-particle collisions  (as discrete or hyperboloid orbits)

5. particle-surface collisions (reflections)

6. nearest volumetric neighbors (voxel maps)

7. frictionless orbits (charge pairs, dipoles)

8. resistance (Johnson noise, from collisions)

5.2.5 SIGNALING  

Signaling refers to the dynamic variables that drive the model, and by compliment, to the output signal of the 

model which may serve as the input to another model via a connectivity matrix.  Signaling implies streams of 

information.  A steady state is not a signal.  For example, DNA as it sits is not a signal, but the act of reading the 

DNA generates a signal.  For purposes of this model, signaling entails:

1. Input Signal Generators and output signal capture devices

2. Signal Generator Drivers
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3. Information capacity and throughput gauge the signal handling capabilities

4. Information processing is measurable to the extent that the input and output are not a one-to-one mapping.

5.2.6 MEMORY  

Where is the memory of a physicochemical system that is found to be a Markov process?  It is not in the membrane 

capacitance, because there is only one singular, continuous capacitor, so will not hold charge packets discretely per 

ion channel, (as is necessary in solid state digital processing chips).  This continuous capacitor is very leaky, so can 

only work as a transient signal carrier, but will not hold information.  Memory is not in the protein conformations. 

They are in a constant state of thermal flux, causing state transitions at rates more rapid than the neuron fires. 

Memory is not in the refractory periods of the action potential. They are inherently transient, and are merely the 

shadow of the wave that just passed over.  Memory is not in the ion concentrations.  They are very transient, 

undergoing constant diffusion, which is the enemy of information.  Memory, if it exists at all, can only be in the 

shape of the neuron and in the actor distributions along its membrane. These actor positions are a kind of higher 

order shape.  Both membrane shape and actor positions are static, surviving the constant wave action of particles and 

actor state changes.   This notion may sound peculiar to many, as shape and position are regarded as too static to 

serve as memory.  And indeed, in solid state devices, shape is too static to serve as memory, where the persistence of 

memory is strictly controlled (by operations: save, read, erase.)    

All of the dynamics of an action potential are transient Markov processes (with no opportunity for memory) or else 

are particle surf.  The memory of a cell must be amenable to change upon certain triggering events, but otherwise in 

a persistent state.  Unlike solid state digital processors, the cell is not reprogrammed for each input set.  Therefore 

there is no need for an erase function.  Biological memory is cumulative, and its incremental.  Usually big lessons 

are not learned in one event.  It is the repeating parts of patterns that tend to modify the system so as to adapt to the 

consequences of that pattern.  Thus, cell growth, making and retracting connections, enlarging or shrinking boutons, 

enlarging or shrinking vesicles, in contents and quantity of vesicles, altering the releasable contents of vesicles and 

receptors; altering the distances that messengers must travel; altering the speed of re-uptake; altering the quantities 

and positions and types of ion channels; altering the quantities and positions of pumps – are all options for altering 

the cell, and to the extent that they adapt the cell to external conditions, they are indeed memory.  Various patterns of 

input need to be recognized and caused to generate useful patterns of output.  To accomplish this no more is 
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necessary than the above.  Does biology have any use for token systems?  (like creating molecular markers to 

represent external objects, one-to-one).  None have been found, so far.

 The neuronal signaling traffic spins off genomic and proteomic effects which manage the turnover, building and 

shape altering processes of cell development and plasticity.  As the shape of the neuron comes to be altered, changes 

in connectivity to nearby neurons may be altered, actor distributions may be altered, actor functions may be altered. 

The prominence or meekness of effects of such structural changes is a measure of its memory significance.  The 

nature of its information processing is determined by shape-determined connections,  the types and ratios of the 

actors, and the sequence of their encounter.  Memory, therefore, to the extent that it is to be modeled, exists as a 

feedback loop that alters the neuron shape and or actor distributions as a function of signal traffic patterns.  All of 

this implies recurrence. Learning is not a valid process until the success or failure of the output is known.  It is not 

known until that output tests against some relevant aspect of reality.  That having been done, such test results must 

be fed back to the input weightings, or actor positioning.  Assuming that each neuron is capable of learning, then 

there must be one feedback circuit for each feed forward circuit.  Under this assumption, we would  expect the 

recurrent fibers of the nervous system to equal the feed forward fibers.

5.3 STEP-WISE PROCESS OF NEURON SIMULATION   

This lists the processes necessary to simulate one complete cycle of a hypothetical action potential propagation 

passing by one node, as initiation node > propagation node > termination node.   In a whole cell there would be  M 

input nodes, N output nodes, and at least (MxN + L) propagation nodes, where L = internal repeater nodes.

1. compartment shapes initialized 

2. ion tonicities initialized to steady state concs in each solution (tonicity profile)

3. ion diffusion in water, in each compartment – with charge, acceleration and collisions, reflections

4. ligands concs initialized to steady-state concs in each compartment   (modulation profile)

5. ligands are released into synaptic clefts per input signals from presynaptic cells (via SigGen)

6. ligands diffuse in water, in each compartment (3-d diffusion)

7. actor affinity profiles activated,  for ligands and other modulators (e.g. voltage)

8. ligand bindings to receptors, kinetics as func of concs and Q-modes
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9. actor Q-matrix changes mode per modulator combo

10. actor state changes, per dt

11. actor phenostate = gating function, transport function, messenger release, vesicle release 

12. ligand unbindings from actors kinetically per concs

13. ligand “reuptake” pumps restore ligands to original positions, kinetically, per concs

14. receptors release second messengers upon ligand bindings (1:5 ... 1:20 leverage ratio)

15. second messengers migrate along membrane (2-d diffusion)

16. second messengers bind to cyclases kinetically, as a func of concs

17. cyclases enzymatically produce phosphates ( rate = by the hundreds /ms)

18. phosphates diffuse in water (3-d diffusion)

19. phosphates may bind to ion channels (phosphorylation) kinetically per concs

20. modulation combos (including voltage) > Q-matrix change, Ion Channels

21. actor state change, per dt

22. instantaneous conductivity of ion channel  G = channel gating function * conductivity profile 

23. Nernst potential + concentration potential drive flux:   I = (E+C)*G

24. ion affinities to ion channels vary with gating function

25. ions transported through channels per I

26. ions diffuse out of ion channels

27. change in local ion concs (and by implication, change in local charge density)

28. change in Nernst voltages

29. change in Vm as weighted sum of Nernst voltages

30. dV > change in capacitance charge > current in and out of capacitance  I = C*dV/dt

31. saline resistances between voxels  result in ion currents:  I12 = (V2-V1)*(1/R12)

32. horz flux changes Nernst voltages and capacitance charges

33. vesicles bind Ca++ as a modulator, kinetically, per conc

34. vesicles change state per mods

35. vesicles release ligands kinetically into synaptic cleft

36. vesicles reset their state (recycling sequence)

37. pump affinity1 profiles,  per mode
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38. pump bind1 staging, kinetically

39. pump bind1 state alters Q-mode,  also mods and concs may alter Q-mode

40. pump state change kinetically, may transport across membrane (forward) or unbind (backward)

41. pump offload at side2 after transport

42. pump affinity2 profiles, per mode

43. pump bind2 staging, kinetically

44. pump bind2 state alters Q-mode, also mods and concs may alter Q-mode

45. pump state change kinetically, may transport across membrane (forward) or unbind (backward)

46. pump offloads side2 after transport

5.4 QUANTITATIVE INTRODUCTION TO THE PROCESSES  

5.4.1 DIFFUSION  

Aldolf Fick's contribution (1884) to flux calculations was to observe that aggregate diffusion in liquids is analogous 

to the heat conduction in solids.  Heat flow is directly proportional to the difference in concentrations, and inversely 

proportional to the distance of elements from one another.  This is a basic first order differential that represents any 

potential energy across a barrier being allowed to convert to kinetic energy.   

Fick's first law:
J(t2-t1) = -D*∂ϕ(t1)/∂x;  % where D = diffusion coefficient,  
Flux = -D * (dC/dx);   % C = concentrations at measured points, dx = distance between points.
This is appropriate to calculate the quantity of particles moving through a gateway or across a threshold.

Fick's second law:
∂ϕ/∂t = -D*(∂2ϕ/∂x2 +∂2ϕ/∂y2+ ∂2ϕ/∂z2);   % the first law generalized to spatio-differential form

The resulting positions are defined relative to the initial position. This EQ would be repeated for each bolus or 

voxel, and the results stitched together with voxel superpositions, then hand-offs for boundary crossers.  

Albert Einstein (1905) derived D as a function of Boltzmann's constant, thus relating the macro to the molecular 

phenomena.  

D = boltz*kelv*mob / q;      % where boltz = Boltzmann's constant; 
% kelv = absolute temperature, mob = mobility coefficient
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George Stokes (1851) derived an equation for the viscous drag component of a particle moving in water, which 

converts the accelerations due to forces into terminal velocities due to viscous drag.

mob = q / (6*pi*visc*r);       % q = ion charge, visc = viscosity;  
% mob is the ratio:   drift velocity/force

Lemons DS (2002) revisited Brownian motion.   The position of a particle at time t is:

X(t+dt) = X(t) + Ntt+dt(0,1)*sqrt(t*delta^2);  % which fills a PDF of:   ∂p(x,t)/∂t = delta^2/2*(∂2p(x,t)/∂x2;
where  p(x,t) = exp(-x^2/(2*t*delta^2)  / (2*pi*t*delta^2);

Brownian motion with drift is more important to NIP.

X(t+dt) = X(t) + acc*dt + sqrt(delta^2*dt) * Nt
t+dt(0,1);    Where acc = F/mass;

Although Cartesian methods of performing the above EQs three times – for x, y and z axes – are commonly 

published; they produce cubic distortion.  A superior method randomizes the two spherical angles uniformly, and 

treats the radius as X above, with each step.

Langevin (1908) solved for viscous drag and velocity fluctuations as the molecular collisions of Brownian 

movements:

V(t+dt) = V(t) + drag*V(t)*dt +  Nt
t+dt(0,1)*sqrt(dt*beta^2);  % where beta=velocity fluctuation;

drag = 6*pi*visc*r / mass;      % where visc = viscosity of water, r = radius of the particle;

Note that mass of solvated ions (Na+,K+, Ca++, Cl+) may be as large as:  mw(ion) + 20*18,  in the case of 6 H20 in 

inner shell and 14 H2O in the second shell).[113]    Na+ has been found  hydrate with 18 H2O.[114]   Both K+ and 

CL- were found by x-ray phase analysis to hydrate to 45 H2O.[115]   There may be high speed “flickers” within 

these water structures.  It is known that the ion channel pore has fixed charges that substitute for the hydration 

molecules, thus stripping ions down to their bare mass while they pass through the channel pore.  Whenever the EM 

force impinging upon a single ion is stronger than the energy of hydration, then the Newtonian acceleration of the 

ion is expected to leave the water molecules behind via substitution.   With structures of 18 to 45 H2O  the viscosity 

goes up disproportionately, as constant asymmetric collisions with the the smaller solitary water molecules are 
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unavoidable.  The temporal dynamics become relevant to various velocities of drift.  That is what is the solvation 

change rate as a function of ion velocity?

Given the position p1, velocity v1 and acceleration a1 of any particle at time t1, find its position at t2,  

p2 =  p1 + (v1 + a1*dt)*dt ;    %  where a1 =  sum(force)/mass = sum(e0*q1*q2/(r^2*mass)).
  
However there is also some probability that the particle will become chemically bound, or physically transported by 

some membrane process.  In aggregate, we can track concentrations as particles thusly:

C  =  concentration of one species of ion in one voxel 
D = diffusion constant
Y = a transmembrane vector that moves particles out of the compartment (channels + pumps)
X = [ x y z ] 
xy = area of membrane
a = rate coefficient for binding of particles
b = rate coefficient for unbinding of particles from membrane surface
P = particles bound to membrane proteins
K = capacitivity (capacitance per unit area of membrane)
dv/dm = voltage across the membrane

dC/dt = dA/dt + dB/dt+ dR/dt + dQ/dt:  % where
dA/dt = + D* d2C2/dX2 – D* d2C/dX2;     %  diffusion in and out of the volume 
dB/dt = + Y*dC/dX – Y*dC/dX;              %  transport in and out of the volume 
dR/dt = + b*P – a*C;                              % binding and unbinding of particles
dQ/dt = - dv/dm  * K*xy  /z;                    % capacitance charges from the membrane

There are implied additional factors in the above EQs.  Transport may be contingent upon the presence or absence of 

other particles or modulators.  Capacitance is shared amongst the various species of charged particles, so only a 

proportion of any one species will be involved.

Particles are represented leaving by diffusion, transport and binding, and then Diffusion, transport, and unbinding of 

those particles entering from adjacent compartment(s) .

5.4.1.1 Collisions  

 The diffusive process in a liquid is essentially mean free path trajectories interrupted by collisions.  Collisions occur 

at extremely high frequencies, perhaps 1e14/s/particle in aqueous solutions at room temperature.  Momentum 

conserving collisions entail mass, velocity, charge, and radii.  Spin, and therefore angular momentum, are not 

considered. 



252

Paul Langevin (1908) worked with Albert Einstein to derive an equation for collisions of particles in water.

A = F/M;                                                                 % where F = ballistic force + collision force
M*d(x)^2/dt^2  = -6*pi*r*mob*dx/dt + W;               % V = velocity;   W = white noise;
dV/dt = -drag Vdt + (beta^2 * dt)^0.5 * N(0,1);      % where beta = scales the normal distribution to 
velocities
                                                                              % N = normal distribution with mean=0, sigma =1

Langevin brought into existence terms for white noise  (W),  acting as a stochastic force (process).[116]

Leonard Ornstein and George Uhlenbeck, 1930 clarified the stochastic differential equation as:

dx(t) = S(mean-x(t))*dt +sigma*dW(t);                     % where S = rate of shock dissipation, sigma = 
variance;

All of these are attempts to predict the behavior of aggregates of particles without having to actually model the 

particle system.   By instantiation  the particles in a 3-d simulation, all of the above are emergent properties, and in 

fact metrics on the group of particles, per Uhlenbeck GE, Ornstein LS.[117]

5.4.1.2 Resistance  

Axonal resistance has been measured at 250 ohms cm^2, and  membrane resistance (in the absence of channels) 1E4 

ohms / cm^2.[118]    But membrane is not smooth. The surface area of a rough membrane is much greater than the 

area calculated on the assumption of smoothness implied by lineal measurements.  Electron micrograph studies 

reveal the texture and irregularities of neural membranes.[119]   These contribute significantly to both the resistance 

and capacitance of the membranal system, and must somehow be accounted to produce predictive models.  After 

correction for roughness, membrane conductivity was characteristic of the function of that area of membrane;  i.e. 

was determined by ion channel densities.

Resistance is taken into account as viscous drag, which breaks down into Johnson noise plus drift.  Therefore, 

resistance is a consequence of the Langevin equation.  In a particle system, it is the diffusion resulting form ions in 

drift colliding with non-drifting atoms or molecules along the path.   Although resistance is presented as linear in 

Ohm's law (I = V/R), in a 3-dimensional liquid space resistance is a non linear diffusion problem, emergent as the 

delay, lateral spread,  and net displacement of ions under a drift force.
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5.4.1.3 Binding/Dissociation  

Kinetics of modulators is critical to channel and pump performance.  Ligands bind to receptors as a first order 

reaction, dependent only upon the concentration of the ligand.  When there are two sites, and the sites have identical 

affinities, the order remains second order.  But as Hill described, when the affinities are unequal, the reaction rates 

fall short of ideal, effectively reducing the reaction to some fraction less than 2nd order.  The Hill EQ  varies the 

exponent : 

Bound fraction = conc.B^2 / (conc.B^2 + dissoc.B^2);
Bound fraction = conc.B^h / (conc.B^h + dissoc.B^h);    %  where 1>h>2;

Particles collide because they are driven thermodynamically to move at Boltzmann velocities.  The packing density 

determines the length of the equivalent mean free path.   At collision, one of several outcomes will occur:  elastic 

rebound and conservation of momentum; a phase transition from aqueous solvation to lipid solvation; or a chemical 

binding that converts the two velocities into one, conserving momentum.  If one of the collision pair is stationary, it 

is a bit more difficult to account for the momentum transferred by the moving particle.  It is possible that some of 

this kinetic energy is transformed into potential energy, mostly mechanical energy ripples outward adding to the 

rebound velocity of near by rebounds.  For modeling purposes it may be consistent with information flows to store 

the incoming velocities upon binding, and then when unbinding occurs restore those velocities reflected.

Whether or not there is a binding is determined stochastically, according to the affinity value (which acts similar to a 

forward rate coefficient).  And its release determined stochastically by the backward rate constant.  If the resident 

time turns out to be shorter than that necessary to allosterically set forth transitions as normally follow such a 

binding, then the molecule will not follow through to its physiologic function (releasing messengers, opening, 

exocytosis, pumping, etc.).  The actor molecules are finite state machines, and the transitions between some 

characteristic fixed quantity of states are determined according to probability density functions.  Thus, we can say 

actors are stochastically driven finite state machines.

5.4.2 KINETICS  

Most kinetics is temperature dependent.  Probability transition matrices may have kelvin modulators, unless the 

temperature is to be held constant for the simulation run.  Another aspect of any binding is the energetics of making 

and breaking the bond.  Energy required is heavily determinant of binding probabilities, and is reflected in the 
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forward and backward rate coefficients.  Making matters much worse, in biological molecules, the so called rate 

constants are not at all constant.  They are some of the most dynamic phenomena in living things.  The action 

potential of the neuron is accomplished by  1E-3 s changes in the actor “rate constants”.   Not at all subtle, these are 

some of the most nonlinear, widely swinging effects in the cell.  They are more accurately described as dynamic 

transition probabilities.  

The tracking of energetics requires a separate parallel set of data to the state matrices, because the exothermic and 

endothermic reactions will modify the temperature.  Destexhe in 2000 attempted to model the energetics of an ion 

channel. The free energy profile identifies the barriers to channel activation and inactivation.[120]    As this study 

was based upon the 1953 Hodgkin Huxley equations which employed a 2-state kinetic scheme, it did not include the 

kinetics of the non-voltage modulated states of the protein molecules, and therefore could not represent the 

deactivation path.

There are not many irreversible reactions in biology.  Most of the time when they occur we call it a poison.  Biology 

thrives on thousands of reactions that are rather delicately balanced such that not only can a molecule hitch a ride on 

a production circuit, but it can also get off the bus at the most fruitful stop.  Most reactions of such delicate balances 

are reversible when the concentration ratios become inverted.  When ever there is some ion translation driven by 

thermal energy, it only takes some conformational torsion of a target protein to bias in favor of binding that ion, then 

some relaxation to move it across the membrane, and finally a new relaxed bias in favor of releasing the ion.  And 

that would be a pump.  Any effective pump must have a forward bias and have the energy to pump against the 

concentration gradient.  This requires sufficient supplemental energy so applied as to make the duty cycle 

irreversible (or almost irreversible).  This energy usually is derived from the concentration gradient of another ion, 

or from ATP breakdown to ADP.  Thus, a pump is two or more processes coupled such that the energy donated by 

one is employed by the other to move particles against its concentration gradient.  Despite this coupling mechanism, 

a molecular pump is stochastic, and every move determined statistically.  Therefore pumping performance is not 

100%, and is reduced by higher concentration gradients.  Pumps will stop, spill, thrash, and/or run backwards when 

pumping against the concentration gradient requires more energy than the donor can deliver.

Receptor kinetics may be treated as a standard chemical reaction.  

B + A <-> BA, where
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B = a particle,  A is an actor (with allosteric binding site for B)
k.AB = the forward rate coefficient
k.BA = the backward rate coefficient
At steady state, there will be:    
fraction bound =  k.AB/(k.AB + k.BA)     % fraction of B bound to A  (barring any other competitive Rx's).
Time constant of binding =  tau = 1 / (k.AB + k.BA);

These apply when a collision occurs.  How many collisions occur is a geometric problem.

A similar sequence of equations was followed by Destexhe in 1994[121], but he used :

fraction bound = Bmax*k.AB/(Bmax*k.AB + k.BA);
tau = 1 / (Bmax*k.AB + k.BA);                                        %  includes a term to predict the number of 
collisions.

This acknowledges that the forward reaction is proportionate to the concentration of available binding particles, 

while the backward reaction in not.  Because the binding event consists of a particle attaching to an allosteric 

modulation site, the kinetics of the entire molecule must be altered thereby.   For each such allosteric binding site the 

number of state transition probability matrices doubles.    Follow through dictates that the unbinding is also a 

stochastic event, requiring its own probability of releasing of messenger particles.    Making things more 

complicated, the binding and unbinding at other allosteric sites may alter those unbinding probabilities.  The 

receptor molecule has two or more conformations in response to the neurotransmitter binding.  Via some path of 

conformation transitions (according to modulator altered probabilities) a conformation is reached that is conducive 

to releasing or catalyzing messenger particles.  These particles, too, are stochastic in their release, albeit rather 

reliable (high) probabilities.

The logical flow is:

1. Let the set of B1 be all the neurotransmitter molecules for which there is an allosteric binding site on actor 
type A1.

2. Let B1 move in a Brownian fashion, occasionally colliding with instances of  A1.

3. When a B1 collides with an A1, let the forward rate coefficient k.B1A1 determine statistically if a binding 
occurs.  If a binding occurs, then swap out the transition probability matrix for A1 from un-modulated set to 
modulated set of probabilities. 

conc.B1 * k.B1Ai = rate of binding = dQ(B1A1) = -dQ(B1); 

In complimentary fashion, there is a reverse reaction whereby B1 unbinds from A1.   

conc.B1A1 * k.A1B1 = rate of unbinding = dQ(B1) = -dQ(B1A1);
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Run dt several cycles so as to realize the probable conformational changes until reaching a “release messenger” 

state.  Let the backward rate coefficient for messenger binding determine statistically if a release occurs.  Messenger 

velocity may be anything under the Boltzmann velocity envelop as a function of mass and temperature.

By 1983, the theory of how to extract kinetic schemes from single channel recording data had been worked out.

[122] [123]   Later that year, Moczydlowski found that potassium channels (Kcav) required at least 6 conformational 

states to fit their behavior[124] and explored the likeliest pathways through the transition probabilities.  In 1991, 

Vandenberg [125]  found that the lobster giant axon sodium channel had at least seven conformational states, more 

than could be inferred from the Hodgkin and Huxley equations (which represented groups of channels rather than 

single unit channel's inner states).   Gating currents were measured and employed to find the conformations. 

Vandenberg attempted to fit 10 different  kinetic schemes, with up to nine states.  He concluded that a 9 state scheme 

was the best fit to express the observed behavior.  All of his transition probabilities were assumed to be voltage 

dependent, but admits at the end that the supposed voltage dependence of inactivation was becoming controversial.  

He then states: “most of the voltage dependence of the inactivating phase of macroscopic sodium currents in the  

squid is not due to an inherent voltage dependence of the inactivation rate. The rate of macroscopic inactivation  

largely is due to a combination of rates for transitions between states associated with activation, deactivation and  

inactivation pathways.”   This implies that the state path of closing is different from the state path of opening, thus 

establishing the “duty cycle” of the actor.    It further establishes that while openings may be voltage sensitive, the 

closing and refractory periods are larger voltage insensitive.  

In 2006, Kuo found that the lobster giant axon Sodium channel required a 12 state kinetic scheme to fit the data 

revealing non-voltage dependent inactivation.[126]

Because a kinetic scheme is only that, a scheme, each bio-actor can have many different schemes proposed to 

represent it.  Models should be able to accommodate multiple schemes for each actor type, choosing one for the 

experimental design to be run. 

Astumian, 2008, states that ion pumps, e.g. Na,K ATPase,  cycle in about 1E-3 s (moving ions both ways 

across a membrane 1E-8  m  thick.  This implies a velocity of the transport arm  >1E-5 m/s, and a Reynolds 

number of 1E-9.  Such a small Reynolds numbers indicates that inertia is completely muted by viscosity.  ATP 
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hydrolysis is stochastic, and its coupling to mechanical events of ion transport is not deterministic.   The 

kinetic sequence is not strictly ordered, but rather is probabilistic.  Allosteric interactions between the pumps 

and its ligands do not insure that ATP hydrolysis and transport must be executed together, but they do bias the 

conformational transitions such that more ions will be pumped one way than the other.[127]

Pump affinities and selectivities for transport particles and modulator molecules is little reported across the 

various pump types.  

Each vesicle has one (or more) binding site(s).   In the simplest case:

AB = {Ca++};            % set of particle types B that are capable of binding to actor type A

R =    (for each binding site there are forward and backward probabilities of binding certain B types) = B x d x fb.

The size is therefore qB x qd x 2.  

R = 

Where d1 = bind site on Actor; B1 = particle type that will bind to bind site; fwd = forward reaction rate, to be 

multiplied by concentration;  back = dissociation rate.  

 If the receptor possess static bind/unbind probabilities, then those probabilities must be mid range to high range in 

values, else they spend time in stuck in hold states and fail to perform transduction.  Where the backward rate is 

slower than the forward rate, then the receptor will continue catalyzing for a longer period than the duration of the 

presence of the stimulating particle.  If the backward rate is faster  Each of these combinations may alter the 

affinities R that the vesicle has for its binding sites. 

R = 

d1 fwd d1 back
B1 0.7 0.7

  s1   s2
d1 f d1 b d1 f d1 b

B1 0.9 0.1 0.1 0.9
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However if these bind/unbind probabilities are dynamic as a function of  actor states, then  R = B x d x s x fb, a 4-

dimensional matrix.  Let's next consider an actor with 2 binding sites, each of which can bind either of 2 particle 

types, and furthermore this actor has 3 states (called “ready”. “release” and “rebuild”).

R =

   
For instructional purposes, values of 0.1 indicate low probability events and 0.9 indicate high probability events.  In 

actuality,  these number vary wildly, and in any case are scaled to the size of dt.  These matrices represent a 

stochastic machine's bindings and unbindings as a function of state and concentration of available particles. 

Therefore, the forward reaction probabilities must be multiplied by the B concentrations, while the backward 

probabilities are not.

Once we have determined the bind state of the actor, then we can address the internal state changes of the molecule. 

In the earlier case of one bind site and one particle type that will bind to that site, there are only 2 R-state 

possibilities:  vacant or occupied.  Therefore, there are only 2 pages in Q, the state to state transition probabilities 

matrix.

Q =  [ Q1  Q2  ];    

In the second case, there are 3 possibilities for bindsite 1 and 3 possibilities for bindsite 2.  Each can be vacant, 

bound to B1 or bound to B2.  This create 9 possible configurations for bind combinations.  Therefore, the second 

version of  Q must have 9 pages.   It is helpful to create a pointer table from R to which page in Q is in effect.  This 

can be rendered unnecessary by increasing the dimensionality of R such that each degree of freedom gets its own 

dimension.  

fwd   s1   s2   s3
d1 d2 d1 d2 d1 d2

B1 0.9 0.1 0.1 0.1 0.1 0.1
B2 0.1 0.1 0.1 0.1 0.1 0.9

back   s1   s2   s3
d1 d2 d1 d2 d1 d2

B1 0.1 0.1 0.9 0.9 0.9 0.1
B2 0.1 0.1 0.9 0.9 0.9 0.1

Q1 s1 s2 s3 Q2 s1 s2 s3
ready s1 1 0 0 s1 0 1 0

release s2 0 0 1 s2 0 0.3 0.7
rebuild s3 0.5 0 0.5 s3 0.5 0 0.5
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The current state determines the row in Q in effect.  The transition probabilities in Q determine state changes 

stochastically.    That row is read as a PDF, and is integrated into a CDF.  An instantiator chooses randomly across 

the CDF, and the outcome is a column number, the new state.  This 'expression' of Q is a mapped to its phenostate, 

which in the case of a receptor could be the release of a second messenger or the activation of an enzyme.  This 

information is transmitted via the O matrix.

O =              0 0 1         where  non-zero values indicate action # to be taken for each state arrived 

at

The action taken may be a release of contents, a turning on of a catalytic process to produce messenger particles, or 

a transport operation.  A receptor triggering event (exocytotic binding) may cause  a group of particles which 

positions at the interior pole of the receptor to change their velocity from zero to Boltzmann.; or cause a catalytic 

reaction whereby messenger molecules are rapidly created so long as the triggering binding persists.   There follows 

some lag time to release sufficient particles, then there must be some recovery time to reset for the next event.  

5.4.2.1 General form for kinetic state transition probability matrices  

A generic treatment of the scheme above for modeling purposes would renumber all the states and rates:

Then map the transitions into matrix form  ( transition probability matrix Q).  In the case where there is found only 

one duty cycle state path, those states can be ordered thusly.

Q = 
Q1 1 2 3 4 5 6 7 8 9 10 11 12

1 k0101 k0102 k0112

2 k0201 k0202 k0203

3 k0302 k0303 k0304

4 k0403 k0404 k0405

5 k0504 k0505 k0506

6 k0605 k0606 k0607
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7 k0706 k0707 k0708

8 k0807 k0808 k0809

9 k0908 k0909 k0910

10 k1009 k1010 k1011

11 k1110 k1111 k1112

12 k1201 k1211 k1212

The size of Q is qs x qs where qs = the quantity of states.  Units for Q are the probability of an event occurring per 

second.  In other words, frequency.  Note that the probability of  remaining in the same state i is the remainder: of 1-

sum(row i).   k0202 = 1 - k0201 - k0203.  Each rate function is found to be either a constant (rate constant) or a 

function of the various modulator values which vary this rate: f(voltage, Ca bindings, PO4 bindings, 

Neurotransmitter bindings, etc.).  Empty cells are zero valued; or as low background noise probabilities.  The fastest 

speed of conformational change determines the maximum dt value.  Interspike intervals are determined to be caused 

by channels kinetics.[128]  The first upper band is the duty cycle.  The diagonal band contains the hold state 

probabilities.  The first lower band are the reversal probabilities.  

Biodata almost always reveals more than one path through the state space.  Lets take a simplest case to consider the 

implications.  Let path 1 = [ 1 2 3 4 5 6 7]  and path 2 = [ 1 8 9 10 11 12 7]

Q1 1 2 3 4 5 6 7 8 9 10 11 12

1 k0101 k0102 k0107 k0108

2 k0201 k0202 k0203

3 k0302 k0303 k0304

4 k0403 k0404 k0405

5 k0504 k0505 k0506

6 k0605 k0606 k0607

7 k0701 k0706 k0707 k0712
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8 k0801 k0807 k0808 k0809

9 k0908 k0909 k0910

10 k1009 k1010 k1011

11 k1110 k1111 k1112

12 k1207 k1211 k1212

Such a major change in the state flow paths does not show up very strongly in the transition matrix. One must look 

for the redirects at (1,8), (12,7) and note their high probabilities to identify the second path.  It is possible to write an 

algorithm that will find all of the possible state flow paths and rank them by probability of occurrence.

5.4.3 RECEPTORS  

Ligands are modulators of the actors.  In particular, the neurotransmitters are those molecules arriving from the 

extracellular fluids to influence (excite, inhibit, block) actor activities as high frequency signals from other cells.  At 

a lower frequency range, modulators may set the cell mode , as with glycosylation.  

          
The current state determines the row in Q in effect.  In this case Q2 is never visited due to an impossible 

combination of bindings.  The transition probabilities in Q determine state changes stochastically.    That row is read 

as a PDF, and is integrated into a CDF.  An instantiator chooses randomly across the CDF, and the outcome is a 

column number, the new state.  This 'expression' of Q is a mapped to a phenostate, which in the case of a receptor 

could be the release of a second messenger or the activation of an enzyme.  This information is transmitted via the O 

matrix.

O =              0 0 0 1             where  1 indicates some external action is to be taken when in 

state 4.

An actor may have more than one output.  For example, a receptor releases a molecule and then becomes enzymatic. 

Q4 s1 s2 s3
s1 0.32 0.67 0.44
s2 0.54 0.84 0.36
s3 0.47 0.79 0.28

Q1 s1 s2 s3
s1 0.36 0.9 0.13
s2 0.16 0.55 0.48
s3 0.32 0.64 0.46

Q3 s1 s2 s3
s1 0.33 0.6 0.19
s2 0.55 0.42 0.33
s3 0.58 0.91 0.07
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O =  

mes 0 0 0 1
enz 0 0 1 1      

would indicate enzymatic activity in states 3 and 4, with messenger release in state 4;  

where mes = messenger,  enz = enzymatic process

Messenger release phenomena are handled similar to vesicles.  An input triggering event causes  a group of particles 

to change their velocity from zero to Boltzmann.  There follows some lag time, then a staging of particles for the 

next release.  The profile G of particles to be staged is similar to channel conductivity profiles. It determines the 

quantities and ratios.  A non-zero variance value causes randomization of the actual particle counts per release 

packet.  G is based upon a single master list of all the particle types in the system.  This list is ordered by molecular 

weight, and the position in the vector indicates the type of particle.

G =  

H Li Be B C N O F Na Mg Al Si P S Cl K Ca
0 0 0 0 0 0 0 0 5 0.1 0 0 0 0 1 1 1  

...

G extends to include all particle types (ions, neurotransmitters and other messenger molecules).  Fractional values in 

G force an instantiator to randomize the transport, with the indicated probability of success. 

In a mass conserving system, particles must be retrieved via pumps and then sequestration or binding to hold them 

ready for the next duty cycle to begin.  In the case of a sparse particle system, it may be necessary to set up a high 

affinity process, whereby the receptor quickly retrieves the particles it needs for future release.  

Each receptor has one or more allosteric binding sites.   For the case of 2 binding sites:

RQ =    (combinations of ligand bindings)

RQ m1 m2 m3 m4

Ca++ 0 1 0 1

NT 0 0 1 1

Qpage 1 2 3 4

NT1 NT2 NT3 L1 L2 L# M1 M2 M3 G1 G2 G3 G4 I1 I2 I3 I4
6 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0



263

Each of  m combinations may alter the affinities R that the receptor has for the other binding sites.

And each of these columns must correspond to a page in the Q matrix of transition probabilities.

R =     (arbitrary affinity values for display)

These affinity values are employed in the stochastic machine determining bindings and unbindings, as a function of 

ligand collisions. This allows the state (s) to feed back to the affinities in R so as to predispose bindings and 

unbindings  in correspondence to actor state. 

Q =  [ Q1  Q2  Q3  Q4 ];    (pages of transition probability values as a function of modulation)

Q1 s1 s2 s3
s1 0.8 0.32 0.25
s2 0.41 0.22 0.85
s3 0.48 0.65 0.79

   

Q2 s1 s2 s3
s1 0.58 0.93 0.7
s2 0.16 0.33 0.13
s3 0.41 0.17 0.53

 

Q3 s1 s2 s3
s1 0.27 0.17 0.92
s2 0.23 0.52 0.74
s3 0.87 0.31 0.42

 

Q4 s1 s2 s3
s1 0.01 0.64 0.54
s2 0.85 0.23 0.67
s3 0.6 0.62 0.84

5.4.3.1 Receptor Activation (page-swap within Q-matrix)  

For d allosteric binding sites on a receptor, and only 1 type of particle will bind to each, there are 2^d possible 

combinations for occupancy of that site.   When a single site can bind several different ligands and have different 

kinetic modifications as a result then there is an even greater quantity of combinations.   Each such combination 

presumably modifies the kinetic transition probabilities uniquely, and therefore requires a separate transition matrix. 

A receptor, then, is defined as a stack of transition probability tables, one table for each modulation combination.  

5.4.3.2 Affinities  

Affinity is the probability that a ligand in the immediate vicinity of a receptor with bind to that receptor.  In a 

particle simulation environment, the probability of an exact collision for a binding is far too small to wait for, and so 

R m1 m2 m3 m4
ATP 1 0.13 0.71 0.05
NT 0.3 0.52 0.07 0.02
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a binding is considered to have occurred if the ligand happens within a specified radius of the receptor.  The radius is 

adjustable as the affinity value.  Empirical determination of in vivo binding performance to an equivalent affinity 

radius may be necessary.  Affinities for each receptor are stored in the R matrix.  Affinities are not constant, but 

rather can be swapped each dt as a function of the binding state M, and  the internal state Q.

There are two volume shapes that may be employed in affinity calculations: the cubic voxel and the hemisphere. 

The hemisphere is the more accurate, especially when all particles on one side of the membrane within a certain 

distance of the actor are considered eligible for binding.  The cubic voxel is much faster to compute, but care must 

be taken not to introduce a biasing error that cleans out the 45 degree angles (corners of the cube) disproportionately 

to other angles.

The X matrix reports all particles within the voxel above actor A1. The affinity value for  particles above A1 is read 

in R1. Any matching particle within the affinity radius will be instantiated (bound randomly).  The advantage of this 

two step is that the spherical distance of each particle to the actor need only be calculated for the very small number 

of particles within the voxel, not the entire whole cell system.  This can be organized such that all actors are so 

affined and bound as a single system matrix via logicals.  

5.4.3.3 Modulation  

Channels may be modulated by specific allosteric binding sites, voltage forces or concentration forces.  Most 

voluminously studied are the voltage gated channels, but this is only a sampling bias.  Models must take into 

account all of the methods of modulation relevant to neuronal function. Because the term “modulator” describes an 

extrinsic quality, the effect of some input upon an actor, it is not a useful noun in modeling, but is useful as a verb 

“to modulate”.  There are particle bindings that modulate and there are force fields that modulate.  Because one 

particle species may serve multiple roles as: an ion in drift, a messenger released from a receptor, a ligand that 

allosterically modulates an actor, and one of the contents within a vesicle release,  it would be ambiguous to name a 

particle as a “modulator”.  

For continuous variables, such as voltage, the effects upon the transition probabilities may be represented as 

functions wrt voltage within the tables, or as binned values, with each bin earning a separate table.  This is 

convenient because long stretches of dead zone can be represented as 1 bin, while sensitive volatile areas can be 
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split into many bins.  But it does cost the computation of logicals to determine which bin a particular voltage value 

belongs in.

5.4.4 EXTRACELL TO INTRACELL TRANSPORT  

5.4.4.1 Passive transport   

Most of the NIP actions of the neurons are passive.  The ion channels, receptors, diffusion of ions and ligands, and 

the catalysts of the G-protein systems, the co-transporters and exchangers  are usually passive.    Model elements 

therefore need not track the ATP consumption nor the Gibbs energy to represent their actions  in NIP functions. 

The mean permeation time of an ion through a channel is about 10E-9 s.[129]    About 1E7 ions pass through a 

channel per second (dependent upon gradient driving them).  That is about 1E4 sodium ions per action potential, 

then about 1E4 potassium ions in the opposite direction.   The average channel density is 2E-5 m^-2,  leaving an 

area of membrane  5E-8  m^2 for capacitating.  Capacitance absorbs the currents of both channel and pump 

transports.   

5.4.4.2 Active transport  

Ultimately the NIP function is driven by ion pumps.  And those ion pumps are ultimately driven by ATP molecules 

being reduced to ADP, making available 30.5 kJ/mole.  Active transport is a relatively steady pumping action 

tending to return the membrane to its resting potential.  Different physiological conditions may modulate the pumps 

to move the resting potential somewhat.  And especially altering the tonicity of the extracellular fluid might cause 

pump modulation to compensate for any deficiencies.  Compared with the number of ion channel types (43 main 

categories) , there are relatively few types of pumps, doing the active work (5 main types).  When ever fatigue or 

ATP depletion is to be modeled, then a species of particle representing ATP is needed, and this particle must 

transmute into a different type of particle (ADP) whenever it binds to an active process.  In a good kinetic scheme, 

the bindings of ATP will sometimes not release energy, and at other times will run backwards, making an ATP out of 

an ADP.
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5.4.4.3 Tonicities  

As seawater is predominantly NaCl dissolved in water, cells are often bathed in saline high in sodium and chloride. 

The living cell pumps down the interior so as to minimize sodium and chloride while pumping up the potassium 

concentration.  Reserved for special treatment is calcium, which is in low concentrations outside and extremely low 

concentrations inside.  It is in most neurons used as a messenger molecule, valuable as single individual ions.  When 

a Ca++ ion is admitted to the cell, it is usually done so very near to the site that Ca ion is destined to bind to.  It is 

then very efficiently removed, often sequestered in special vesicles for the purpose.  Although the calcium ions are 

thought of as diffusing, their travel is so constrained that they might as well be piped from point to point.  Ca++ does 

not live in an open system, as do Na+, Cl- and K+.  Sequestration and buffering assure that all calcium are accounted 

for.  This is true also for ion channel clustering, which tightly control calcium influx and messaging.[130]

The early Hodgkin Huxley work characterized ion channels as exponential curve fits of the fourth order (sodium 

channel: g = gmax*m*h^3 and potassium channel: g = gmax*n^4).  Since then the kinetics of these two channel 

types from the lobster giant axon have been elaborated to as many as 30 conformational states.  The original voltage 

dependencies of inactivation were found to be incorrect, as the inactivation is “triggered” autonomously by its own 

transition probabilities, not by a voltage shift.  Therefore, these sodium channels will inactivate regardless of what 

the voltage is doing.[131]   The lesson learned is that a curve fit to normal performance does not reveal the 

mechanism, and therefore is not predictive out of those limited physiologic conditions.  Far more predictive is a 

molecular dynamics model but these must be verified by the wet lab data collection.  The multistep voltage clamps 

theoretically can find many of the conformational states of the actor, so long as each conformational change involves 

a charge shift.  But the results are not guaranteed for a number of reasons: some conformational states are too fast to 

be detected; some transition probabilities are too slow to be detected; some conformations happen to have a net 

charge configuration very similar to other states and therefore are indistinguishable;  there may be state groups 

which flutter between the group members; there may be alternative state transition pathways that are masked by the 

dominant ones; motion may occur orthogonal to the detection equipment; uncharged arms may move;  the shear 

number of states is far to large to map out completely.  For these reasons, ion channels (receptors and pumps as well) 

are being defined in the literature as “kinetic schemes”.  Schemes because they always involve some short-cutting of 

the true conformational states.  Assuming that a protein of 1e6 Dalton has N possible conformations, then there 

exists an N x N table of possible transitions between states, some of which may be null.  While the quantity of 
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articulating bonds of such a large molecule is huge, so its the interference of those articulations huge.  Molecular 

dynamics simulations seeking energy minima show a Calcium channel twisting like a “Chinese handcuff” without 

any visible flopping about of random processes. Its very orderly nature suggests a low number of conformational 

states. [Jie Liang, 2007, UIC Bioinformatics, personal communication ].  The modeler must accommodate wide 

compass of possible actor states, from 2 to 100 or more.  And that the transition probabilities may or may not be 

modified by any of the binding sites or force fields.  And that some, even many, of the transitions that actually occur 

are the result of intrinsic probabilities, not requiring a change in the environment to trigger them.  

Of all the possible configurations of a molecule, each may be ranked by its order of occurrence (duty cycle) and by 

its physiological significance.  If there are 100 states of absolutely no  significance to the experiment, then mightn't 

they be bundled into a single “garbage” state to save computation?  Well, so long as the input/exit probabilities are 

preserved.  Groups of very fast states can often be merged into a single state with no loss of informational 

significance.  Slow states, with a probability near zero over the entire length of the simulation run can be ignored 

unless they serve as a physiological switch of modalities.  In which case, they may need to be manually switched so 

as to explore both modes over predictable time courses. 

There are 3 aspects of states that need individual treatment.  The first is the binding of ligands, where external 

concentrations and collisions are factors, and particles must be bound and tracked for release.  The second is the 

traditional internal states of the molecule, or at least the high runners. The third is what this author calls the 

phenostate (pheno = to show forth), referring to the impact a particular conformation has on the outside world.  For 

example, a channel may have 4 different open states.  These must be kept separate because the in/out state transition 

pairs are unique, and mixing up the transition paths changes the behavior of the channel.  A simple mapping table 

expresses the relationships between internal conformations and output effects.

There are at least 43 types of ion channels in a single mammalian species.[132]   Although useful to have ion 

channels identified by a fixed number or types, this does not capture the true variety of channels one may encounter. 

For example, in the auditory system,  the Kca channels are individually tuned to a specific frequency by getting their 

tails enzymatically clipped  to many different lengths. 
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5.4.4.4 Conductivity Profiles  

Channel conductivity is determined by the complex interactions of the ion with the fixed charges of the channel 

protein along the pore.  Channel conductivity may require an amount of excess free energy to keep the side chains 

protonated.[133]  Selectivity is determined by ion size and the energy of hydration.  For example, the hydration free 

energy of Na+ is about 20 kcal/mole more favorable than that of K+.    For K+ to be selected in preference to Na+, a 

channel just needs not over-solvate Na+ ions.[134]  At the mouth of the ion channel has its own nano-environment 

electrodynamics, and voltage varies widely with the presence of chemical buffers.[135]   Conductivity may be 

altered  by certain ion concentrations at the pore, not merely by internal kinetics.[136]   Once an ion is in a pore, the 

shape of the pore, and the charges along the way determine an energy barrier profile along the axis.  Usually the 

maximum repulsive force along the way determines the conductivity of each ion species.

A physically open channel may be functionally closed, either by hydrophobicity, by solvation of the ion making it 

too large to pass, or by charge gauntlets the produce an energy barrier too high to pass.[129]   Thus conductivity 

ratios are unique to each pore chemistry.    And molecular dynamics are necessary to find the gating mechanisms, 

how they work, and what the energetics are.  From and informational point of view, going down to the detail these 

mechanisms is not necessary if the conductivity to each ion can be known at physiological concentrations and 

modulation.

5.4.5 SYNAPSES  

Synapses are specialized zones of  membrane, characterized by their facing a mating surface from a neighboring 

cell.    Synapses are zones.  The distributions within any one zone are uniquely characterized, independent of any 

other zone type.  

The peculiar distribution of channel types about the bifurcations of dendrites determine the degree of antidromic 

propagation.[137]   Some dendritic channel constellations serve to compensate from geometrical factors like 

dendritic diameter, to grant the smaller dendrites a near equal effect on signal contribution.  This is sometimes 

referred to as “synaptic democracy”.  
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5.4.5.1 Second messenger 2-d diffusion  

The G-protein systems are not of one form.  They may be one-step or two step processes.  Each step provides a 

quantitative leverage from 1 to 200 times its input particle binding.  The first step of both consists of the release of 

messenger particles that tend to ride along the polar heads of the lipid molecules.    This is an unusual phenomenon: 

2-dimensional diffusion.  Of course it greatly reduces the quantity of messenger particles required, greatly improves 

their chances of colliding with a target ion channel, provides for shorter travel paths, and aids in clean up (retrieval 

via pumps or denaturing enzymes).  Some of the G-protein systems do not target ion channels directly, but rather 

trigger an intermediate catalyst to generate third messengers.  Each such step acts as a messenger multiplier.  Such 

intermediate catalysts often produce particles that diffuse 3-dimensionally.

5.4.5.2 Enzymatic production of phosphates  

The third messenger systems  establish the communication link to the target ion channels nearby.  The G-protein 

system intermediate node may be kinases, which are rapid enzymatic producers of phosphates.  The phosphates act 

as the third messenger particles.

5.4.5.3 Third messenger 3-d diffusion  

Typically, the third messengers are released to diffuse freely in the intracellular saline.  This 3-dimensional release 

affords the opportunity to modulate off-the-membrane processes, such as endoplasmic reticulum and nucleus 

membrane binding sites.

5.4.6 TRANSDUCTION  

For purposes of this modeling effort, transduction refers to a process by which the arrival of one messenger on one 

side of the membrane results in the release of a different messenger on the other side of the membrane.  In many 

cases, there will be one input binding resulting in many output releases.    The ratio of input quantity to output 

quantity may be referred to as the leverage or fan-out characteristic of the process.
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5.4.6.1 Modulator / target pairings  

The concept of modulators is awkward because a ligand, an ion,  a force gradient,  temperature, mechanical 

disturbance, photons, pH;  can all be modulators.  For purposes of this model, we can consider fast signaling 

(electrical, photons, neurotransmitters, and second messengers) as constituting the direct path of information transfer 

and processing in the neuron.  We can consider medium signaling (hormones, drugs, accommodation) which 

maintain the neuron, supporting the steady state and providing a dynamic mid-range for fast signaling.  And then we 

can consider slow signaling (learning, developing, diseasing [sic]) and the constructive and destructive processes 

which produce the neuron.  Although convenient for classifications, this scheme is an over-simplification, as biology 

employs processes of time constants ranging perhaps 20 orders of magnitude, exploiting a huge array of time 

constants.

For purposes of this model, modulators serve to alter the actor conformation transition probabilities.

5.4.7 CAPACITANCE  

A membrane of constant thickness placed between two saline baths of different tonicities will experience opposite 

charges attracted to each other from opposite sides of the membrane.  This arrangement produces a natural 

capacitance.  The actual capacitance of the membrane is a function of thickness of the lipid layers, and of any 

induced charge in the polar heads.  The higher the induced charges, the higher the dielectric strength, and the greater 

the quantity of ions that can be held per unit area, per volt of charge imbalance.  Capacitance is temperature 

independent.  The voltage across a capacitor is a function of the ratio of charges on either side; to wit, proportional 

to the log of the ratio of concentrations, and proportional to absolute temperature.

By 1989, measurements were taken to detect the inhomogeneities of capacitance along the surface of the membrane, 

and that the capacitance surrounding one event (e.g. a channel opening, or pump cycle) faded with the saline 

conductance that serviced that capacitance.[138]   Not yet determined was if there occurred simple lateral surface 

movement of charges as a 2-dimensional charge diffusion.

Attempts have been made to measure the capacitance of the living neuron membrane for about 4 decades.  The 

problem is that the neuron is not a sphere.  Irregular shapes, especially elongated shapes, results in significantly non-

uniform charging curves, and they become increasingly uncertain as to their interpretation with complexity of shape. 
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The axon, as a regular cylinder, is much more tractable to consistent interpretation of capacitance, found to be 9E-3 

farads/ m^2. [118]   

The current transferred in and out of capacitance across a membrane that results from a voltage change[139] is 

expressed as:  

I = Cm * d(Vm)/dt  +  Faraday * summation(z.i * dielectric * del(V) * del(C.i)) 

The membrane is a mixture of self organizing lipids, each comprised of one or two hydrocarbon chain of certain 

length (C11:C22) with a polar head (carboxyl, saccharide, phophatidylethanolamine, etc).  The lipid types within the 

mix varies from species to species, changes in response to external conditions (temperature, pH, tonicity, etc.) and 

vary within a single neuron for a number of reasons.  Therefore, membrane capacitance is not quite homogeneous 

across the cell surface.  In some circumstances, models may need to account for local variations in thickness and 

capacitance to accurately predict voltage pressures on ion channels.  Rafting implies a dynamic change in thickness 

and therefore capacitance.  Because ion channel responses to voltage changes are highly non linear, such variations 

in capacitance are sometimes of the essence.

The capacitance of the neural membrane is a critical factor determinant of voltage and propagation, due to its 

position in the (equivalent electrical) circuitry, which serves as a low pass filter.  Eliminating high frequencies can 

easily eliminate action potentials if the cut off frequency is too low (say 500 Hz).  It is the capacitance of the 

membrane that makes propagation impossible for long distances.  The most significant function of myelin is to 

reduce the capacitance.  By adding 100 or so layers of lipids, opposite charges are held much farther apart and the 

strength of the attractive force between them diminishes with the square of the distance.  

Chen in 2000 developed techniques to measure membrane capacitance by varying the frequency to detect non-ideal 

behavior.[140]   Induced surface charges were studied by Chung in 2002[141] in attempts to refine modeling of 

membrane capacitance.  Destexhe found in 2008  that at frequencies higher than 50 Hz, the traditional cable 

equation approach to axonal modeling broke down.[142]    He attempted to improve the capacitance model by 

measuring some of the non-ideal capacitor behaviors of surface molecules, like the polar heads of the lipids, and 

attached sugar molecules. 
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Despite many indications that membrane capacitance mutes the signal, fast changes in current result in local voltage 

spikes that “beat” the capacitance (charging curves take some time).  And these fast changes do cause ion channels 

to respond strongly and quickly.  This is a non-linear effect not predicted by the measurements of RC time constants 

(tau).   Channel responses are sometimes measured to be much shorter than the calculated time constants.[143]

Any movement of charge within and about the ion channel constitutes a current.  And that includes the gates 

themselves.  Instrumentation is sufficiently sensitive to detect the moving of an ion channel gate by the current it 

generates (approx 2 electron charges moving 1 nm).  As current, these gating charges can also experience 

capacitance, in that they are attracted to their opposite and held there.  Given that a brief channel opening may flow 

as few as 6 ions, the gating current and capacitance may be significant in a predictive model.  Total membrane 

capacitance determines depolarization energy, and energy-optimal information transmission rates.[131]

5.4.7.1 Coulomb's Law voltage creation  

A voltage is a pressure resulting from a charge differential across some barrier.   Coulomb's law takes into account 

the placement of charged particles and returns the force between them.  Its only variable is the permittivity of the 

medium.

F = k0*q1*q2/r^2;     % Coulomb's calculation of voltage
       where k0 = 1/(4*pi*e0*er),  e0 = 8.85418782E-12 F/m                 % farads/meter

It makes no distinction between types of ions, nor is it a function of temperature.  It is accurate in vector form, and 

the law of superposition holds, such that every pair of charges in a system can be calculated for V via Coulomb's 

law, and then these vector forces summed to yield the net force upon any one particle, and the net forces on a group 

of particles summed to yield the physical force tending to accelerate them.

F = 1/(4*pi*e0) * q1*q2*(p2-p1) / (abs(p2-p1)^3) =  k0 * q1*q2*N / (abs(p2-p1)^2);  % where N = normal
% The surprising cubed term in the denominator arises from the way a normal is calculated: 
N=(p2-p1)/abs(p2-p1)

This physical law is the backbone of much of physics.  It is basic to Maxwell's equations and to Einstein's relativity. 

It has been verified accurate to at least 14 decimal places.  Yet, it is in seeming contradiction to the Nernst equation. 

The conflict arises because the Nernst equations says that voltage is proportionate to the temperature and is inversely 

proportionate to the valance of the ions.  Coulomb;s law applies to any group of charges whose positions are known. 
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The Nernst EQ applies to what amount to chemical reaction rates.  In this case with the pores within the ion 

channels.  Coulomb's law can calculate the voltage as the actual pressure against the membrane, not against some 

electrodes (presumably at distances from the membrane).  Coulomb's law is not temperature sensitive.

5.4.7.2 Nernst voltage creation  

The various bureaus of standards prefer to define  voltage in terms of batteries (wet cells) .  However the Nernst EQ 

is a direct adaptation of chemical kinetics EQs that would predict such battery performance.   The Nernst does not 

address a physical charge density calculation, like Coulomb's law.  It says that the ratio of concentrations across that 

barrier, and temperature, determine the voltage across that barrier.   The Nernst partial voltage is directly 

proportional to temperature, and is directly proportional to the log of the concentration ratio.  For completeness, the 

Nernst partial voltage is  inversely proportional to the ion's valance.   The Nernst EQ only returns partial voltages, 

one ion type at a time, and must involve two separate concentrations of that ion type, held apart by a barrier.  

E = (kelv*gask / (z*faraday)) * ln(conc.in/conc.out);    % for one ion type at a time, where conc = 
concentration
 % where kelv = temperature; gask = gas constant; z = valance; faraday = 96480 C/mole; ln = natural log

Voltage production of partial voltages via the Nernst is in contradiction to Coulombs law because the Nernst is 

proportional to absolute temperature, and Coulomb's law is independent of temperature.

The measured voltage across a living membrane is not merely a function of the sum of the Nernst partial voltages. 

The so called “resting potential” can only be maintained as a function of “leakage” of certain ions.  Thus the resting 

potential is closest to the Nernst potential of that species of ion “leaking” the most.   Therefore, “leakage” is a poor 

choice of terms, and “maintenance” or “basal” would be a better description.  In any case such ionic flux is an 

absolutely essential process in the normal functioning of neurons.    The Nernst voltage is measured through an 

electrical instrument with probes in the extracellular and intracellular fluids. Such instrumentation must induce an 

electron flow through an ionic system.  The reading is very sensitive to distance from the membrane as the zeta 

potential experiences a log decay with distance from membrane.  
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5.4.7.3 Voltage effects upon membrane lipids  

The GHK voltage EQ, which yields a voltage value as the sum of all the Nernst potentials weighted by their currents 

through the membrane, is only valid in the steady state.  In any period of changing voltage those charges in 

capacitance at the membrane will contribute to both the currents and the resulting voltage.  Follows is the GHK for 3 

ion types:

numer = perm.k*conc.out.k + perm.na*conc.out.na + perm.cl*conc.in.cl;
denom = perm.k*conc.in.k + perm.na*conc.in.na + perm.cl*conc.out.cl;
V = (gask*kelv/faraday)* log(numer/denom);    % where log = natural logarithm

The addition of any divalent ion requires taking its terms to the 1/2 power.  An accurate simulation of the membrane 

capacitance involves the non-uniform thickness of the lipid bilayer, the dielectric constants of the various lipid 

species, the effects of the fatty acid polar heads upon charge retention and fluidity, the mobility of ions in the saline 

above, the mobility of ions diffusing two dimensionally along the surface of the membrane, and the spatial log decay 

of charge density away from the capacitive membrane.  

5.4.7.4 Voltage effects upon membrane proteins  

As there is always a voltage gradient across the membranes of living cells, and there is always various charge 

concentrations on protein carboxyl and amine groups, then there will always be some contortion of protein 

molecules as the voltage potential changes.  The question is whether or not such charge shifts will affect the actor 

functional role in any significant way.  Because of this ubiquitous effect, it is not surprising that many ion channel 

gating functions are voltage sensitive. Perhaps we should be surprised when we find an ion channel or pump that is 

not voltage sensitive.  The effects of voltage upon the conformation transition probabilities are of interest.

5.4.7.5 Voltage gradient force  

Given an charged particle system, the introduction of a charge imbalance will have immediate effects upon the 

particles according to the inverse square law.   At the nanoscale, voltage gradients may not be linear nor exponential 

wrt to distance from the membrane.  Ion repulsion forces the like charges into layers, with the densest layer right at 

the membrane, and progressively sparser layers away from the membrane.  Each such layer has a precisely 

corresponding opposite charged layer on the opposite side of the membrane.
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5.4.7.6 Concentration gradient force  

The particles in solution undergo thermal movement, the velocity of which are determined by Boltzmann's 

distribution as a function of temperature and mass.  The velocity times mass determines the momentum of impact 

force against the membranes and actors.  The aggregate of these impact forces on a surface we call pressure.  When 

the concentrations of a particle species are graded, the so to is the pressure graded.  Along such gradients, the 

difference in pressure wrt x sets up a force that moves those particles down the gradient.  That force is countered by 

the viscosity of water, and together they determine the rate of flux due to concentration differentials.

5.4.7.7 Concentrations altered by buffers  

Any particle species may be rendered unavailable by temporary binding to a buffer.  A buffer has a bind/unbind 

equation factored by charge, voltage, pH, temperature or some other criteria.  It is usually a simple kinetic with a 

forward and backward rate constant.

5.4.7.8 Flux  

Flux is the diffusion of a species of particle under the influence of force gradients.  It is formulated as partial of 

diffusion in the direction of interest.  It is measured as a quantity of particles crossing a square micron of areas 

perpendicular to the axis of desired measurement of travel.  In a cylindrical coordinate system, we may talk of radial 

flux, axial flux, or circumferential flux. Circumferential flux is best thought of as curl, not straight line diffusion.

5.4.7.9 N-body charge acceleration system (electrodynamics)  

Charged particle systems   Fi = - sum(g*mi*mj*Rxyz / Rij^3);  i~=j

where F=force, m=mass, R=distance, g=conversion constant, Rxyz is the directional vector

The inverse square law between each pair of charges is applied.  The magnetic forces are sufficiently small at the 

molecular scale to be ignored.   
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5.4.7.10 Capacitance on the polar heads of fatty acids  

Membranes may have a higher capacitance than would be predicted by their thickness.  This is due to charge shifts 

within the membrane molecules that shift opposite charges near to ions in solution, thus binding them tighter than 

could ions on the other side of the membrane.  This creates an effective charge field penetration of the membrane to 

the depth of the polar heads.

5.4.7.11 Charging curves in electrolytic solutions  

Membranes are non-ideal capacitors, and empirical data is needed to capture the nonlinearities of charge to voltage, 

timing delays of diffusion, and the various effects of mixed species of charged particles.  The fact that ions have 

thousands of times more mass than electrons (about 42200 times the mass of Na) brings into play the mass spring 

effects of a second order system.  The greater the mass, the slower the charging curve, and the more prone to 

wavelike behaviors as mass overcomes dampening effects of water collisions.

5.4.7.12 Saline electrical resistance (Ionic flux resistance)  

While most measurements of saline resistances were measured plate to plate, the relevant resistance in a neuron is 

point to point in a half cube (membrane dividing the cube in half).  Most of the resistance is very near the points, 

thus muting the effects of distance between the points.

5.5 ACTOR PROCESSES  

5.5.1.1 Ion channel conductivity flutter and drift  

The time compass is chosen such that faster events do not correlate to the information throughput of the neuron, and 

slower events are concerned with out-of -scope development, learning, housekeeping, and adaptation.  Most actor 

flutter is digitally smoothed over by the length of dt.  However, flutter can be studied if the dt is shortened 

sufficiently, and the kinetic values in Q are sufficiently accurate.
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Shown are 3 instances of flutter (singular spikes), a slight downward drift of the baseline, and low level back ground 

noise. (from Ach activated motor end plate in frog).

Single unit recordings incur background noise and ion flow through the pore noise.  The most common data filters 

for biological ion channel recordings are Bessel for time domain and Butterworth for frequency domain.  The Bessel 

shifts all frequencies equally so is good at preserving square waves characteristic of channel openings.  The ion flux 

noise can be the largest component.  

From the modeling point of view, most signal conditioning is at the discretion of the wet lab worker, not the 

modeler.  However, one factor is particularly relevant:  the high end frequency cut off.  If the kinetic scheme 

generate speed of activities at frequencies above what the wet lab instrumentation could capture, then there 

obviously will be a mismatch between simulation and bio-data.  It is prudent to note the upper frequency limit of the 

instrumentation when entering the biodata into the model libraries.  Then a decision must be made either to value 

any high frequency data generated by the model as potentially useful, or to filter (smooth) the kinetics down to the 

frequency band of the data so as to have the model behavior match the bio-data.   In most cases, this will not be an 

issue because the kinetic schemes are usually derived from the same biodata as are the traces.

5.5.1.2 Ion channel conductivity profile consequences  

Each species of ion channel is conductive to more than one ion species, but to varying degrees.  To treat an ion 

channel as only a sodium channel, potassium channel, calcium channel or chloride channel can accumulate error that 

rapidly throw the model out of physiological range. The current problem is, not enough data has been collected to 

accurately portray channel conductivities across all relevant ion species.  This missing information will result in 

FIGURE 6: Single Unit Recording trace
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inaccurate channel behaviors that in turn will force the pump performances to be distorted in compensatory manner, 

or else the systems will drift away from physiological representations.

Several of these were posted in the previous chapter.

5.5.1.3 Exocytosis of vesicles  

The exocytosis process may be looked upon as a compartment merge (vesicle contents with synapse contents) or it 

may be looked upon as a transduction from intracellular Ca to extracellular neurotransmitters, with fan out.   The 

former is a complicated set of processes, and could become a huge undertaking all by itself, if rendered faithful to 

known biology.  For purposes of narrowing the modeling elements to those best serving the NIP functions, it might 

be possible to replace the vesicle as a compartment with the vesicle as an inverted receptor.  As the receptor can be 

represented by a kinetic scheme, considerable reductions in computational load can be realized.  Justification will 

depend upon modeling both renditions and determining an acceptable match of the inverted receptor to the bona fide 

vesicle.

5.5.1.4 Vesicle release of ligands  

A vesicle is a pre-packaged bag of messengers.  It may contain only one type in regular quantity, or it may be a 

mixture of types in various ratios, with variance.  Vesicles may vary in quantities from vesicle to vesicle, according 

to given variances.  The releases may exhibit some degree of uncertainty, and the emptying of contents may not be 

complete.  These variations may all be prescribed via PDFs.  

After the release of a vesicle there is a half life of each of the content (particle mix).  This half life is determined by 

some combination of binding, pumping (re-uptake) converting (chemically denaturing) and escape (diffusion into 

the larger compartments).  For maintaining steady state conditions only the re-uptake and the conversions are 

effective.  Somehow the vesicles must be rebuilt after each use.  In a kinetic scheme this could be as easy as running 

the release mechanism backwards.  Of course reality is much more complicated.  But the mechanism of 

reconstitution for vesicles is not direct on the NIP pathway.  The significant factor is the vesicle production rate and 

any readiness factors for vesicles to release into the synapse when a Ca++ binds.



279

5.5.1.5 Re-uptake of ligands  

Not much discussed in the literature and texts, but the reuptake is equally critical to synapse functioning as the 

vesicular release.  If the synapse is to be efficient, the reuptake speed will math the release speed.   The bursting 

open of a vesicle via exocytosis is a non-reversible process.  A corollary to this fact is that it is easier to release than 

recover, and therefore faster to release than to recover.   This suggests that for every 1 vesicle being released there 

are probably many reuptake mechanisms in the vicinity.  For modeling purposes, reuptake of ligands is 

accomplished via pumps. Large quantities of ligand may be sequestered.  For small quantities, high affinity binding 

sites on an actor can thereby recharge and it will later release them as messengers.  Rapid uptake requires fast 

backward reactions at the binding site and close proximity of the pumps to the binding sites.  Couplets may be 

formed in solution to deactivate and/or neutralize a B type.

If it is found germane to the modeling query, a mechanism may be added that traces the path from the point of 

reuptake to the manufacture of vesicles, so as to complete the recycling.

5.5.1.6 Resetting ligands to initial positions  

In any model that runs more than a few seconds of simulated time, the ability to maintain steady state is crucial.  Just 

as the ion pumps maintain the membrane resting potential, so also pumps retrieve ligand molecules and pump them 

back into their original compartments.  If ligands are released from stationary positions then those release sites need 

affinity and binding powers to recharge sufficiently fast.  Getting particles near such an actor binding site may 

require nearby pumps to get particles in the correct compartment, and near to the actors that will bind them.

5.5.2 ACTOR DISTRIBUTIONS  

The locations of the various types of actors are of the essence regarding neuron information processing.  Yet there is 

very little rigorous data on the precise locations of actors by type.  The fluorescence marker data is the current best 

source.  Sometimes it can be corroborated with random sample patch clamps to confirm the functional behaviors of 

that which was marked.  Some channel density variation can be explained as an optimization of impedance, energy 

cost , transduction speed, or nodal clusters.    Much of the spatial variations in dendritic and somatic membrane 

function are accounted for by channel densities varying non-uniformly, neither with respect to other types of 
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channels, nor with respect to shape.  Beyond the general physical design parameters, local variation represents 

information.

While some positioning is obviously restricted by its very function (receptors at dendritic synapses and vesicles at 

axonal synapses), there is plenty of room for subtle asymmetries of actor placements.  The individual specific 

distance from one actor type to another actor type may be critical to cell function because the diffusion from one 

actor to the next may determine the response frequency of the cell.  In particular the channel distributions at 

dendritic bifurcations determine to what degree there will be antidromic propagation.[144]

Ample evidence is found that changes in the channel distributions will change the shape of the neuron electrical 

response wave.[145]

Complicating matters is that some channels are present within protein structures that fix the distances between 

dissimilar channel types.  These clusters may be tethered or free floating in the membrane.[130]   This is particularly 

crucial when one type is admitting an ion type that is the modulator stimulating the receptor of the other type.  The 

distance between them determines the diffusion time, and thus the delay.  Often these are part of oscillatory response 

mechanisms.[146]

Channel types are plaided on the membrane in patterns that can produce oscillations.  This requires one type of 

channel with a net charge inward and another type with a net charge outward, and the two are triggered at alternate 

times.[147]  

The actor distribution function reports the actor density over the length of the neuron.  A 2-dimensional distribution 

function would also take into account the angle of revolution, in the case of radial asymmetries.  A 3-dimensional 

distribution function would support mapping every voxel of neuron separately in complex arborizations.  However, 

the 3-dimensional version requires a mapping of volume to surface, as the membrane passes through each voxel (or 

not) as a warped plane, not as a volume.

There exists 1 actor distribution function for each actor type, per each cell type.  For convenience all actor types of a 

single cell type can have their distributions stacked into a single matrix, then be called by row number (actor type). 

For consistency, all actor distributions are binned into 100 values, corresponding to percent of axial length of the 

neuron.
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5.5.2.1 Densities and gradients  

Found densities from biological data can be preserved as empirical points, interpolated between them, or otherwise 

curve fit so as to span a variety of model shapes and sizes.

5.5.2.2 Clusters and distance-fixing structures  

In the event two or more actors are found within structures that fix their distances from each other, randomly 

distributing them will not yield the desired result.  They must be treated as one, then given a distribution function for 

the cluster.  After cluster positions are substantiated over the cell surface, then from the cluster center points, each of 

the individual actor points must be calculated.  This is best done in cylindrical coordinates, as this allows arbitrary 

rotation of the cluster while preserving the actor intra-relationships.

5.5.2.3 Exothermic and endothermic bindings and conversions  

As this is a model of information flow through a neuron, energetics are not directly considered.  The energetics 

determine the probability of occurrence and the dwell time of each state.  In subsequent phases of development, an 

energetics analysis may be deemed necessary to identify feasible and practicable designs, for which probability data 

is not yet available.

5.5.2.4 The Outermost Envelope, containing the entire Experiment  

Any particle system must be bounded by a closed surface, else particles will leak out of the system under test.  For 

purposes of this model, and “extracellular” membrane is designated at the outer boundary of particle movement.  It 

represents the plasma lemmas of neighboring cells.  The extracellular membrane is an active membrane, with the 

same capabilities as the plasma lemma (main membrane of the model).  The core membrane also has full 

functionality available to it.  This enables them to regulate tonicities, set up fluxes, supply needed particles, clean up 

waste particles, and set up charges along the membranes.
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5.5.3 TRANSPORT  

Two types of transport are of interest:  passive (open pores) and active (pumps).  It is possible to represent 

molecules that convert between channel and pump functions by switching actor trait sets conditionally or 

stochastically.

5.5.3.1 Channel Conductivity  

The pore through ion channels is sufficiently small, convoluted and charged that most pores are particle type 

selective.  However, we begin with the simplest case, the unselective pore:

G =  pi*r^2*g/length                      % conductivity of an uncharged cylindrical pore
je = -g*E;                                       % current due to the force field (Ohm's law, relates KE to PE)
jc = -D*z*del(rho);                         % current due to concentration gradient (Fick's law, relates KE to PE)
jc.chan = D*(rho1-rho2)/length;    % concentration flux through a channel
j = jc  +  je;                                    % Nernst and Planck do addition
j =  -D*z*del(rho)  +  -g*E;            % Nernst and Planck do substitution
g = D*n*z^2 / (boltz*kelv)             % Einstein related conductivity to diffusion
j = -D*z*del(rho)  + -D*n*z^2 / (boltz*kelv) *E;            % substitution
j = -D*z* (del(rho) + rho*z* del(phi) / (boltz*kelv));     % substitution

The Poisson equation relates the charge field to the densities of mobile and fixed charges to yield the net 
effect upon an ion.  It calculates the flux through a pore as a function of radius and length, and gradients.

rho.saline = rho from Fick's law above 
rho.pc = the density of charges within the protein
dielec.water *  dot(del , (dielec.protein * del(phi)) = - (rho.saline + rho.pc);

Combining the Nernst-Planck equation with the Poisson equation calculates the channel energy barrier function.

[141]   At distances greater than the Debye length, the Poisson approach is accurate.  However, for interactions 

shorter than the Debye length, there are induced charges and quantal effects.  It is necessary to take a finite element 

approach to model the entire pore. Molecular Dynamics addresses these issues.  For purposes of this model, energy 

barriers will be taken in summary, as the full Molecular Dynamics model cannot be supported over the dynamic 

computations of hundreds or thousands of channels.

For reference, consider an ion channel pore of  2E-10 m diameter x 2.5E-9 m length in a 150 mM solution of K+. 

Conductivity of this solution was empirically measured to be g = 8.4E-3 S/cm. Conduction of the ion channel 

therefore is G = pi*r^2*g/length = 4.2E-11 Siemens.  This smooth pore calculation yields conductivity about 3 times 

the conductivity of a K channel with shape and charges.
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 No type of channel is perfectly conducting for one species of ion and perfectly blocking for all the others. 

Determining the conductances of any given ion channel type requires a series of baths of varying tonicity 

combinations, deleting some ion types, and substituting like ion types from the atomic table. As the in vivo data is so 

far sparse, modelers often need to hypothesize or extrapolate missing data.  In any case place holders are needed to 

represent known channel types even when specific conductance profiles across all present ion species are not yet 

available.

Molecular Dynamics models are being constructed to predict some of these conductivities.  For example, Noslov in 

2006 modeled the ion selectivity of a potassium channel (KcsA), and in the process discovered mechanisms as to 

how some of the selectivity occurs due to the effects of ligands coordinating the rhythm of binding sites along the 

pore.[134]   Na conductivity, by comparison is enhanced by ligand-ligand repulsion.  According to this 

interpretation, the channel is somewhat like a rubber tube, and the ligands provide the hard pressure points holding 

the shape of that tube, especially as pinch points. Selectivity is not arbitrary. Given 5 cations {Li Na K Cs Rb} there 

are 120 possible conductivity-ranking sequences, but only 11 are found  in simple pores, varying only diameter. 

[148]   Ion channels must either conform to these 5 or employ significant charge gauntlets to overcome them.

Channels often have conical shaped pores.  This is an inexpensive bio-diode that favors movement of ions down the 

funnel, such that, if left continuously open between two equal sized chambers, the steady state would find a ratio of 

about 1.15 : : 1  (small end :: big end) for permeable ions in the two compartments (in particle simulation 

experiments by the author).  

Channels vary in the pore height off the membrane surface.  Some pores, like the 5 side ports of the nicotinic Ach 

cation channel, are right at the membrane's intracellular surface, immersed in the highest charge density the 

membrane can muster.  In contrast, the other end of of that same channel rises about 7 nm above the extracellular 

surface which is far above the 3 nm thick charge density zone, and therefore in neutral territory with little voltage to 

push ions through.  Thus this channel can act as a diode, on  basis of shape alone. 

5.5.3.2 Pump Ratiometrics  

Pumps are actually logical devices whenever they transport more than one type of ion and do so in ratios.  Think of a 

card game when certain players must trade 2 for 3, and other players required to make other ratiometric trades. 
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After a long series of trades, some characteristic steady state might emerge.  There is a logic to how the steady state 

is arrived at.  It may be modulated by slowing some pump cycle rates down, or by increasing the error rate of 

stochastic pumps.  

When pumps are turned on prior to the channels, their tendencies to head for one or more equilibria can be observed. 

It is possible that the pump system acts modally, or acts homeostatically, or acts adaptively.  This model study 

promises to elucidate the systemics of ion pumps.

Note also that non-electrogenic pumping requires far less energy that electrogenic pumping.  It is of interest to 

determine which aspects of the cell's work can be accomplished non-electrogenicly, and what might be the least 

energy cost path to achieve electrogenic pumping as necessary for cell vitality.  However, the Na pumps are known 

to build up a gradient that is tapped as an energy source to drive a great number of processes.  These include 

processes out of scope to NIP functions.  Accordingly, a model attempting to account for all Na pumping will 

require a reasonable factor for off-NIP consumption.

Pumps may participate in ratiometric information processing.  However, it is presumed that it would take hundreds 

of pumps to transport a significant quantity of ions in a timely fashion to match the transport of a single channel.

5.5.4 TRANSDUCTION  

5.5.4.1 Receptors  

A receptor is a stochastic device which rapidly responds to a binding event outside the cell with a multiple event 

inside the cell.  This describes receptors in the plasma lemma, but receptors may be found in other membranes as 

well.  They transduce spatially across a membrane, and they transduce quantitatively to leverage a very small signal 

into a much larger one.   Kandel, in 2000, reports this leverage at approx. 200::1 for single stage messenging, and as 

high as 30000::1 for 2-stage messenging. [149]   Receptors by one of several possible mechanisms release second 

messengers in quantity.  These messengers quickly arrive at nearby actors, especially certain types of ion channel 

with binding sites for those messengers.   This all takes place in about  (1E-4 .. 1E-2) s.  There are at least 20 

different configurations for second messenger systems found to date.  Some employ intermediate cyclases to 
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catalyze the production of third messengers.  This takes longer but greatly increases the leverage in quantity.  Such 

leverage can, for example, enable a retina to detect a single photon.  

5.5.4.2 Vesicles  

From an information perspective, a vesicle is a transducer, much the same as a receptor.  They appear physically 

very different, but the signaling results are quite similar.  It may be that the simpler mechanism of the receptor is not 

available outside the cell, as G-protein systems might be far too fragile to build and maintain on the outside surface 

of cells.  The vesicle mechanism is metabolically much more expensive but had already been developed for 

endocytosis and exocytosis in eating and excreting.  As an already evolved, stable and robust mechanism, it was 

adapted to the neuronal function of signaling.  

5.6 PROPAGATION  

Ion flux alters the quantity of charges stored at the adjacent capacitive membrane surface.  Ions not bound in 

capacitance diffuse spherically, yielding non-linear gradients according to the sum of the charge products, inversely 

proportional to the squares of the distances between those charges (E = ko*q1q2/r^2).    The aggregate of these 

accelerations due to Coulomb's law determine voltage changes that immerse nearest neighbors.  When the rate of 

change is strong it is likely to effect a change in mode of the Q-matrix of those nearest neighbor actors.  Such shifts 

predispose the ion channel to change it open/close time ratio.  If the flux quantity from one ion channel is sufficient 

to cause an equal or greater flux quantity from one or more adjacent ion channels, then a chain reaction ensues. 

The speed of conduction is not determined electrically, because the rate limiting step is the state changes of the ion 

channel.  These are determined stochastically as a function of the Q-matrix.  The conduction velocity is determined 

by the number of conformers an ion channel must pass through between closed and open states.  Similarly, the 

refractory period is typically determined by the number of conformations that the counter-valent ion channel must 

pass through.  Furthermore, capacitance, by temporarily binding charges, has the effect of delaying flux radiations, 

thus its “low pass” filter role.  When the ion channel flicker is significantly faster than capacitive delays, then 

capacitance is the dominant determinate of conduction velocity.
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Hybrid continuous/discrete cascades will radiate out from a point source. But such point sources do not contribute to 

information processing of neurons.  In purely passive systems, the signal is expected to damp out along an 

exponential temporal decay curve and to spread out spatially along a flattening Gaussian curve.  The neuron does 

not act passively with regard to signal propagation, despite the descriptions in the literature of dendrites being 

passive.  Where ever there are ion pumps, there will be stored energy in the form of concentration differentials and 

voltage differentials.  This stored energy is held in place by the capacitance of the membrane.  Whenever an ion 

channel opens, some of this potential energy is released.  Furthermore, the adjacent ion channels may be sufficiently 

sensitive to respond to a perturbation that is lower than the one it will produce. When this occurs the ion channel is 

adding energy to the signal as it is passed on.  Technically, the ion channels are acting as repeater stations, each one 

restoring the signal to full strength.  Which such an arrangement, the signal could be propagated for any length of 

axon without any deprecation in signal strength.

Propagation is not a simple yes or no phenomena when the neuron surfaces are not uniform.  Gradients in channel 

density, channel types, membrane cross-sectional diameter, tonicity on either side of the membrane, ligand 

concentrations (as modulators), and the immediate prior states of the ion channels all  are factors in propagation 

velocity and amplitude.  These are the same factors which determine the information processing role of the neuron.

In sensitivity analyses varying tonicities and channel conduction rates, the Na channel is found to express a “go – no 

go” threshold concerning its ability to effect a second action potential from the first.  Ionic currents of Na,K, and Cl 

using the Hodgkin Huxley EQs. In repetitive trials revealed a critical point at which propagation occurred. 
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The above plot was created by Kirsteen Lugtu, a student of mine at the time.  This simulation demonstrated that in a 

fourth order model, parameters could be swept (ion concentrations, conductivities, and time constants) so as to 

determine the domain within which propagation occurs.  The red arrow points to the time when either there is or is 

not sufficient signal generation to stimulate the next channel, or to repeat firing the same channel.  For axonal 

propagation, where no signal processing is expected, simple consistent kinetics are desirable.  To process 

information, as with mathematical operators, this approach is inadequate. 

5.6.1.1 Wave fronts  

Excitable membranes are characterized by the triggered release of energy packets which serve to sustain a chain 

reaction of such releases.  The direction of travel of this chain reaction over a 2-d structure is called a wave front. 

FIGURE 7: NA, K & CL CURRENTS, HODGKIN HUXLEY EQS
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The shape of a wavefront is only perfectly uniform (straight or circular) when all of the elements are identical and in 

exactly the same state just prior to excitation.  In a stochastic system this is not what occurs.  The states are in 

various recoveries from previous activities, tonicities, modulator bindings, .  

5.6.1.2 Inactivation fronts  

Refractory periods are essential for the directionality of propagation.  It is a cost of silence paid to insure against 

back propagation.  Just as there is a propagation wave front, there is an inactivation wave front following it. The 

shape of this wave front determines which excitations and inhibitions will be ignored and for how long.  This shape 

determinant has implications in the responsivity patterns and basal firing patterns of neurons, as secondary effects 

beyond the channel kinetics.

5.6.1.3 Escapements  

A significant phenomena in biology is the manner in which energy is released, i.e. .in a highly controlled manner.  In 

most, if not all of biochemistry, energy can be said to be released in packets.  In those few processes where energy is 

more or less constantly flowing, we call those “leakage”.    In neural processes it manifests itself in the discretization 

of analog signals.  The flux of ions through an ion channel is quasi analog. Although ions themselves are discrete, 

the numbers involved are usually large enough to be treated as analogous to electrical current.  While the individual 

ion channels are discrete and binary in their gating (open/closed step function), the action potential is most 

efficiently simulated in its 4th order differential equation analog form.  At such an aggregate scale the action potential 

sodium influx within 1 to 3E-3 s  is immediately and causally followed by the nearly simultaneous shutting of the 

sodium channels and opening of the potassium channels to allow potassium efflux. This quick succession serves 

both to “digitize” the signal and to nearly double the steep dV/dt  disturbances to the surrounding local region.

5.7 MODALITIES  

In 1990, Shrager did a computer model of a demyelinated axon.[150]   He divided it into 20 equal length 

compartments,  modeled Calcium effects upon the axon membrane, and produced oscillations as extracellular 

calcium concentrations were reduced to near zero.  Calcium modulated the behavior of sodium channels and 

potassium channels.  An oscillation requires two opposing forces metered by each other so that each limits the other. 
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If potassium current consists of positive charges outward and sodium current consists of positive charges moving 

inward, then these two forces are opposing.  We already understand that the depolarization of the resting potential by 

sodium influx triggers the potassium channels, after a 1E-3 s delay, to open.  If a mechanism is added whereby the 

action of the potassium channels, after a delay, triggers the opening of the sodium channels, then a sustainable 

oscillation should occur.   Normally sodium channels have a refractory period to prevent this.   If a modulator of 

sodium channels were to have the effect of shortening (or eliminating) the refractory period to where the sodium 

channel could respond to the voltage changes induced by the potassium channels  (about 3E-3 s), then an oscillation 

were occur until some change broke that cycle.  Bursts are characterized by very distinct on and off events, not 

gradual and not chaotic.  The sharp modal change from quiescent to rapid fire would require either a sharp voltage 

range shift (unlikely) or a modulator that could be released near the ion channels to turn on the oscillation, and then 

somehow become sequestered again to turn it off (or vice versa, where a modulator is removed from an ion channel 

to start a burst, and replaced to turn it off).    Models that represent modalities mark entry into ion channel kinetics of 

multiple state path circuits, and they also require the modulation mechanisms to reliably switch between those 

circuits (modes). 

Focused, synchronized activity in a dendritic tree can be arranged so as to maximize the wave peak just as it reaches 

the soma[151]   Many dendritic arbors consist of two zones, the distal and the proximal.  The proximal acts to 

suppress the inherent nonlinearities so as to emulate a linear response fro all points in the tree.  The distal end is 

variable, modified per learning and plasticity.[152]   Workers are variously aware that the modalities of firing 

patterns cannot be modeling by stipulating average firing rates.  Nor can they be replicated by binary open/closed 

kinetics.[153]   Workers had noticed that the activations and deactivations of sodium channels were often incomplete 

and chaotic,[154]  and this suggested that kinetics was playing a role more complex than the Hodgkin Huxley 

equations could generate.  They responded by building stochastic models to mimic the kinetics of modal shifts, 

switching between single spikes, oscillations and chaotic firing.[155][156][157]   Out of this came the concept of 

“kinetic schemes”, so called out of modesty that there must be immensely more complex kinetics yet unobservable 

within the molecule, and that the observable bits were but a cartoon of the whole.

The fact that some potassium voltage gated channels have I/V plots that are monotonic,  and other channel types that 

present second order curves, suggests that there are not many significant molecular conformations in those channel 

types.  Some  sodium channels have I/V plots that appear to be third order (display two inversions).  We can only 
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measure the openings and closings of  the channel (gating currents), and will therefore be tempted to see only those 

two processes in an I/V plot.  Not present in the I/V plot are the time lags between stimulus and response.  Not 

present is the inactivation function.  For these and other reasons, two-dimensional plots are not adequate to model 

channel modulation.    All such curves are of aggregates of large quantities of channels.  The single unit recordings 

display greater subtlety.  The many found allosteric modulation sites present on most ion channel types, are usually 

found to alter the state transition probabilities.  To discover what might be the states of an ion channel, 2-step 

voltage clamps attempted to map various combinations of torsion put on the molecule to see where it might jump o 

when relaxed a little.   Every state transition requires time, and reversible processes make the outcome a bit 

uncertain.   But the data were such that exponential curves could be pealed off, each one suggesting the existing of a 

conformational state.   They could then be trialed to establish sequences, and by that a state path chart could be 

drawn.

Protein molecule state transitions are analyzed as first order processes, with an exponential curve wrt time as their 

solutions.   Given complex data, a number of exponential curves can be “peeled” out by subtraction, leaving a 

remainder from which more exponentials can be peeled out.   This can be repeated to some level of accuracy or 

diminishing returns.   Each found exponential is weighted in amplitude and by time constant.   The measurable 

current is then presumed to be:

I(t) = I(inf) + w1*exp(-t/t1) + w2*exp(-t/t2) + .... + wn*exp(-t/tn);    % where I(inf) is steady state

This is only a curve fit of exponentials, but is justified by kinetic first order reactions.  The problem is that it is not 

the conformational change that is being measured, but rather the effect that conformational change happens to have 

on conductivity of the channel.  In many cases that would be none, and so those conformations are invisible and 

ignored.  

The problem is that once terms are added together, information is lost, and even more so when the quantity of terms 

is unknown.  Given a sum of 7, what originally comprised it?  1+6, 2+5, 3+2+2, 1+1+1+1+1+1+1 ?  Using only 

integers, there are 14 possibilities, and of course using decimals, there are an infinite number.  We receive the sum 

effects of conformational changes as a measurable current through the open pore.  Teasing them apart leads to what 

are called “kinetic schemes”  
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The argument is made that to achieve higher frequencies of flux across the membrane, one cannot reduce the mass 

of the ions, so there must be greater forces brought to bear.   Higher voltages were found to support higher 

frequencies by Buckingham.[158] 

 The input waveform is the spatiotemporal integration of spikes, and may present as rather sinusoidal (single 

frequency) or more jagged (mix including high frequencies).  It is the high frequency part of the spectrum that can 

most easily trigger the rate-of-change sensitive ion channels.  Therefore the temporal shape of the input wave makes 

a difference.  Some of these effects can be mimicked spatially.  With inputs converging from various length 

dendrites, they assemble in a phase pattern that can shape waves over a wide range of possibilities.[159]   To probe 

for the temporal shape domain of various dendritic spatial field shapes, various patterns across the field were 

stimulated.[152]

Given one channel with faster kinetics and another channel with slower kinetics, they can be set into opposition, and 

together produce an oscillator.[147]

Each of the historic models has been reviewed for its ability to exhibit multiple modes.[160]   The HH, Fitzhugh-

Nagumo, Morris-Lear, Hindmarch-Rose, Conner  were analyzed mathematically for limit cycles.  These EQs can 

imitate the aggregate response, but cannot simulate the unitary channel behaviors.

The mechanisms of neuron ad neural tissue behavior take place at smaller scales than previously thought.  A single 

cell has been shown to be capable of a seizure.[161]    A single channel can act as a pattern recognizer.  A single 

channel can act as a pattern generator. 

Modalities are significant because neurons are well known to shift between several characteristic response patterns. 

A model is desired which can represent the neuron dynamics sufficiently to reproduce the mode shifts of that 

neuron, say from random basal firing, to rapid bursts, to regular rhythmicity. 

5.8 ANALOG VS DIGITAL PROCESSING  

At the nano-level, a hydrocarbon is an analog molecule.  Like a wet noodle or gummy bear, it can be moved and 

bent continuously over an infinity of conformations.  At the nano-level, a molecule with numerous fixed charges 
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(like a protein) is a digital molecule.  Like a toggle switch, when force is applied it either remains in its current 

conformation or snaps to some other conformation that relaxes some of the energy being applied to it.  Such digital 

events are merely movements through space in very short times relative to other significant processes.

The realm of artificial information processors has been divided into strictly two approaches: analog and digital. 

The design objective of analog processors is to be as linear as is practicable in the processes of amplification, 

summing and subtracting of signals.  The design objective of digital processors has been to achieve as non-linear as 

is practicable the flipping of gates in response to various input combinations.  We are comfortable with these two 

extremes only because discrete math has worked out very neat conversions between the two.  We tend to regard this 

arrangement as two for the price of one, because we can always convert the one into the other whenever it is handy 

to do so.  But this skirts a philosophy of science question:  What is the natural basis of these two concepts?  Are they 

two extreme points on a continuous gamut?  Is one of them the “real thing” and the other but a shadow  or 

emulation?  Is it possible to build a processor somewhere in between analog and digital?  What sorts of entities live 

in between?  What can we learn from mixed analog-digital systems about the potential of dissolving the distinction 

between the two?  What is the information processing potential of function which have both linear ranges and non-

linear ranges?   For example, the tangent function can be scaled such that it crosses zero at 45 degrees (perfect 

linearity) but then soars off to infinity before it reaches 1 or -1.  Can a computer be built of such functions, rather 

than op amps or transistor gates?  

The free roaming particles are responding to diffusion and drift.  Both thermal energy and EM force are 

operating as analog forcers.  But any binding events are clearly digital functions.  Any duty cycle of a particle which 

involves both drift and bindings (e.g. for transport) is necessarily operating in both analog and digital modes.  The 

question is: are these NIP significant?

Now, let's take a look at those oh so digital actors.  The state path diagrams reveal that most (probably all) actors 

proceed around a duty cycle in digital fashion.  However, the state transition probabilities can be modified.  They 

can be modified by allosteric bindings, or they can be modified by the impinging voltage.   The bindings are digital 

but the voltage is analog.  Even at the nanoscale of individual charges, voltage  is necessarily analog because they 

are positioned in continuous space, and moving in continuous position trajectories.
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Does this mean that voltage-modulated actors have an analog component to them?  Perhaps it is more accurate to 

say they serve as an A2D converter, from voltage to threshold of state change.  Then isn't the converse necessarily 

true, that  particles that become bound along their cyclic paths must be acting a D2A converters?  Yes, this appears 

to be a sound conclusion.  

Is it possible to build an information processor with strictly only digital, or strictly only analog processes?  If not, 

is what we are calling “information processing” merely an alternative name for continuum/discrete interaction rules? 

The inner workings of a CPU consists of gates, conductors and capacitors, and occasionally resistors.  For these, all 

are inherently analog except the gate.  So here is this strictly digital device, built up of mostly analog components.  

Analog processors can add, subtract, multiply and divide without digital components.  Evidently 2 or more data 

streams can be merged to form a third composite stream, all in continuous space and time.  But all discrete elements 

and discrete events are embedded in continuous space and time.  They cannot exist independent of them.  Therefore, 

analog is the more fundamental domain.   It must quickly be admitted that such strictly analog view only gets so far 

as we have not encountered any particles, surfaces or bindings.  Matter itself is the discontinuity of continuous space 

and time.  Every collision is a discontinuity in momentum and of course they are disruptions in time.  Matter may 

come and go, but  space and time remain continuously there.  Matter is discrete, and it engages in discrete behavior. 

That is, it is discrete in space and can be discrete in time (with every collision, binding, or conformational change). 

As  we increase the resolution, those supposed discrete collisions become hyperboloid orbits.  This is revealing, 

because it says that “discreteness” is really an illusion of poor vision.  But the concept of discreteness is handy, 

none-the-less, because indeed, that brief period of elastic collision had things moving very differently from the 

straight ballistic trajectories before and after.  

Well, to continue our probe, we would have to admit that those straight trajectories were not at all straight, being 

subject to an N-body problem of all the charges in the area impinging upon its trajectory.  This must yield something 

much more serpentine than a straight line.   And so there is less of a qualitative difference between “free path” and 

“collision” at the nano-level.  Perhaps the difference is merely between the dominance of the EM force vs. the 

nuclear forces which hold atoms together.

If processing information is accomplished by digital events, and digital events are collisions, then why is not 

diffusion a type of digital processing?   Well, diffusion is the answer to one type of problem, the spread of the 
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Gaussian curve over time.  But of course, it proceeds to white noise, defined as the absence of information.  Its 

solutions are various paths to zero.  In a sense, diffusion erases the chalk board, readying it for the next problem. 

How then, is one to make a problem solving device out of collisions?  The answer is: by ordering the playing field of 

those collisions.  A game of bowling proceeds by ordering ten wooden cylinders in very certain positions.  The 

“answer” to each roll is the disorder created by knocking some down.  It is a subtractive process.  Disordering all 10 

is interpreted as a “high value” action.  All of this is arbitrary, a product of:  a) certain pattern of order to pre-set the 

field, then b) accommodating a narrow domain of input signals (sphere with direction, speed, spin, and weight), that 

c) yield various “solutions” according to the rules of scoring.  The rules value some outcomes more than others.  

A neuron is more like a game of bowling than it is like a digital computer.  The digital computer attempts to be a 

general processor, which means it tries to allow any possible digital  input, and claims to be able to generate any 

possible digital output without prejudice.  It facilitates altering the internal order before every action, and encourages 

the changing of the rules of how to evaluate the answer with every action.  Neurons, as a group have but 3 tasks: to 

represent (in space, time, and quality) those aspects of the outside environment that are of consequent to the 

organism; to represent those aspects of the organism itself for possible responses to the environment; and to forecast 

how these two might interact (anticipate, plan, etc.) .  To this end, neurons need to order themselves and their 

constituent parts so as to perform 1 of these 3, and then connect so as to generate useful behavior via the integration 

of all 3.  

Information processing then, is a matter of order.  In particular, the internal order is preset, ready to interact with 

an external order that is lensed into an “input signal”.  The internal order is stationary, and the environment is 

rendered as the dynamic streaming data.  This stream literally collides with the stationary order of things.  Whatever 

consequences of those collisions make it out the other end we call “the answer”.    The imposed order defines the 

“problem type” or algorithm.  

Each encounter of the internal order with the incoming signal pattern results in some “result” or output signal. 

The output signal is a refraction off the order.  In a second-order domain, this could all be done with light, sound or 

electricity.  But the neuron offers a higher dimensionality of pattern space.  This is emergent from its complex 

shapes and complex molecular state changes.  A simple analog computer is the still surface of a large pool of water, 

interrupted only by point disturbances.   



295

A simple digital computer is a grid of transistor gates with open and closed states.  But the complexity increases 

rapidly when tortuous topography is added to the surface, and  randomized dozens of state transitions are added to 

the gates.  We then transcend the realm of waves and bits, and enter the realm of pattern recognition and pattern 

generation.   In mathematical terms, neurons operate in higher order spaces, and therefore are capable of processing 

higher order problems.  The terminology for second order phenomena is based on the sine wave; but we have no 

such clean basis for the third, fourth and higher orders, so they are merely referred to as “patterns.   What order of 

pattern would be symphonic performance of Beethoven's Ninth Symphony?   

Neurons are not, however, general processors.  They come highly biased, and become progressively more biased 

with experience.  Because their role is to represent the external and internal environments, their order is adjusted to 

optimize these representations, and this order stands as the static portion of the processor, against which novel 

stimuli are refracted.   There then proceeds steps to extract features and classify those features of the input. 

Eventually the input pattern is mapped to an output of choice.  And that output choice is mapped to a choreographed 

muscle/gland sequence to effect action.   This is an daunting undertaking under any circumstances.  Fortunately it is 

reduced to a “starter position” plus feedback loops (nature + nurture), giving every animal instincts at birth, then 

time to learn and adapt.

All of this informs the attempt to model of molecular events of the neuron.  Neurons are HADs (hybrid analog 

digital information processors).  The analog portion is the field which is rich in overlapping waves arriving from far 

away, that left to their own devises will dissipate via the diffusion process.   The digital portion begins with the order 

imposed on the system by the placement of certain actor types over the membrane surface.  This static order gives 

rise to dynamic order when the analog pattern washes over it, and in turn the actors respond with internal digital 

events (conformational changes).  Such internal events are “valued” according to their “expression”.  An internal 

event with no impact upon its environment is valued “zero”.  And an internal event that  throws open a large channel 

across which there is a high pressure differential results in a very significant flux through that channel.  Such 

opening/closing events in near synchronicity constitute a “discharge” which we say has high information value.  The 

value of information in the nervous system is not determined by written rules but rather by how loud its response is. 

Louder responses often carry a lot further down stream.  They have impact.  It is not the neuron per se which 

determines the value of the message.  Rather, it is whatever happens to that message down stream that gives it value. 

Value is the name we give to consequences.
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Ultimately, it can be argued that all so-called digital events are really analog, just at a finer time scale.  But it is 

the sharp contrast in scale that makes one perspective see it as analog and another perspective as digital.   Digital 

need not be qualitatively different.  It only need be a steep change in gradient that forces a change in behavior when 

it is encountered.

5.9 LEARNING  

Because biological systems learn over seconds to weeks, the time constants are a bit too long for this model to run in 

reasonable time.  However, the knowledge gained in modeling the action potential (time compass 1E-4 : 1E0) in this 

model is foundational to future studies of learning.    Learning may decrease the amplitude on one neuron's input 

while increasing that of another, but the mechanism and speed of processing within each neuron need not change. 

The parameters of this model may be incrementally altered to move it towards a model of the processes of long term 

memory.  All of the parameters of a single neuron may be alterable within the larger context of an organism adapting 

to changes in the environment.  A good basic model already has the most significant parameters built into it, and 

they are available for future tweaking by meta-models.  This model thus exhibits plasticity.  



6 ARCHITECTURE

Software architecture contemplates the organization and strategies for converting biological information into a 

digital model.  It adds nothing to the knowledge of biology, but rather grapples with the limitations and forms of 

digital computers, and how they might emulate types of process other than their own inherent proclivities.

How do the forms of software architecture support the scientific mission?  The living cell employs no central control 

over information processing, nor does it employ any synchronizing clock, which would require wait states and 

coherence.  In the living cell, mass and energy are commingled, such as with the ATP molecule, and information is 

merely the change in either energy or matter.  Information is thoroughly distributed and autonomous.  Chemistry is 

the change in order of the atoms of the system, and this change constitutes information. The digital equivalent to 

chemistry of the cell might be automata, where all processes are merely interactions with adjacent neighbors 

according to certain rules.   Rules emerge from the order of the system.  Order is information in stationary form. 

Architecture seeks out the natural order of the thing to be modeled, and strives to mimic that order in the design of a 

model, as best the resources of a digital machine can accommodate such.

6.1 SOFTWARE ARCHITECTURE   

The design of this model must confront the challenges of digital representation of certain aspects of a neuron, as 

needed for the study of ion channel distributions along 3-dimensional neuron shapes.  Neurons are hybrid analog 

digital processors (HADs).  The digital computer is handicapped in its ability to perform analog processes and is 

particularly inept at modeling hybrid, distributed analog digital processes.  It must be brought to emulate processes 

not natural to it, and this typically costs much computation time. SW (software) requires an organizational 

framework to render it buildable, auditable, modifiable and maintainable.  SW Architecture begins with a set of 

forms, standards, and design rules which insure a uniform, consistent, cohesive product that is not entangled in 

arbitrary growth.  

Digital computation is efficient only when like-kind processes are computed en bloc and simultaneously.  To 

accomplish this requires the over-constraining of the great variety of biological entities into a short list of digital 
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forms, relying upon only the parametric values to express biodiversity.   Much or all of the analog nature is squeezed 

down to discrete entities.  Therefore the first business of software design is the reasonable representation of analog 

processes, and how they interact with the (easier to represent) discrete processes.  This involves a dedication of 

resources to those few critical analog processes, while allowing less significant analog processes to be simplified 

and digitized.

The formality of digital machines is qualitatively different from the variety of biology.   Standardization practices 

common in computer science will filter out the essential processes of life when applied to modeling living cells. 

Conversely, when the full variety of living cell variety is modeled the code can grow chaotically and become 

nonsense.   Therefore, it is helpful to recognized that computerization tends to over-constrain biology, much the 

same as the set of counting numbers are a highly constrained version of the continuous number line.

A failure of sound architectural practices results in something often called “spaghetti bowl” code, which is famously 

unmaintainable and even unknowable as to what it is really doing.   This is a concern regardless of the entity to be 

modeled, biological or not.  Architecture, then, can define the rules of object-oriented practices which will 

rationalize the linkages, minimize change management headaches, improve readability and maintainability.

6.1.1 CONCERNS OF SW ARCHITECTURE:  

1. provide the major Organizational Scheme

2. elucidate the scientific view and benefits

3. identify and select the enabling technologies

4. sketch a data in / data out view

5. trace a schematic of causality

6. structure the challenge into a hierarchical view

7. provide a minimal set of use cases

8. limit the scope via domain definitions

9. characterize the rules engine

10. plan the re-use potential

11. capture scientific information into repositories
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12. define the justification process 

13. establish criteria for verifiability

14. provide the design view

15. benchmark the major phases in the software process

16. define metrics for performance and set standards

17. provide the means and plan for scalability

18. determine the degree of flexibility that is likely to be achieved

19. calculate reliability factors

20. offer hardware optimization and load leveling strategy

21. define how auditability is to be sustained

22. set coding methods for maintainability

23. provide fail-over and disaster recovery code

24. define the user-interface requirements

25. import capability of relevant data in various formats

26. export capability of data to relevant users

27. make explicit software function priorities

6.2 MAJOR ORGANIZATIONAL SCHEME:      

1. Divisions:   
Physics
Actors
Membranes
Interactors
Emergent properties

Physics provides the forces and rules of engagement between the elements
Actors are extensively covered throughout this text
Membrane shapes and positions imply cells, organelles, and interconnections between cells
Interactors imply both neutral and charged particles,
Emergent properties include:  capacitance, voltage flux, and currents

2. Classes:  each division has several classes  
Division Interactors

Class 1:  Monatomic Ions
Class 2:  Polyatomic Ions
Class 3: Ligands

Division Actors
Class 1: Receptors
Class 2: Second messengers
Class 3: Channels
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Class 4: Vesicles
Class 5: Pumps

Division Membranes
Class 1: membranes
Class 2: compartments

3. Types:  Each Class may have any number of functional types, as biologists may identify
EX:   Actor Class 5, Type 1:  NaK ATPase

4. DESIGN Distributions:   positional PDFs for each type of element, prescribe patterns of placement in each 
experiment
The actor density along the length of the cell is often available as quantity / sq micron
This piecemeal information can be assembled into a contour that represents densities along the axis.

5. BUILD Instantiations:  create individuals, initial locations and initial states
The PDFs for each actor can be instantiated stochastically, placing and positioning actors on a shape.
All statics are instantiated in the build.

6. Scaling Factors:   map biological conditions into the confines of digitized discrete space
Necessary compromises in large scale molecular models require reconciliation between surfaces, volumes, 
quantities.

7. RUN Logic: the rules and patterns by which states transition  
All conditional switches; all logical processes to identify events; transition probabilities matrices

8. RUN Dynamics:  difference EQs and non-linearities employed in iterative RUNs
All dynamics are iterated in the RUN.  The dt value is critical to nonlinear EQ stability.

9. States:   values that are determinant of all timely characteristics on an instantiation
particle positions and actor states are of the essence  in systemic behavior and information processing

10. State Transition Probabilities:  equivalent to state change rules.

11. Implied Variables: flux, voltage, current, capacitated ions, states

12. REPORT metrics, patterns, and forms
Output variables are collected as time series.
Visualization of large quantities of data via 3-d mesh plots
Movies of particle motions and actor state changes (by color)

6.3 FOUR ELEMENTAL DIVISIONS  

Each Division consists of functional classes 

EX  actors = { recep, shuttle, chan, ves, pump };     EX  A.Chan.001   = actor.channel.first type in list

Each Class is a library of a number of Types.  For example:

B.Ions = { Na K Cl Ca  ... },  up to 256 types
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Each Type may have any number of Traits.  These are the intrinsic qualities of a type of actor, interactor or 

compartment.  For example:  

B.Ions.Na.traits = {  mass  radius charge mobility }

Each Dist is a distribution pattern along the length of the cell, associated with a Type

Each Type may be assigned any number of Distribution patterns across any number of cell shapes

6.3.1 STATES  

Each class of element has a unique data form which must be maintained over the run of the model.

Each actor A (receptors, channels, vesicles and pumps) has, for modeling purposes, some fixed quantity of internal 

states (conformational state Aq,).  These correspond to the high-runner molecular conformations of greatest 

significance to the actor behaviors of interest to the model.  Typically these high-runner states are garnered from 

published kinetic schemes  or more likely in the future from the results of MD (molecular dynamics simulation 

studies of the molecule).  Each actor interfaces with its environment via bindings and impinging forces.  The 

bind/vacancy states are captured within Ar, which are treated as inputs.   Each actor has a phenotype state Ao, 

corresponding to its outputs.   Additionally, each actor is tagged with extrinsic states:  position Ap, orientation Av. 

Ap contains the locations of 1 centerpoint, 2 axial poles used in transport (Ao), and 2 eccentric poles used for 

modulation bindings (Ar).  Ap may be conveniently summarized as a pointer to a known node location from a fixed 

set of node numbers Cp. 

Each interactor B (ions, ligands and messengers) has several extrinsic states:  position Bp, velocity Bv, acceleration 

Ba, binding Bd.  Additionally, interactor polar coordinates are kept: position pol, velocity, pel, and acceleration pal. 

These are redundant to the Cartesian coordinates, but are convenient for rapid processing.

Each compartment C has extrinsic traits:  node position Cp,  are found homogeneously covering each membrane 

surface. Each node is pre-constrained to a position and orientation.  It must be oriented perpendicular to the 

tangential plane of the membrane surface at that point.   Node normals are captured in Cv, and the contour equations 
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used to create those nodes are captured in Ca. 

Additionally, there are several types of membrane states:   capacitance Cq, and voltage potential Ce.

6.3.2 FORCES  

Forces are expressed as acceleration of a mass due to Newton's  A = F/M.  Forces include the inertia of thermal 

energy effecting diffusion of all non-fixed particles; and the EM force acting upon all charged particles, as a whole 

system charge field calculation.  For purposes of this model, the thermal energy is the average particle momentum, 

expressed as a Boltzmann's distribution of particle velocities.  The EM force is the net vectorial particle acceleration. 

Concentration gradient is an emergent property of the transported particles, which then dissipate at the diffusion rate. 

Transport rates may or may not be proportionate to temperature, depending upon the internal kinetics of the 

transporter molecule.  

Force sources may be point, line, planar, 3-D uniform or 3-d gradient.  For purposes of this biological model, the 

point source is all that is needed.  Each particle that has a net charge exerts a force.  Such forces integrate into net 

accelerations for each motile particle, proportional to the inverse of their mass.  Forces within a channel may be 

aggregated into contours of energy barriers.   

When particles become bound, the force of deceleration is presumably stored as potential energy within the host 

molecule.  Therefore, an equal amount of energy must be released when that particle dissociates. 

6.3.2.1 Water, effects of  

Water is not modeled explicitly, because of the large quantities of water molecules relative to all other types of 

molecule.  Water is implied in several ways:

1. Charge attractions are heavily muted in the distance through water. 

2. Interactor acceleration due to impinging forces is muted into a velocity as a function of viscosity. See 
mobm.

3. Velocity vectors are scattered by the collisions with water molecules.

4. Thermal conductivity is implied by the transfer of momentum in all collisions.
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6.3.3 MESSENGER INPUTS  

Input signals are introduced only as ligand concentrations at synapses.  They may be generated by a spaciotemporal 

signal generator. The release dynamic in time and space shall match or exceed the dynamic domain of the particles 

(time x bouton surface area x quantity of boutons).  For example, an audio signal driving presynaptic Ach 

concentrations may be spectrally filtered tonotopically across a line of synapses and/or cells, so as to mimic the 

auditory tonotopic map.

6.3.4 MESSENGER OUTPUTS  

Similar to messenger inputs, messenger molecules released at the vesicles may be identified in position and quantity 

each dt.  It is necessary that the reuptake mechanism is sufficiently fast to derive a “clean” signal.  That is, the 

concentrations of neurotransmitter in the synapse should always be proportional to the known biological signal, not 

drifting upward or downward of physiological range.  Such regulation can only be accomplished by the reuptake 

mechanism, as the production system is free to vary arbitrarily to generate a signal.  The reuptake process is 

modeled by high affinity pumps that return the released particles to a useful position, thereby employing already 

defined actor types without the need for special mechanisms.  

6.3.4.1 Other Outputs  

A very convenient characteristic of digital models is that all aspects are observable.  Outputs may be any variable at 

any node in the system, whether representing physical or abstract information.  Complete time series of hidden 

variables are easily captured.  Additional variable may be derived therefrom, such a voltage.  For examples,  the 

model easily generates Nernst voltage values per ion channel, flux grad-div-curl, action potential propagation, 

vesicle release, changes in extracellular tonicity.  

6.4 STANDARDS  

This chapter concerns primarily the Nonfunctional Requirements of software development.  However, model 

functions are also addressed for purposes of framing the support structures.  In addition there are a number of lesser 
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but common details, sometimes referred to as boilerplate.   Several of these standard software metrics that have 

merit, and accordingly a brief attempt to address them follows.

It is necessary to set up strict conventions that define the placement and usage of data concerning each of the 

element types, e.g. channels, pumps, receptors, vesicles.  This is accomplished in a straightforward manner by 

working toward generic forms for each type, identifying the sufficient traits for each type, and organizing them into 

matrices.  Each matrix is composed of fixed columns for reserved traits and variable rows for instances of trait value 

sets.  The necessary and sufficient data on each actor type must be tabularized until a generic scheme emerges.

The structural challenge may be depicted graphically as follows:

FIGURE 8: Generalized Processes of the Model
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The support framework shall be build around the neuronal processes depicted above.  There are steady state 

processes and  processes disruptive of the steady state, usually due to receipt of a signal.  I am calling the disruptive 

processes the “initiating system” and those supporting the steady state the “responsive system”.    he initiating 

system consists of 3 processes:  channel modulation events, channel state changes, and channel openings that result 

in conductivity to certain types of ions.  The rest state for these 3 processes includes background noise, and 

consequent random channel openings.  In response to the channel openings and resultant flux of charged particles, 

there is a saline resistance to current, a membrane that serves as a capacitor to charge imbalances, and a set of ion 

pumps that tend to restore the steady state.  

There are several metrics of such a system that are useful in producing a dynamic model.  We must know the local 

concentrations of the ion types; the local voltages that result from charge imbalances, the currents through each 

channel and along the membranes; the partial pressures to move ions through the channels; and the amount of 

charge on the capacitive membrane.

Zooming out to a more aggregate view, all of the above, as local events, have unique characteristics in each zone. 

The dendritic synapses are dominated by receptors which directly or indirectly modulate ion channels.  The topology 

of dendritic bifurcations has impact upon how perturbations may or may not propagate.  The soma forces an 

integration of all input into a single signal.  By this time most or all of the information processing is complete.  The 

axonal hillock, in many neuron types acts as an A2D converter, producing a digitized signal that is propagated by the 

axon.  This signal is transduced out of the cell by the vesicles, whereby a voltage signal is converted to a Calcium 

signal, which triggers an exocytotic neurotransmitter signal.

6.4.1 CLASSIFICATION  

To build a model, a fixed number of types of elements is defined.  There are classes of elements, and within each 

class any number of types, as they may be found in nature or hypothesized.
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6.4.1.1 Actor Classes  

A  class is a group of elements regarded as serving the same cytological function.  The actors are divided into five 

classes:  receptors, channels, vesicles and pumps.  Optionally, second messengers  may have enzymatic broadcasting 

stations e.g. cyclase, that require an entity midway between receptor and its target actors.  

1. receptors: bind/unbind kinetics, second messenger fan-out, temporal profiles, target profiles

2. shuttles: serve to receive second messengers and catalyze the production of third messengers

3. ion channels: with conductivity profiles, Q-matrices, gate vectors, modulator profiles, subunits

4. vesicles: as output devices with statistical properties

5. ion pumps: with transport profiles, states, saturation profiles, modes, affinity profiles, staging, rates, 
bind/unbind kinetics

6.4.1.2 Actor Types  

An actor type consists of a set of intrinsic traits of an element, one column for each trait, one row for each entity. 

For example, each channel type has a conductivity profile, modulator binding sites, and probabilities of state change. 

All actors are point processes.  All are stationary membranal proteins that have multiple states.  All are modulatable 

via allosteric binding.

The software must insure the preservation of channel and pump distributions, the use of receptors and modulators 

for inputs, and the use of vesicles and their content particles for outputs.   As the vesicles are of considerable 

complexity, reasonable means must be found to simplify vesicle functions.

6.4.1.3 Interactor  Classes   

A particle system consists of large quantities of points, each with mass, radius, charge, position and velocity.  Each 

particle must independently be capable of participating in motion, collisions,  capacitance, and binding.   Each 

particle may participate in several collisions: particle-particle, particle-membrane, particle-water.  Each particle must 
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be capable of binding and unbinding to chemically compatible sites upon collisions with that site.  Therefore a 

particle may be in: free liquid state, bound to an actor, in transport to another compartment.  

1. ion species: 
minimum trait set:  atomic number, mass, charge, radius, mobility
See Data Structures for a more complete set of traits

2. ligands:  modulators, neurotransmitters, hormones: 
minimum trait set:  sum atomic numbers, mass, charge, equivalent radius, mobility
See Data Structures for a more complete set of traits

6.4.1.4 Interactor Types  

Ion types include all monatomic  ions found in biological systems; polyatomic ions, 

6.4.1.5 Interaction Systems  

1. voxels: some means must be provided for interpreting position as 'near to' or 'pending collision with' other 
elements.

2. pixels: some means must be provided for interpreting surface phenomena, an for nearest neighbor coupling.

3. Bind sites: some means must be provided for the capture, ownership and release of particles by actors

4. Bind site dynamics:  the bind and unbind kinetics are dynamic. Subject to modulator-actor kinetic changes

5. Actors may function to transport particles across the membrane.  The transport rates must be gauged (may 
exceed diffusion pressures)

6. Energy economics is not an explicit objective of the model but is implied by transition probabilities.  In 
addition, energy depletion, and actor fatigue, are simulated via particle availability (especially ATP ) and 
the Na concentration gradient across the membrane.

7. Energy barriers, when germane to an experiment, must be mapped to a conductivity value as a function of 
the parametric determinants of that conductance (e.g. voltage, allosteric bindings).  This model utilizes only 
the net effect of an energy barrier upon conduction, rather than the full simulation an ion passing along the 
energy barrier profile of repulsion and acceleration.  

6.4.1.5.1.1 Energetics
It is not the intention of this model to track the energetics of the various reactions, bindings and transports. 

However, the pump curves require curve-fit EQs, and such EQs will often mimic the free energy EQs, because the 

pumps may reverse direction when the delta G reverses sign.

Generally, the energetics are implied by the momentum of the particles and the transition probabilities of the actors. 

That is, a change in energetics will result in certain changes to these variables which are completed prior to the 

model build.



308

6.4.1.6 Distributions  

The positional distribution of a particle describes the probability of finding one at a given distance down the length 

of a neuron.  Although the initial position of ions needs to be a homogeneous concentration throughout the 

compartment, this can be achieved by injecting particles into the compartment and allowing time   The conservation 

of energy requires that the system total momentum + system total chemical potential = constant.    All charge 

interactions lead to accelerations, and to capacitance when there is a barrier to that acceleration.   

Particle system diffusion serves to deliver messenger particles.  Particles with charge and mass participate in second 

order behavior, waves and oscillations.  Particle velocities must remain true to Boltzmann velocity distributions. 

Other traits will also be attributed to them.  They serve both as charge systems and messenger particles.

There shall be a probabilistic distribution for each element type, per each cell type to determine the actor densities 

per zone and/or gradient.   There are several uses of probability distributions within this model:

1. distribution in space

2. distributions in velocity

3. distributions in orientation

4. distributions in initial state 

5. distributions in resultant behaviors (state paths)

6. distributions in lag time (phasic information)

6.4.1.7 Zones  

Shapes are usually divided into functional Zones.  For example, the whole cell model may be depicted as Nine 

Zones:

1. Dendritic Synapse 

2. Dendritic Bouton

3. Stalks

4. Soma

5. Axonal Hillock

6. Axon
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7. Node of Ranvier

8. Axonal Bouton

9. Axonal Synapse

The choice of zones is completely flexible.  The above default set may be replaced by any other set, fo any length, 

on a per shape basis.  Subzones may be applied to particular areas of interest.  For example, the Node of Ranvier 

may have subzones: prenode, internode, postnode. 

6.4.1.8 Workbench for Ion Channel Distributions  

Actors are depicted as point processes.  A point process is defined as an abstraction of an entity that changes state 

with no visible change in position or shape.  It is a convenience in modeling that treats, for example, a large protein 

molecule as a mere point in space, but none-the-less capable of changing internal configuration and binding 

conditions. Stationary membranal proteins that have multiple states, some of which express themselves via special 

interactions with their environment.  These may be calculated probabilistically and simulated without addressing the 

internal atomic bonds and  intramolecular force interactions.

 In this model, the following are regarded as point processes:

1. ion channels: with conductivity profiles, Q-matrices, gate vectors, modulator profiles, subunits

2. ion pumps: with transport profiles, states, saturation profiles, modes, affinity profiles, staging, rates, 
bind/unbind kinetics

3. receptors: bind/unbind kinetics, second messenger fan-out, temporal profiles, target profiles

4. vesicles: as output devices with statistical properties

5. modulation of receptors, channels and pumps

6. binding of interactors to actors

7. transport of interactors by actors to another compartment

8. actor internal conformational changes

9. chemistry:  modulator-actor kinetics and conversions.  e.g  ATP to ADP conversions

6.4.1.8.1Space representation systems
1. voxels:  cuboidal division of unity for volumetric tracking; alternatively, hemispheres at each actor.
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2. pixels:  square division of unity for surface tracking.  Alternatively, voronoi areas, hexagrids, radii of 
influence.

3. bindings:  capture, ownership and release of particles by actors per reaction rates that are not constant.

4. transport:  transport rates ( that may exceed diffusion pressures)

5. barriers:  surfaces that reflect particle movements and provide locations for transport of particles

6. nodal addressing homogeneously covering all surfaces, each provided with an orientation normal, and 
identification of which volume numbers are present on each surface of the membrane.  This implies a 
concept of inside and outside, by convention.

7. Membranes have mechanical thickness and equivalent electrical thickness

6.4.2 FUNCTIONS  

The model, at a minimum, must execute the following biological functions:
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function Passive Cl-   pores, allowing Cl- anions to pass from one compartment to another as leak 
current

function Passive “leak” pores, allowing a fixed low conductance of the ion to dominate the rest 
potential

function pump, 3 Na, 2 K  ATP pump, modulatable by ([K+],Ca++, Mg++, dV)

function pump, 1 Ca++ out, 3 Na+ in, 

function pump, 2 Ca++ into sequestration, 1 ATP consumed  pumps down to [Ca++] = `e-7 M

modulator types = [ phosphorylated phospholamban ]

function pump, 1 Cl- in, 1 HCO3- out, exchange carrier 

function receptor, excitatory, so as to transduce a neurotransmitter outside into a channel opening rate

function receptor, inhibitory, so as to transduce a neurotransmitter outside into a channel closing rate

function Na Channel, modulatable by voltage, by receptor messengers

function K Channel, modulatable by voltage, neurotransmitters, Ca++

function Ca Channel, modulatable by voltage

function vesicle exocytosis, so as to release its contents of neurotransmitters, triggered by Ca++

function neurotransmitter re-uptake in a timely fashion

function vesicle recharge with neurotransmitter, staging for the next release

function Ca++ sequestration, to temporarily remove Ca++ cations from mobility and charge effects

function EM force, applied to all charged particles

function Thermal motion, applied to all particles, per Boltzmann velocity distributions

This is a minimum starter set, intended to be greatly extended as the biodata is available and normalized into the 

model libraries.

6.4.3 INITIALIZATION  

Initialization is easily done wrong; for example if every channel was initialized in state # 1.  The correction is easy if 

there is no coupling between actors:  instantiate each actor external state across its PDF of modulator bindings, and 

then choose some internal state across its current internal PDF wrt modulation state.  In the case of G-protein 

messenger systems where there is some degree of coupling between a receptor state and channel state, a longer 

sequence of probabilistic instantiations is prudent.  It can be argued that no matter what states are chosen for the start 

states, the system should stabilize to a steady state consistent with physiology after some period of time.  However, 
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the extreme nonlinearity of membranal systems might accidentally find new modes whose attractor is not 

representative of bio-systems.  This is especially a risk when model are constructed with incomplete starter 

information, and hypothetical values are used to “fill in the blanks”.  The state probabilities at  t = inf  usually yield 

the “rest state” PDF. 

6.5 MODEL REALMS  

The model is nonlinear due to conditional flow control operators.  There are two master processes that drive the 

model: Particle collisions and gating events mediated by stochastic finite state machines.  Each encounters frequent 

and significant extrinsic disruption events that are germane to the transfers of information.  As a HAD (hybrid 

analog digital computer), the continua of space, time and force fields behave linearly for particle drift, while the 

intramolecular state transitions and binding/unbinding modulation events behave nonlinearly.

Solutions to linear systems are amenable to closed form analytic EQs.  As the order increases in polynomial EQs the 

smooth curve give way to ever sharper singularities, heading toward square and triangular “waves”.  Where lower 

order systems abide by continuity, higher order systems tend to emulate the “decision” with sharp modal shifts when 

a certain combination of conditions is crossed.  The nervous system is concerned with recognition and decisions as 

to how to respond to such recognitions.  The study of the nervous system is then, by necessity, a study of nonlinear 

processes.

Within biological systems there are two dominant circuits.  The homeostatic circuit is a negative feedback loop that 

tends toward equilibrium (set point) after each perturbation.  It generates the classic sigmoid response curve.  The 

defense circuit is a positive feedback loop that once perturbed tends to grow very fast to limits of the system.  This 

phenomena can give rise to the startle, the attack, the appetites driving search behavior, and, at a smaller scale, the 

firing of neurons.  Positive feedbacks are inherently dangerous.  In every case there must be limits to resources 

consumed by positive feedbacks, timewise limits to the duration of these circuits in their consumptive process, and 

some grand restorative negative feedback loops that eventually take over and restore baseline levels for the 

organism.  The membranal actors exhibit distinctly nonlinear behaviors (as finite state machines); and the ecologies 

of systems of such actors coupled by particle collisions give rise to highly nonlinear behaviors. 
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6.5.1 USAGE PROCESS  

Usage process consists of archived elements in the model library selected for an assembly into a whole cell or 

patch model.  The various types and patterns are instantiated in a build, and then the dynamic equations drive the 

run, generating a time series for all dynamic variables.  This assembly is driven with an appropriate input 

spatiotemporal signal set.

6.5.2 IMPORT CAPABILITY OF RELEVANT DATA  

The bio-data must be manually processed to make it compatible with the model.  There are a number of steps to 

adapt disparate data to a singular entity.   Assumptions must be made (and later verified).  Normalization can be a 

significant chore, risky for its “collapse” of variety.   But despite these caveats, the models do run, are predictive, 

and with proper care can duplicate the wet lab results.

Normalized forms must be established after consideration of the domain of possibilities for each element type.  Then 

the biodata on each type must be fit into these forms in a consistent and realistic manner.  Normalization involves, 

units, species types, age and sex of animal and cell types.  It also involves physiological and pathological condition. 

6.5.2.1 Biodata conversion  

The DESIGN phase converts biodata into normalized units in regular formats.  Interpolation across the missing bits, 

and/or simplifying the data for tractable computational time may be needed.  In the case of hypothetical studies, 

artificial data must be reasonably generated constrained by the statistical traits of the natural world equivalents.   The 

shapes of the membranes and compartments must be selected prior to the generation of nodes over the surface of the 

membranes.   Then can the positioning of all actors according to realistic PDFs be established, and boli of ions set 

lose within each compartment.   All such design data is captured for the library as new types and dists.  

6.5.2.1.1Seed 
The  Seed is a virtual data block, consisting of a list of each Type and Dist that comprise an Experimental Design. 

Optionally, it may contain a pointer to an input signal from the library to be run.
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6.5.3 BIOQUERY TO EXPERIMENTAL DESIGN   

Biologists are pursuing millions of questions concerning how living cells and tissues develop and perform. 

Neuroscience is the busiest sub-specialty within biology, in this regard.  There are thousands of opportunities for 

modelers to assist in the understanding of live processes, by assembling known facts together into a system that 

exhibits behavior.  The behavior of the model is revealing in both its likeness to bio-behavior and in the gap between 

model and life (error).  The gap is an indicator of what is missing, and suggestive of which bio-queries might next be 

pursued to improve our understanding of the involved systems.

If a model generates predictive behaviors of a biological entity, then it is likely to find itself starved for data to set up 

its experiments realistically.   Such models would ideally point out the greatest deficiencies and thus inspire 

biologists who share interest in the results of such models to help contribute the wet lab data.   Indeed the modeling 

spirit is best embodied by a wet lab immediately adjacent to the the simulation lab, with several iterations between 

the two each day.  

It is the intent of this model to avoid compromising the biological phenomena for the convenience of reduced 

computational loads.  When the modeling schemes are so reduced there comes into play some loyalty to the silicone 

system rather than the living systems.  By investing a lot of time in computer programming, it is tempting to 

abandon the biological traits that are difficult to simulate.  But as modeling drills down to the physical basis and that 

physical basis is robust enough to emulate complex phenomena without having to detail it as a brute force fit,  the 

model itself becomes generic, adaptable and widely accepted as a standard approach.   And at some point it is easier 

to use, because all of the emergent phenomena require no programming.

6.5.3.1 Reverse engineering from a scientific query  

There is a second phase to the experimental design, which requires judgment.  The user must choose what 

phenomenon is to be modeled, how to isolate the “interesting” aspects, how to parse the biological system under 

study down to tractable quantities, and what queries are to asked of it.   A model may consist of about a million 

particles and links, while a living cell consists of about 1E18 molecules and ions.  The process of paring must be 

justified by demonstrated preservation of function despite reduction in quantities.  In nonlinear systems this process 

must be far more exhaustive across the parametric space, and across all patterns of behavior of interest.  There are 
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most probably aspects of cell performance not yet discovered.  Particle system models have the potential to reveal 

some of these as emergent properties.  Optimal quantities and positions of actors are yet to be found. Accordingly, 

flexibility is needed to “backtrack”  or “float” in the process of parsimony, increasing the quantities and types of 

elements, as necessary to find those optima.  This optimization process should be graceful, not requiring a large 

redesign.  Good parametric design can achieve that grace.  

Desired levels of confidence can drive the scaling factors.  Justification is often an iterative process.  It should be 

expected that some early dismissals of data will later need be reintroduced, and that some early simplification 

strategies will fail, and need be replaced. 

EX   The classes and types of components of the auditory hair cell may be modeled for their resonance frequencies.

1. The whole of the intracellular fluid is represented as a compartment.

2. The membrane is represented as a compartment, full of lipids, not water

3. The synapse is represented as a compartment, for convenience in reuptake of neurotransmitters

4. The extracellular space is represented as as 1 or more compartments. e.g. paralymph, endolymph

5. The nucleus of the cell is represented as a compartment.  includes reticuli and other obstructions

However, the earlier traditions  of "compartmentalizing" various sections and slices of the neuron (e.g. Rall) is NOT 

done.   All compartments are a one-to-one mapping of biological compartments of contiguity.  This is to enable and 

ensure free particle motions as it is in the living cell.  Membranes are barriers to particle motion so must be placed 

only as they form closed volumes in the cell.

An elemental scheme can be implemented in three adjacent containers, the simplest being cuboidal compartments, 

and the most complex might be the actual biological neuronal shapes taken from morphometrics.
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FIGURE 9: EXPERIMENTAL DESIGN OF AN AUDITORY HAIR CELL,  ACTOR TYPES

The design above does not show the physical membrane, nor quantity and distribution of each actor type.  This 

design must be instantiated to build out the full number of actors and the spatial positioning between them over 

membrane surfaces.

6.5.3.2 Parsimony  

Conceptually,  an experiment begins with a query concerning the shape of, actor distributions on, tonicities about, 

and input signal to, a neuron.  Then the libraries of pre-existing elements and parameters are selected as a point of 

departure.  These are then modified and appended to define an experiment.  This initial work creates a starter block 

referred to as the Seed.  The Seed drives the build, which instantiates all the elements, and returns a graphical 

representation for the user to confirm his choices.  The seed consists of Types and Dists for physics, compartments, 

particles and actors.

6.5.4 EXPERIMENTAL DESIGN  

An experiment consists of the selection of the actor and interactor types and their distribution patterns onto a 

specified shape.  The extracellular compartment and synapses are also specified.  An input signal set is provided, and 
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the output data to be collected is specified.  In addition some numeric parameters concerning time and space 

resolution are specified.  It is a combination of newly defined entities (if any), library choices (Design), Input 

signals, and choice of Output variables to be recorded.

The objective of the  experimental design is to prepare the basic forms, assembled and made ready to feed to the 

build process.  The build is a compilation, largely automated, of all the specified elements and processes, each 

instantiated into large scale collection of particles and actors, as an executable simulation.  The data for all of these 

are assembled into like-kind matrices for efficient processing. Recall the abbreviations: A = actors; B = interactors; 

and C= compartments.

1. Each C type is instantiated via Sh, a  shape generator, typically originated on a spreadsheet

2. Shapes consist of any number of functionally significant Zones, Vanes, Plugs

3. for example C.main.zones = { dendrite soma axon bouton }

4. each Zone consists of any number of line Segments which determine their shape

5. each Segment consists of a number of Rings (slices), quantity determined by node spacing

6. each Ring consists of a prescribed number of Nodes, so as to maintain homogeneous spacing

7. each Node may be vacant or occupied by any instantiated Actor

8. In addition to providing Nodes, a compartment also provides a surface capable of particle reflection and 
holding an electrical charge (capacitance).

9. The dendritic cone(s) may be divided by radial vanes to separate the cone into sectors, so as to simulate 
bifurcations.

10. The whole cell may be simulated with an environment of neighboring cells, or else been closed in an 
extracellular envelop and  communicating with small plugs that represent input and output synapses. 

11. Each B type (interactor) is instantiated from a Molar Concentration per compartment via a Boltzmann 
velocity Distribution.

12. Each A type  is instantiated via a Spatial Distribution on C and a State Initializer.

13. Spatial Distributions are PDFs specific to a neuron type, neuron zone and specific to an A type.

14. Actors are stochastic-driven finite state machines that probabilistically receive inputs and modifiers via AR, 
probabilistically change states via infinitesimal probability matrices AQ, which map to effect some external 
condition via AE.

EX   Acetylcholine may bind to an ion channel receptor according to the AR matrix for that channel type, which 

causes the instantiated channel AQ values to change, which begins a probabilistic drift in molecular states over time, 

which eventually changes the ion channel from closed to open, according to AE.
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6.5.5 DESIGN QUANTITIES:  

Each experimental design must determine the quantities of:

1. ions per neuron

2. channels per neuron

3. channels per synapse

4. pumps per neuron

5. receptors per neuron

6. vesicles per neuron

7. second messenger shuttles per receptor

8. minimum channel conformational changes per event (e.g. an action potential)

While modeling on personal computers, it is advisable to restrict particle counts to about 1E5, and the number of 

actors to 1E3.  This is but a tiny fraction of bio-reality for a neuron.  The use of super computers can increase these 

quantities 100-fold, or even 10,000-fold if month-long runs are tolerable. (2,592,000 sec/month)

6.5.5.1.1Shape simplification 
Shape simplification opportunities include:

1. axis of transmission, radial symmetry, contours of rotation 

2. fan-in and fan-out of inputs and outputs

3. preservation of bio cross-sectional area 

4. preservation of nearest-neighbor relationships amongst nodes

5. preservation of contiguous compartments: intracell, sequestration, extracell, in-syn, out-syn

6. homogeneous membranes with addressable node

6.5.5.1.2Space Scaling
1. Whole Cell dimensions, in microns

2. Patch dimensions, in nanometers

3. Voxels – volume units within the Whole Cell, for purposes of flux measurements

4. Pixels – surface units at the membrane which correspond to the face of an adjacent voxel

5. Flux – net movement of ions, parallel or perpendicular to the membrane 
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6.5.5.1.3Space criticalities
A diffusion model is acutely sensitive to distance  between actors.  For example high concentrations of Ca++ 

sufficient to trigger vesicle release are only possible when the source of the Ca++ is very close to the vesicle Ca 

binding site.  Nature often deals with this problem via structural links that tether and hold the distance between two 

such parts as fixed.  This may be true for channel parings as well.  Another solution nature provides is"rafting".  As a 

result the rates of diffusion and the geometry of diffusion are critical to the ability of the model to mimic biologic 

"degrees of coupling" between components.   Actor assemblies may be necessary to replicate biologic conditions.  

As the the distance between 2 oppositely charged particles goes to zero, the attractive force between them goes to 

infinity.  Limits must be set on inter-particle spacing to prevent this., because a single value of infinite attraction will 

overwhelm every other force vector and reduce the entire model to a single point.   Sum of the radii is the limit, and 

the radii become larger with the solvation qualities of attached water molecules, up to about 45 per ion.  Ions must 

be enlarged to their solvation radii and solvation mass to depict reasonable liquid interactions.

6.5.5.1.4Quantity Scaling
The extent to which quantities and volumes can be down-scaled must be determined empirically.  However, the 

parameters to not vary independently.  Collision rates are a function of particle size, velocity and density.  Binding 

rates are a function of densities and velocity.   Scaling a shape alters volumes by the cube, and surfaces by the 

square.  This distorts scaling intent in systems where both the volume and the surface area are critical parameters. 

The EM force is extremely strong compare with every other force available within the cell.  Small EM imbalances 

would do damage to membranes and proteins.  Therefore, limits should be adhered to to avoid unrealistic model 

behaviors.  General, the plasma lemma cannot withstand more than 1 volt.  

Opportunities to downscale the model include:   

1. Actor quantity reduction

2. Particle quantity reduction

3. Volume reduction

4. Collision rate reductions

5. Quantity of synapse reduction, particle size increases

6. Thickness of membrane decreases.
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7. Quantity of phosphorylation and/or glycosylation sites on an actor 

A careful accounting needs be done with each scaling change, as to volumetric, surface and point process effects. 

Coupling and compensation formula must be developed to support such scaling with a minimal loss in levels of 

confidence.  When a full accounting has been made of the scaling factors across all units of measure, then a single 

amalgamated function can be rationalized and coded which can zoom in and zoom out with minimum distortion to 

performance.

Some actors have multiple receptor sights for sugars or phosphates.  When these quantities are high, there is 

opportunity to reduce the number while scaling up the modulatory effect of each.  This results in a more grainy 

modulation curve but can be arranged so as to achieve the same wide compass of effects.

6.5.5.2 Assumptions   

Assumptions and dependencies of this application as a whole include: 

AS-1: The user is presumed to have a working knowledge of Matlab ™, Octave ™ or C++ programming skills.  

AS-2 The user is assumed to have access to the scientific literature regarding quantified performance of the 
various neuronal organelles and molecules. 

AS-3 This application shall maintain certain scaling factors in space, time, force and quantity between reality and 
the model representations.  These shall be noted in the Report, and the consequences of such shall be measurable.

AS-4 For visualization consistency, space shall have a scale that is maintained, e.g. 1 cm n screen= 1 micron. 
However, there may be a need to consider log scaling of space (to be discussed later).

AS-5 Time scale will be noted in displays and movies.  Any differential is time scales between processes is 
particularly prone to creating artifacts, so must be noted, and the consequences of such measurable.

AS-6 Quantity of ion species shall be scaled proportionately except for trace elements, like Ca, which may need 
to be modeled disproportionately highly in quantity to be effective.   The consequences of such measurable.

AS-7 Careful consideration shall be given to the consequences of reduced collision rates between particles and 
actors. As this affects actor stimulation, which is critical to the information processing function.

AS-8 Careful consideration shall be given to the half-collisions that represent the effects of water molecules in 
the model, so as to justify such simplifications.  Additional traits of water may need to be incorporated into the 
model,

6.5.5.3 Dependencies  

DE-1: The functional ability of future versions of Octave and Matlab ™ will maintain backward compatibility 
with this code.  Note that there are various idiosyncrasies between these two platforms which must be remedied for a 
fully working bug-free application.
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6.5.5.4 PROCEDURE to create a compartment system  

 
1. DESIGN or choose the cell type and shape

2. Starter = write a list of working points for the contour

3. save TypeC

4. load DistC = call default values for spacing off extracell and core

5. Main2Extra = generate extracell and core points. Add to Starter

6. use Starter + PlotC to generate a wireframe plot of what's been designed

7. use Starter to generate SEGMS

8. use SEGMS to generate ZONES, MEMBS and NEURS

9. use SEGMS to generate RINGS

10. use RINGS to generate NODES

11. load TypeA = classes and types of actors

12. load DistA = PDFs to distribute actors according to a cell type

13. use NODES and PDFs to generate ACTRS placements

14. use ACTRS to populate and INIT all the actors

15. use SEGMS to generate SH for particle reflections

16. merge SH into Comp ceiling and floor vectors

17. choose the saline concentrations for each compartment

18. load TypeB = library of particle types

19. load DistB = compartment concentrations and bound ligands 

20. populate each compartment with interactors

21. RUN to diffuse and establish Boltzmann velocity profiles

22. capture steady state values

23. initialize the states and turn on pumps

24. RUN to achieve new steady state

25. capture steady state values

26. initialize the states and turn on channels

27. RUN to achieve new steady state

28. capture steady state values
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29. initialize the states and turn on receptors and second messenger systems

30. initialize the states and turn on the vesicles

The RUN phase executes the digital code of massively parallel algorithms.  Numeric methods must be devised to 

keep the total CPU time to usefully short intervals (hours, not months).  Early concept code may be inefficient, 

iterating in small time and space steps, with little or no simplifications yet justified.   A variety of numeric methods 

can reduce CPU time about 4 orders of magnitude from the raw physics algorithms.  Most importantly, a library of 

proven routines is accumulated in minimal form, such that their re-use may be reduced to a look-up table.

A run typically requires a driver, i.e. an input signal.  This can be in the form of a perturbation,  as a step or pulse 

function.  It could be a time-wise transition, a ramp or sinusoid function.  Or it could be more complex, such as 

music, white noise, or “natural” sounds,  if auditory.  Alternatively, certain sequences of input could be designed to 

reveal the states of the actors, as in solving a puzzle.  For example, 2-step voltage clamps serve this purpose.

Time is modeled consistently within one submodel.  Usually dt will equal 1E-6..1E-4 s for actors and interactors. 

Although numeric methods can realize great efficiency via dynamic dt parametric values, this creates serious 

complexity when it comes to synchronizing between massively parallel calculations across all particles and actors, 

and then up the scaling hierarchy to assemble the WholeCell model. As the primary goal of this project is biologic 

veracity, not numeric methods for computer science, the code is written to the biology, not to the conventions of 

computer science.  Verification to the biologic aspects is mandated in this type of work.  A high-veracity model can 

serve as a point of departure for those wishing to minimize computational load to effect novel information 

processing stratagems.

6.5.6 BUILD  

The build is a compilation, largely automated, of all the specified elements and processes instantiated into an 

executable simulation.  The  build consists of data retrieval from the libraries, then an execution of the static 

equations of the model.

The BUILD phase initializes the compartments and membranes, populate the volumes within those compartments 

with ions and messengers, and the surfaces of those compartments with constellations of receptors, shuttles, 

channels, vesicles and pumps.  All of the Boundary Conditions and Initial Conditions must be set here.  Also, certain 
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preferences must be defined, such as dt, qt (length of run), which data to capture, and to what graininess.  The 

membrane shall be fully addressable, and hemispherical volumes around each actor shall sample concentrations and 

voltage gradients.

All actor states require initialization.  Initializing all instances of a type to the same state would be very unnatural, 

given that in nature such a group is always distributed across its state space according to their 'resting condition' 

PDF.  Generally, actors are ergodic, meaning that their spatial distribution in aggregate is identical to their temporal 

distribution for a single entity (when conditions are constant).  All Interactors are initialized with velocities 

according to Boltzmann PDFs.  

Initial conditions are not trivial in a digital computer simulation because aliasing error can place immense biases 

upon differential equations.  The living cell does not experience any equivalent to “initialization” nor “reboot”, nor 

A2D conversion error.  Because the entire modeling process can suffers from these artifacts, great care is necessary 

in the algorithms, and regular verification is necessary to gauge the veracity of the model..  Veracity is sought via 

parameter optimizations.  The A2D errors, which abound in the modeling of biologic processes, must be detected, 

reduced and managed such that the model results achieve required levels of confidence for each experiment 

(typically the targets are 95% or 99%).

Though it might be possible to initialize each actor in a rest state, and merely wait for a “warm up” period for the 

entire system to achieve a steady state, such a “dead” initial state is physiologically unrealistic.  Due to the 

significant nonlinearities of both the elements and the system as a whole, it is desirable to initialize across the 

probabilities of an element being in a particular state.  That is a probability distribution can be generated for the state 

dwell times, extracted from the Q matices.  Thus, there are both position distributions and state distributions.

Because the actors are placed statistically, and their initial states determined statistically, each BUILD of the model 

is a unique instantiation of the design rules.  Therefore, no two BUILDs will yield identical RUNs.  The variation 

amongst repeated BUILD-RUNs is an indicator of all-in system variance, analogous to bio-individuality.

Procedure:  

1. The Experimental Design directs which elements and at what membrane densities shall be instantiated.

2. Positions of each actor are determined stochastically
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3. The initial states of each actor are determined stochastically 

6.5.6.1 Experiment Formality  

EXP1  =  { CELLS  COMPS  ACTORS  PARTICLES SIGNALS }

6.5.6.2 A.  Actors, Point Processes,  0-Dimensional  

6.5.6.2.1Classes = { recep, chan, ves, pump }

6.5.6.2.2Subunits, logical relationships between them 

6.5.6.2.2.1 Mod profile

6.5.6.2.2.2 Bindings

6.5.6.2.2.3 Kinetics

6.5.6.2.3Assembly

6.5.6.2.3.1 Xport profile

6.5.6.2.3.2 Bindings

6.5.6.2.3.3 Kinetics

6.5.6.2.3.4 Gating function 

6.5.6.2.3.5 Conductivity profile

6.5.6.2.4 BUILD Actors
EXP.ACTORS  =  {ACTOR_TYPE.CELL.MEM.ZON.PDF, ... 

                    ACTOR_ENSEMBLE.CELL.MEM.ZON.PDF, ...  }
INSTANTIATION ( PDF, NODES)
INIT_STATES (ACTOR_Q)

6.5.6.3 B.  Interactors, in solvents, 3-dimensional  

6.5.6.3.1  Define solutions:  ionic concentrations in water
Note also that the lipids comprising the membranes are themselves compartments with solubility and mobilities for 

each ion and ligand within them.

A library of ion types, both monatomic and polyatomic ions, is maintained.  This supports the use of logicals in 

selecting which ions will be modeled.  
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6.5.6.3.2Type = library of traits

6.5.6.3.3Compartment assignment

6.5.6.3.4Position and velocity

6.5.6.3.5Forces, Acceleration and resultant flux as a function of viscosity

6.5.6.3.6Mean free path, Collisions

6.5.6.3.7Bindings, Capacitance

6.5.6.3.8Resistance

6.5.6.3.9BUILD Particles
EXP.PARTICLES  =  {INTERACTOR_TYPE.CELL.COMP.CONC,  ...  }

INSTANTIATION ( INTERACTOR_TYPE. COMP.CONC,  ...  )
INIT_STATES ( INTERACTOR_TYPE. COMP.BINDINGS,  ... )

6.5.6.4 C.  Membranes, Compartments  

6.5.6.4.1Define membranes

6.5.6.4.2Define compartments
Each ionic solution needs a container.  These containers may be simplified, as in boxes, cylinders, cones or or 

spheres.  Or they may be faithful morphometrics shapes derived directly from living neurons.  To get started we will 

use cuboidal shapes for the patches of membrane, followed by contours of revolution for the whole cell model.

Cubes can conveniently be defined as extents: [ xmin xmax ymin ymax zmin zmax ],  Extents are generated by a 

basic cube of unity scaled to size, then displaced by position:  basicCube*siz + pos.    When the max of one cube 

extent is equal to the min of another cube, then the possibility of adjacency exists.  More explicitly, if there is 

overlap in the x dimension and in the y dimension between two cubes, and zmax of the first cube is equal to zmin of 

a second cube, then the cubes are adjacent.  

Adjacent surfaces may be made to share one or more perforations between them.  A perforation can be conveniently 

expressed as a disc, which is subtracted from the surface of a cube.  By this means of adjacent cubes of various 

sizes, and various perforations between them, a system of compartments can be constructed.
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6.5.6.4.3Membranes, shape simplifications

6.5.6.4.4Zones, PDFs

6.5.6.4.5Segs, geometric primitives

6.5.6.4.6Rings, homogeneity

6.5.6.4.7Nodes, addressing service

6.5.6.4.8Occupancies

6.5.6.4.8.1 Nearest Neighbors

6.5.6.4.8.2 Area Allocations

6.5.6.4.9Generating Contours of Revolution
Parameter vectors for the container shapes have the following columns.

compartment shape parameters = 
[ neu mem loc zon vane x2 y2 h th1 th2 dx dc ]
where 
neu = neuron ID #;    mem = membrane ID #;   loc = multiple unit location #;   zon = zone #;   
vane = vane #;   x2 = distance along axis;    y2 = radius;    h = arc height;   th1 = thickness below;  
th2 = thickness above;    dx = axial spacing;   dc = circumferential spacing;

There is a shape param for each membrane  =  {  main  extra  core  pre  post }
Each of these these membranes may have multiple zones, one row per zone.

A neuron can be divided into any number of zones.   Nine commonly used zones are: 

{ Dsynapse Dbouton Stalk Soma Hillock axon node Abouton Asynapse }

The bouton zones can be joined into the Stalk and axon zones respectively to reduce to seven zones.

A function named  getspreadsheet.m  reads data into the OctaveTM/MatlabTM script.  From the working points, line 

segments are generated.  Segments are divvied up into rings.  Rings are divvied up into nodes.  

Next, plugs and vanes shall be added.  Various measures are taken of the new shapes:  area, volume, centroids, 

quantity of nodes, zones.

The volumes within the compartments are populated with particles.  The buildB function accomplishes this by 

reading a spreadsheet with various tonicity profiles for intracellular, extracellular, and other compartments. 
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Particles for one compartment are “injected” into center nodes, and then allowed to diffuse throughout the container 

until a steady state is reached.

Actor Distributions are represented in the library as vectors of density values along the length of the neuron. 

X axis represents fraction of neuron length from longest dendrite bouton to longest axon bouton.
Y axis represents actor density per sq micron.
This data can be “stretched” to fit any shape created as a contour of revolution, on a zone-by-zone basis. 

In order to instantiate the various actor distributions provided, they must be mapped onto membranal surfaces in a 

uniform manner, regardless of shape and tortuosity.  Thus, homogenous node placement on primitive shapes is 

needed: disk, cone, cylinder, sphere, torus.

FIGURE 10: NEURON WITH SEVEN ZONES AND 4 ACTOR TYPES
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FIGURE 11: Homogenous Node Placement on a Spherical Surface

FIGURE 12: CONTOUR OF REVOLUTION FOR CELL
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6.5.6.4.10 Whole Cell Shapes
Once a contour for the main plasma lemma has been created, the thickness of the fluid compartments above 

(extracellular) and below(intracellular) can be specified.  The thickness of the extracellular fluid may vary from zone 

to zone and be graded over the zone.

Contours of rotation are amenable to the cylindrical coordinate system.  This works fine for all but the spherical 

soma (and its core), which is best treated in a spherical coordinate system.  As particles travel in straight lines, the 

Cartesian coordinate system is appropriate for collisions.  Thus, there is a heavy conversion-of-basis load placed 

within a single dt cycle.

FIGURE 13: CONTOURS OF REVOLUTION FOR CELL, EXTRACELL, CORE AND PLUGS
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6.5.6.4.11 Generating Vanes
Starter data originates on a spreadsheet, including working points for all of the compartments, and statistical 

parameters for distributions and stochastic processes.  

Statistical parameters for vane generation  = 
[segstart segstop xstart xstop rstart rstop Lvar Wvar Lsec2 Lsec4 Lsec8 Lsec16 Lsec32 Lsec64 Lsec128]

6.5.6.4.12 Compartment Volumes
Each contour of rotation is integrated for its volume contained.  The largest nested shape within is subtracted from 

that volume.

FIGURE 14: CONTOURS OF ROTATION, POPULATED WITH HOMOGENOUS NODES
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6.5.6.4.13 BUILD Compartments
EXP.COMPS  =  {  Comp1   Comp2   Comp3   Comp4   Comp5 }

extracell Comp1  =  MEM3 - MEM1
intracell   Comp2  =  MEM1 - MEM2
sequest Comp3  =  MEM2 - MEM0,    where  MEM0 = the center point
insyn  Comp4  =  MEM4 - MEM1.partial
outsyn  Comp5  =  MEM6 - Mem1.partial

6.5.6.4.14 BUILD Membranes
EXP.CELLS  =  { CELL1  CELL2  CELL3 CELL4 ... }  
main          CELL1  =  { MEM1  MEM2 ... }       EX   mem1 = plasma lemma; mem2 = core SR
extracell     CELL2  =  { MEM3 } 
incell        CELL3  =  { MEM4  MEM5 }
outcell       CELL4  =  { MEM6  MEM7 }
                          MEM1 =  { ZON1  ZON2  ZON3  ZON4  ZON5  ZON6  ZON7  ZON8  ZON9 }
insyn      ZON1  =  { SEG11  SEG12  SEG13  ... }
dendrite     ZON2  =  { SEG21  SEG22  SEG23  ... }
stalk           ZON3  =  { SEG31  SEG32  SEG33  ... }
soma         ZON4  =  { SEG41  SEG42  SEG43  ... }
hillock        ZON5  =  { SEG51  SEG52  SEG53  ... }
axon          ZON6  =  { SEG61  SEG62  SEG63  ... }
Ranvier     ZON7  =  { SEG71  SEG72  SEG73  ... }
bouton      ZON8  =  { SEG81  SEG82  SEG83  ... }
outsyn       ZON9  =  { SEG91  SEG92  SEG93  ... }

SEG1  =  { RING1  RING2  RING3 ...  }
RING1  =  { NODE1  NODE2  NODE3 ...}

6.5.7 CELLULAR INTERFACING  

6.5.7.1.1Cell-to-cell connection matrix

6.5.7.1.2Shared extracellular compartment 

6.5.7.1.3Input Signal
The input signal to neuron models is not electronic, nor is it ionic.   It is a process of ligand bindings which 

indirectly modify ion channel conductance values.  This is very unlike traditional electronic circuits which receive 

their signals as voltages to designated ports.  Imagine that your home music stereo has no radio nor a household CD 

input signal, but rather you turn the volume control up and down - and THAT is the input signal.   The neuron is a 

closed quasi-spherical surface with ion channels sprinkled irregularly over it.  To the extent that ion channels are 

modulatable, signals can be introduced, altered or quenched at just about any point over the entire surface.  It is not 

necessary to designate specific ports, although dendritic synapses may be considered as such for convenience.   It is 

worth noting that in electronic circuits, the nature of the active components, especially op-amps and diodes, 

determine what is input and what is output.  With the neuron, this is generally not the case.  Orthodromic and 

antidromic propagation are necessarily relativistically defined because the effects of ion channel conduction radiate 

out circularly.  There are no wires to limit and direct the signal to specific next elements.  This characteristic is very 
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unlike conventional circuitry but none-the-less produces general networks which can receive, process and propagate 

in any surface direction.  The “forward” nature of the signal is determined by the refractory period in the wake of the 

propagation front which mutes any “backwards” conduction.  Thus “forward” covers 180 degrees, or slightly more.

6.5.7.1.4SigGen

SigGen is a function that serves as a signal generator to create spike trains within given statistical parameters.  It can 

drive the temporal release pattern of neurotransmitter molecules at a synapse.  Several synapses can receive 

correlated signals, lagged, inverted, noisy variations, etc.

Signaling typically begins with ligand molecules which act as Modulators,  (Hormones, Neurotransmitters)

Signaling begins at Synapses, via specialized small compartments, called plugs  (excised intelligent 

boutons)

SigGen, a signal generator may be used to drive the neurotransmitter release patterns

Output Reports, as graphs, movies and raw data on particle positions and actor states wrt time

6.5.7.1.5SigGen sets
Multiple inputs often require realistic relationships between them.  They may be component feeds from auditory, 

visual, or tactile inputs.  It is a straightforward matter to compose a line of auditory signals tranched into a tonotopic 

map.  Similarly it is not difficult to compose a grid of inputs across a visual pattern.  First scale the graininess of the 

information to the quantity of inputs desired.  Create a basal noise to each feed then add a physiological 

representation of the information to each feed from the adjusted resolution.

FIGURE 15: SIGGEN GENERATES A SERIES OF ACTION POTENTIALS STOCHASTICALLY
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6.5.7.1.6Signal Outputs
Where there are more than one output bouton in the run, data needs to be collected from each if they are to be 

reassembled into “pictures”.  The output consists of a count of messenger particle release, sampled about every 

millisecond.  It is therefore necessary that removal/recycling of such messengers be fast enough to support such 

signals without unrealistic accumulation and dilution.

6.5.7.1.7Internal Observables
One of the strengths of the model is realistic depiction of individual molecules and their states.  Output series can be 

collected on each actor, their states, their bindings, and the local concentrations around each.  Additionally local 

voltages and currents of charged particles can be summed.   They can be depicted 3-dimensionally over a time 

series.

Type value comments

Attracts Ach ( Modulators may be assigned a 
serial number)

Attraction Force 0.01 (scaled relative to velocity)

Binding alpha 0.6

Binding beta 0.3

messenger Ca++

release amount 7 (ions)

noise 0.2 fraction of max signal

release time alpha 0 delay

reset time  beta 0 delay

TABLE 15: OUTPUT REPORT ON AN ACTOR
Each actor type offers a list of observables.  The experimental design may choose from these  as relevant to the 

query.

6.5.8 RULES ENGINE  

The sanity of the model is preserved by several methods:
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6.5.8.1.1Tabular and parametric inputs support values within acceptable ranges, datatypes

6.5.8.1.2Extensive use of logical datatypes that permit yes/no selections within a control flow map

6.5.8.1.3Experiment Design by choosing formatted types of elements and processes from library

6.5.8.1.4Function argument formats which accept only well-formed input

6.5.8.1.5Error legs within function code that catch common errors of arguments or usage

6.5.8.1.6Warnings on certain output patterns: infinities, infinite loops, negatives, imaginaries

6.5.8.1.7Access to database only via put and get functions, which limit corruption potential

6.5.9 RUN  

The run simulates time, therefore consists of the dynamic equations of the model.  A run is an iterative process by 

which particles move, and the finite state machines call relevant functions to effect collisions, bindings, transport, 

capacitance, voltage and current.  Data is collected raw.

A run generates a time series over which particles move, states migrate, and the finite state machines call relevant 

functions to effect collisions, bindings, transport, capacitance, voltage and current.  Data is collected raw.   See 

Simulation Runs.

The primary architectural challenge of the Run concerns causality.  How can the various dynamical functions be 

ordered and related such that they do not violate causality?    Whenever time-wise or space-wise violations occur, a 

detection mechanism must be exercised.  Those instances detected must be backed up to the threshold point so as to 

preserve the physics of the model.

6.5.9.1 Data Capture  

Biology in the wild is enormously rich in data, or at least in potential data.  If a non-invasive remote sensing 

technique were available for every ion and molecule position, velocity, collision and binding, then the work of 

biology would only be algorithmic - to tease patterns out of the data.    

Instead, we move living forms into the laboratory, constrain their activities and environment, the first distortion of 

that original pristine data.  Then we subject the “specimen” to invasive instrumentation, the second distortion.  The 

instrumentation itself has many limitations in converting living organisms into measurable argument values, and 

almost always filters those few dimensions that it can detect, the third distortion. That data, as soon as it is removed, 
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is decoupled from the original experiment, and from that point forward relies upon the collective memory of 

scientists to envision the proper aspects of that experiment when ever reading this bio-data.  This is a potential 

distortion, but let's park it on the side so as to continue down the course which the data itself follows.  

That data, to serve modeling, must become normalized into s singular coherent data base.  This implies some human 

judgment in correcting for age, sex, size, location, diet, history, quantities, and other variations such that each 

element of the database somehow “fits” with all the rest of the data, the fourth distortion.   In the construction of a 

model, one selects from the available data  but must interpolate some presumed filler data.  Where there is a missing 

piece, extrapolation is especially risky in such a nonlinear realm.   The selection process of which from the literature 

shall be employed in a model has some arbitrariness and error, as the modeler almost never has the experience of all 

the wet lab workers so as to appreciate every nuance of the choices to be made - the fifth distortion.   Then, to adapt 

the base data into a specific experiment, there will be a conversion of units, scales, quantities, and shapes, some of 

which are significantly different from the size, shape and quantities of the original organism - the sixth distortion.   

Given that computer resources are limited, some veracity is sacrificed to reduce the computational load - the seventh 

distortion.  Then the big one - digitization - the eighth distortion.  Digitization creates a whole new list of problems, 

biases, lost data, ghost data, and serious nonlinearities.   Then there are limits of run time and data to be captured as 

outputs and how it will be stored, such that the “results” are only a sample of the whole of what was simulated - the 

ninth distortion.    Then there are the software choices of how, in the name of user friendliness the data will be 

visualized.  There is plenty of leeway to filter and contort the data to “look interesting” - the tenth distortion.  And 

finally, there is the audience and writer's interpretation of what these “findings” mean, as lensed through the personal 

experiences of each observer- the eleventh distortion.   

A significant part of the work is getting the model experimental design to RUN benefits from pre-existing libraries 

of TYPEs.  From the physics of ions to the neuronal cell types, the discovery, translation and formatting of such data 

is a valuable resource to the modeler.  Conversely, there is always more such foraging to be done, and so it must be 

convenient and appreciated that interested parties contribute what they find in the biological literature to the base 

info within this model.

Beyond the elemental types, there are the DISTs that can also be preserved in the library.  DISTs are the PDFs of 

elemental placements within the neuron.  They include ion concentrations, membrane shapes, actor placements and 
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initial states.  At a slightly higher order of capture.  A set of Types and DISTs may constitute an “neuron type” or 

“neuron type instance”.   

Furthermore, this model is evolving new functionality.  The available set of functions is also part of the “library”of 

choices that enables a user to tackle increasingly complex phenomena.  A readme.txt file shall be maintained that 

announces at the top new functionality.

6.5.9.2 Quantitative output to information theoretic throughput   

So far, biology has been consistently found to be exquisitely efficient in its exploitation of resources.   This is a great 

challenge to human designers, whose engineered products typically are orders of magnitude less efficient.   Most of 

these comparisons are based upon energy consumption or material consumption.  Less has been said about 

information processing efficiency.  This is mainly due the uncertainty about just what information the cell is 

processing.  We measure the obvious, but miss the subtleties.  Because information is merely the change in state, and 

every large molecule changes state significantly, we are a long way from logging the entire set of information 

processed by a neuron.  There are strategies for moving closer to that measure.  Particle systems offer a reasonable 

approach to simulating massive data processing in a manner that can be fully captured.  And various metrics over 

many simulations can begin to find the high runners of significant state changes among the cell's chemical 

machinery.

6.5.9.3 Quantitative output to bio-performance comparisons   

The great difficulty in determining how neurons process information lies with the nonlinearities stretching over 

immense quantities of elements.  With such order, the so called “butterfly effect” is a real concern.  Very subtle 

changes in the element parameters can eventually result in emergent assemblies and behaviors radically different 

from case to case.  A viable strategy is to avoid locking all elements into the identical parametric set (stochastic 

though they may be).  The domain of doubt can be applied experimentally by varying the parameters across the 

group over that range, with particular metrics to track the outcomes of each setting.  One can do sensitivity analysis 

by gradually sweeping the entire group, or do a competitive run with all types intermixed to observe the “winners”.  
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6.5.10 PERFORMANCE REQUIREMENTS  

PE-1: The system shall accommodate 1 user at a time.

PE-3: Responses to queries shall be limited by timers set by the user prior to RUNs.  Such timers shall return 
control back to the keyboard when their values are exceeded, and a message provided with timer name and setting.

PE-4: The system shall display all messages  per Matlab ™  messagebox standards.

Generally, there are 4 types of time to be discussed:  

1. biological time (that of the empirical data on wet neurons); 

2. simulation time (that particular slice of biological time to be modeled)

3. computer time, the quantity of clock cycles consumed to perform a simulation

4. user time, the length of time required to perform certain human tasks and waits to effect a simulation

Most design work is concerned with simulation time.   For example, let one second of model simulation playback 

equal 1 biological millisecond.

Computer time will necessarily be many orders of magnitude slower than biological time.  Digitization suffers a 

total loss of continuity in space and time.  This implies a large computational load to recalculate inter-particle 

distances and forces each dt.  This leads to the conclusion that biological systems are not at all slow.  The massively 

parallel architecture of neuronal processing, combined with the molecule-sized elements, effect an immense amount 

of processing in micron-scale space-time.  Popular comparisons to computer clocks and bits avoids the fact that a 

single neuron is doing a lot more than a common computer.  By assigning a neuron an arbitrarily simple task, like a 

“yes or no” decision, we trivialize the work load of a neuron, and then wrongfully declare it to be “slow”.  Computer 

time rapidly becomes a limiting factor for practical reasons.

Performance refers not to model veracity, but to the host computer's ability  to handle the computational load.  Of 

interest is the ratio of biological entities to digital computer loading.  Because the goal is to employ supercomputers 

to model ever greater numbers of elements and processes in parallel, performance considerations are inherent in the 

project.  While the first task is to create a set of processes faithful to the underlying physics, the second task is to 

make these processes tractable to currently available computers via numeric methods, and justified simplifications 

and compression.
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Several standards of performance are worth discussing.  First, the ability to model certain complex biological 

molecular systems stands itself as a achievement, and needs only be performed in times within our patience, say a 

month per experiment.  The moment one such success is accomplished, the tendency is to make the experiment even 

more complicated, so as to consume all new available resources.  This is human nature.  

However, the more interesting and challenging standard of performance is to pit the supercomputer running its 

model of the neuron against the living neuron itself.  Which is faster? Which can do more (breadth of problem 

space)?  To this end, information theory is employed to measure the channel capacity and the mutual information 

between inputs and output.

Benchmark quantities of actors and interactors are defined.  Runs are conducted with timers across every significant 

function.  The functions are then rank ordered by their consumption of CPU and memory resources.  High runner 

functions are examined for opportunities to perform more time-efficiently.  Short-cut algorithms might be employed 

after justification runs.

 Experiments are run with increasing quantities of elements, plotting the results.  Most computing machines hit sharp 

performance drops when they begin relying upon calls to hard drives each iterative cycle.  This may be a hundred-

fold drop in speed.  At that point, if a larger machine is not available, then the software command sequence may 

need to be broken down into separate processes to the extent they are not coupled.  If interactor movements can be 

executed on one CPU, actor states on another, and the electrical grid on a third, then swaps are greatly reduced and 

efficiency returns.

6.5.10.1 Scalability  

Scalability is the ease with which a model is increased in quantities of elements and in the complexity of its internal 

interactions (richness of functions).   

In this particular model scalability is found to be almost trivial in most respects.  The number of uniformly spaced 

addressable nodes over the entire surface of a shaped membrane requires only the entry of one number (internodal 

spacing).  The definition of complex neuron shapes is accomplished by the entry of a few data points indicating 

either a line segment or arc between them. These form a contour of rotation, done automatically.  The extracellular 
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thickness is specified with one or several thicknesses, and the extracellular membrane (neighboring cells) is 

generated automatically.  The input synapses are specified either by position or by PDF and they are generated and 

placed automatically as “plugs”.   Actors and Interactors are created, placed and initialized automatically by merely 

specifying quantities and pointing to the chosen PDFs.  RUNs are conducted automatically merely by specifying the 

quantity of iterations.  All of this is irregardless of size, quantity, resolution, complexity of distribution patterns, or 

even number of cells.  The extensive use of stochastics produces very lifelike behaviors, including many emergent 

phenomena.

6.5.10.2 Auditability   

Audits are set up as needed.  Timers can easily be set on the processes in question.  “Catch conditions” can be set as 

well.  The data captured is usually sufficient for verification work.  Stop points can be set in the code to look at the 

set of variables time-progress.  And the overall data to be captured can be set in REPORT to collect any function 

output argument.

Functions shall be written such that only those variables which are not instrumental to model diagnosis may be 

written as transient (values over-written each dt). 

6.5.10.3 Flexibility  

As a first release, this “toolbox” is only being asked to serve its sole original mission.  Thus “flexibility to what?” 

remains unanswered.  As a set of functions enacting basic physics, most of this model is re-usable without alteration. 

The particular points where simplifications are made (e.g. that one model particle represents 1000 ions in the bio-

neuron) are contained and explicit, so that these can be altered or eliminated with no loss in functionality of any 

kind.   The methods of shape generation could be altered and yet most functions would serve without alteration. 

However those functions relying upon an axis of rotation of course would be affected.  

For further details on re-use and extension of generality see the chapter 9 Algorithms.
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6.5.10.4 Reliability  

General reliability benefits from the current state of the art in commodity computers, which in most cases perform 

mathematical and string operations reliable to better than seven places.  However, delays due to “crashes”, stoppages 

due to missing or inappropriate functionality, are quite another matter.  This worker has |”fried” (over-heated to 

permanent failure 3 CPUs so far.  And hundreds of crashes and data losses have occurred primarily due to 

overloading systems not quite ready for massively parallel processing.  The good news is it is quite rare for them to 

produce a “wrong” answer due to hardware mis-design.  But it is surely common enough to get wrong answers due 

to software functions written to serve other purposes than this model.   As a result it has become the habit of this 

worker to write entirely new functions “from scratch”, even when it would save time to draft someone else's code 

into re-use.  More often than not the employment of another's work has led to (if lucky) serious problems and (if not 

lucky) to hidden problems that do not surface until the errors become deeply embedded in some complex operation 

that requires weeks to de-bug.

Coding from scratch has its own pitfalls, namely that either a rigorous independent testing program must be 

faithfully implemented, or else there are going to be a steady snowfall of nuisance bugs that always get fixed, but 

not soon enough for the user to enjoy a totally bug-free experience.

6.5.10.5 Maintainability  

As a software “toolbox” or “package”,  such applications are maintained as users demand and contribute.  In this 

sense, this model is a “beta” version, enjoying liberal sharing of code and data, in exchange for contributions of 

criticism, functionality and additional library-compatible bio-data. 

6.5.10.6 Fail-Over and Disaster Recovery  

This is not a life-safety application, nor a secure-financial handler, nor a real-time agent for any other system. 

Therefore, failures are not critical.   Accordingly, error-leg handling is not the highest priority, although reasonably 

considered throughout.  In an experimental and learning environment, the model code should not over-constrain the 

users options to try out hypotheticals that may fail.  Model RUN failures, per se, are not costly, and are usually a 

learning opportunity in themselves.  Modeling is an iterative process, and proceeds by incrementally improving the 

code veracity to certain biological events and behaviors. 
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Most of the error handling is performed by the operating system, and the application implementing the programming 

language.   And all within those two are inaccessible to this project.  However, within the model algorithms, care 

shall be taken to provide the following: 

1. General BUILT failures 

2. Warning messages for ill-formed input that is likely to lead to misleading results.  Error messages shall be 
triggered by the most commonly encountered mistakes in the experimental design and data inputting, as 
would otherwise impact the code in any way likely to cause lock-ups or other forms of nuisance failure.  

3. Generally, RUN failures shall trigger the presentation of descriptive specific error messages, that instruct he 
user precisely what went wrong and how to remedy it.  The code must be transparent enough, and 
correspond to external reality well enough, that such remedies are grasped intuitively and easily 
implemented.  

4. However, by the time this model has risen to the various missions of prescribing channel alterations for 
therapies in disease, or for the design of liquid state processors for mass production, then a significantly 
higher life-safety standard of error-detection will need be applied.  Detection and Recovery Modules will 
need to have been written in and rigorously tested so as to attain the desired levels of confidence.

6.5.11 REPORT  

The interpretation of an experiment requires the capture of all the parametric data that defined and set up the 

experiment, the generated data of motion of interactors and states of actors.   Motion of particles, of course lends 

itself to   visualization of data as a movie.  Visualization of actor state may be  visualized by color changes, icon 

changes, or by plots.  The emergent properties are also critical to understanding the behavior of the neuron.  Voltage 

can be visualized as background color of voxels and current may be visualized as quivers. Both may be plotted in 3-

d.  Arbitrary time and space scaling need to be offered to the viewer.  The results of an experiment must be captured 

in such a form as to be measured for performance and error to the original design.  

6.5.11.1 Information Throughput  

Mutual information is applied to synaptic information theory by London in 2002.[162]   For some neuron types, as 

single synaptic input can trigger a whole cell response.  

6.5.11.2 Visual Presentations  

Insightful interpretations of the model results requires demonstrative graphics.  Although from a strictly scientific 

perspective, graphics are a luxury,  it may be argued that the value of the model and the contributions to science of 
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the model are directly related to the quality of the machine-human interface, and the ability of the model to 

communicate behaviors, [patterns and emergent phenomena in a manner that strongly suggests the causality of what 

is seen.

Ions are easy to visualize because they move.  But actors states do not show well, as they are static in space and have 

rather complicated, semi-chaotic state changes internally, though they be of great significance.  Even a time-line plot 

of one's states is weakly informative, in that the number of the state does not reveal what the actor is actually doing. 

One method of presenting state data is to give each state an audio frequency, and allowing the user/audience to listen 

to its melodies.  This is useful in that the ear is accustomed to detecting rhythms, distinguishing between thousands 

of them, and quickly detecting a change in melody.  Every change in modulation of an actor precipitates a change in 

melody, often quite dramatic changes.  The sequence of notes, the rhythm, and the tempo can change.  States of open 

channel or pump transport may be presented as louder volumes and/or distinctively high or low notes, that the 

listener may know what the actor is doing by these.  One can then listen to an orchestra of actors to hear the wave of 

information rolling over them.    Stereo sound could be calculated by proportioning delay to the distance away from 

the perspective point.  Reinforcement of events could be accomplished by making openings and transports displays 

as icons growing larger and brighter.

In addition to the movie, important analyses of information can be done on the captured information of ion positions 

and actor states, all time stamped.  Correlations may reveal the effectiveness and sensitivity of certain ion patterns 

upon actors, and actor patterns upon ions. Cooperation and antagonisms between actor types and actor positioning 

patterns could thus be revealed.  And perhaps most significantly, information content, transmission, and 

modification could be traced over repeated trials so as to filter out the noise.

Ergodicity addresses the relationship between the output of a single element in repeated trials and the output of 

multiple elements in a single trial.  A simplest case might be one die rolled 6 times compared to 6 dice rolled once. 

The ergodicity of this system is very high.  What is the ergodicity of a river?  Is the wavy output of one large river 

the same as that of many small rivers?  We can expect the ergodicity of rivers to be much lower than that of dice. 

Now what about neurons?  Eight identical neurons in parallel may produce similar results to a single neuron 

stimulated eight times.  This is often true if the stimuli are spaced temporally so as to not overlap the refractory 
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period.  For well spaced stimuli, ergodicity of neurons is very high, but as the data stream fills into the refractory 

periods, it drops.  Ergodicity can be exploited in modeling, trading off parallel processes for time, or vice versa.

Phase information is regarded as a valuable component in neural systems.  This is obvious in source of sound 

location, where the slight phase differences allow an animal to quite accurately guess which direction, and to some 

extent how far away, the sound  emanates from.  Such abilities imply that nervous systems are processing to less 

than thousandths of a second, and perhaps millionths.  The differential is discernible to several orders of magnitude 

finer than the ordinal.  From this one could argue that there are orders of magnitude more phase information in a 

neural signal than there are in processing a straight signal.   However, in digital systems phase information is prone 

to distortion through aliasing error.  To pursue such sensitive phase effects requires proportionately great dt size 

reductions.  The modeler should be aware of this effect and design experimental runs accordingly .

It is not trivial to say that the purpose of the Design is to realize the Build; The purpose of the Build is to realize the 

Run; and The purpose of the Run is to generate the Report.  Thus, the Design does not concern itself with the Run 

nor Report.  Neither does the report look back any earlier than the Run.  The Run should be an emergent property of 

the Build.

The report addresses the sub-models Patch and Goblet.  Generally the user plays a movie of Goblet responding to 

some input signal.  Banner plots of voltage and current may be selected as well.  Because both voltage and flux are 

three dimensional, slices may be taken through the shape, and values presented in cross section.

Visualization of data is chosen as output in movie and graphs.  Raw data is processed as prescribed in the 

experimental design.  Usually, the output signals are specified to be displayed in both tabular and graphical formats. 

After which, time and space scaling are performed.  The output error gaps are then pondered as to causes. 

Hypotheses may be formulated into revised or totally new experimental designs. Notes on model performance as 

may verify the model to predict biological performance are noted in the Experimental Results log. 

6.5.11.2.1 Multiscale viewing
To zoom in on nano-details, a means shall be provided for the user to select that movies be generated of selected 

constituent Patches. The screen shall display up to 12 such Patches simultaneously, running in synchrony.  
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6.5.11.3 Actor States Display  

Each actor state may be assigned a color.   Black for rest state, Red for blocked state.  Green for open or transporting 

state.  Yellow for reset states.

6.5.11.4 Bio-Relevance  

This topic was largely covered in the earlier chapters.  Architectural considerations include span of the domain 

space, predictive powers (or lack thereof, pathologies to be accommodated in models, types of therapies and repairs 

to be supported in models, the mapping between biological action and mathematical computational functions, the 

treatment of missing data in actor kinetic schemes to complete model entities, the challenges of multiscale coupling 

between molecular events and whole cell behaviors.  All of this boils down to practical veracity.

In addition, their are frontier considerations, like:  gap identification strategies – pointers for new wet lab research, 

development of practical logical processors out of liquid state processors, and design of new channels and 

assessment of their effects in the whole cell.

Criteria shall be set forth for metrics on the output, which shall  yield error data suitable for designing modifications 

to the experiment for subsequent runs with reduced error.  

Thresholds shall be set to levels of confidence and/or ranges of expected output values prior to the run, and 

exceptions to those rules appearing in the output triggers some corrective measures to be taken. This may be abort, 

flags, or alternative parametric values.  In the case of alternate values, messages must be sent to the user to notify of 

such changes.

6.5.11.5 Hypotheses suggested by modeling exercises.  

With a modeling approach, one can step incrementally through the neuron, tracing every transfer of information 

along the way.  Because it must be represented mathematically, and operate dynamically and sustainably, at the very 

least, plausibility is achieved.  In the case of missing bio-data, the signaling “needs” on either end of a gap suggest 

likely mechanisms in between.  Nature is surely more creative than man's ideation, but man's hypotheses suggest 

experimental design to test those hypotheses and in the process discover more of nature's true methods.  
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A stepwise account of a signal arriving at a neuron dendritic field of synapses can be represented thusly:

Some fixed number of vesicles are manufactured and poised at the pre-synaptic membrane.  Each vesicle contains a 

somewhat variable amount of one or more neurotransmitter molecules, on Gaussian distribution curves for variance. 

The “all or none” action potential that propagated down the axon to the bouton, causing the influx of  calcium, will 

bind stochastically to the vesicular release mechanisms, and these mechanisms will stochastically undergo 

exocytosis, releasing their contents, or some of  their contents, into the synaptic cleft. 

The somewhat variable number of vesicular molecules, released at somewhat variable lag time after calcium influx, 

begin diffusing within the synaptic cleft.   In a liquid state, diffusion encounters collisions with water molecules (and 

others) , which spread the charges and the trajectories radially.  A wave of arrivals “washes” up upon the distant 

membrane.  These collide mostly with membrane, but the affinities of certain receptors accomplish hit frequencies 

sufficient to bind a ligand to a receptor a certain percentage of the time, as a function of ligand concentration and 

receptor state.  
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Load TypeComp contains data on shape of each compartment, also membrane type

Load TypeRecep contains traits of each receptor type present in this experiment

Load TypePump contains traits of each pump type present in this experiment

Load TypeChan contains traits of each channel type present in this experiment

Load TypeVes contains traits of each vesicle type present in this experiment

Load TypeIon contains traits of each charged particle type present in this experiment

Load TypeLigand contains traits of each messenger particle type present in this experiment

Load DistComp contains data on size, position and orientation of each compartment in this 
experiment, noting juxtapositions

Load DistRecep contains data on the density of each receptor type present, as varies along the length 
of the neuron

Load DistPump contains data on the density of each pump type present, as varies along the length of 
the neuron

Load DistChan contains data on the density of each channel type present, as varies along the length 
of the neuron

Load DistVes contains data on the density of each vesicle type present, as varies along the length 
of the neuron

Load DistIon concentrations of each particle type in each compartment and binding site

Load DistLigand concentrations of each messenger type in each compartment ad binding site

The DESIGN of an experiment allows the user to fill in biologic data according to prescribed data formats for each 

actor type.  This is a flexible scheme that can accommodate a huge variety of possible configurations, and a huge 

variety of experiments to perform on each configuration.  This is intended to support the potential to mimic the huge 

variety of arrangements of biological neuronal types as they may distinguish themselves in the various roles played 

in information processing.  

6.5.12  DOCUMENTATION REQUIREMENTS  

All coded functions shall contain text within them that documents the inputs, outputs, dependencies, processes or 

algorithms in text, the version and the date.  Additionally each line of code shall be commented so as to make the 

intent clear, and to link processes, reveal logic, and quantify limits.
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This multi-scale neuron model consists of a whole cell closed membrane with saline solutions on either side of it. 

Because of the immense quantities of ions and ion channels comprising a whole cell, computational reductions are 

realized by focusing on nanoscale patches of membrane, so as to characterize local performance.  These patches are 

then cloned and stitched together to comprise the whole cell model

6.5.13 PLATFORM  

For the software development phase, Octave ™ and Matlab ™ are recommended. They provide a computing 

platform for rapid demonstrations of concepts, despite their implications of computationally heavy algorithms. 

Because the primary attention goes to the neurophysiology, not the computer science, intellectual leverage over the 

machine is sought out via high level programming languages.

As the model migrates to supercomputers, a greater emphasis must be placed upon task scheduling, and thus Linux 

and C++ code are the methods and language of choice.

                                FIGURE 16: SINGLE CPU CONTEXT

Context Diagram for this model on a single processor, in development mode    
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FIGURE 17: CLUSTER CPU CONTEXT

Context diagram for this model on a Supercomputer 

Employing computational leverage via task allocation software, thread optimization, and 1gb Ethernet link to the 

master node.   Not shown, a test and metrics processor will be necessary to measure and optimize performance.

6.5.13.1 Enabling Technologies   

Modeling, as herein implemented, is restricted to digital computer simulations.  Particularly, the so called PC 

(personal computer), built upon Motorola, Intel, AMD or SciCortex manufactured CPU chips, may employ one of 

various operating systems, e.g. Apple's Macintosh, GNU's Linux, or Microsoft's Windows.  The modeling herein is 

agnostic to these operating systems, but experience finds Linux to be the fastest in execution.   

The computer code is written in Matlab/Octave coding syntax.  Matlab is proprietary and Octave is Open Source, 

under the GNU protocols.   The code written herein, to the best of the author's experience, is not specific to 

particular versions or releases, and has run on Matlab 6.1,6.5, 7.0, 7.5 and Octave 2.1, 2.9 and 3.0 versions.  It is not 

dependent upon any Matlab toolboxes, nor upon any Octave packages.  Rather this model constitutes a “toolbox” or 
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“package” of its own, as a group of interdependent functions and documentation for use, all serving a related 

purpose.  The algorithms are well documented and thus may be translated to C, C++ or FortranTM in a straight 

forward manner.

Such a molecule-vigorous model is highly useful in establishing the true nature of neuronal information processing, 

but once accomplished its results serve as the standard against which various compression strategies will be 

measured and justified.  That is, heuristics must be justified by the computationally heavy models.  But then those 

computationally heavy models must give way to which ever computationally lighter algorithms that can be justified.

EX (q x sf^2 x ops)  
   

q sf ops ext

Ions 100000 1 7 700000

collisions 100 10 36 3600000

plugs 110 2 8 3520

recep 500 2 5 1000

shuttles 100 10 21 210000

chan 10000 10 56 56000000

pumps 1000 6 45 1620000

ves 100 4 22 35200

erg 126

aff 62178720

eff 0.03

Op / dt 2072624000

CPU cap 360000000

dt / sec 0.17

TABLE 16: ESTIMATED CPU OPERATIONS

q = quantity of element
sf = scaling factor for measured operations complexity handling that type of element
ops = usual number of operations per dt per element
eff = the measured efficiency of the computer hardware/software combination 
CPU cap = RAM memory
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dt/sec = simulation cycles per second of CPU time

Note:  Approaching RAM memory limits has a very serious deprecation of performance effect, and exceeding 

memory limits can result in a 100-fold decrease in performance, as the ratio of  time for disk calls over the time for 

RAM reads.

Given that solid state CPU technology is reaching its minimum size limits, consideration need be given to the near 

term future of super computing. The need of this modeling approach to allocate at least one CPU per model neuron 

(and more probably dozens) does not bode well for this model's ability to compete on a practical level with terse 

analytic approaches.  That is, this modeling approach is not proffered as a final form, but as an intermediate form 

serving to justify future forms. 

This contrasts with the biological neuron, which although lacking a gigahertz clock still outperforms silicone by 

several orders of magnitude.  

Variable precision needs vary from binary to 8 bit to 64 bit.  Most parametric values can be course, perhaps 256 

values suffice.   When the coding is carefully specified to the necessary and sufficient data types, then several 

classes of efficiency are realized. The important ones are the N^2 and N!.  This model does not have any significant 

factorial load    It is speculative to offer a number, so I'll conservatively use only one order of magnitude of 

computational reduction.  

A primary function of this model is to explore the biological configurations that express differing types of 

information processors.  By exploring the entire family and characterizing the mechanisms of each will undoubtedly 

be informative in the subsequent of engineered neurons for neural networks.

This project writes a modeling program  intended to assemble the findings of a variety of analytic papers from prior 

biologic art.  This project is to synthesize biologic findings into a predictive model of how, given the variety of ion 

channel types, and variety of cellular shapes, can be predicted the information processing function of each cell type. 

Computer simulations may be written in C++, the Octave ™ 3.0, or  Matlab ™  language (Version7), on either 

Linux, Mackintosh, or Windows  operating systems.  Other languages are possible, however they are not taken into 

account herein.  The high level platforms for coding linear algebra have been run on PC's and Apple computers 

during development.  Their convenience and portability support rapid proofs of concept.  Once debugged and 
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assembled, the code may be ported onto a Linux cluster, server, or supercomputer for full scale modeling of the 

information processing function of a single neuron.  Use of lower level languages such as C++ for bit-managing the 

numeric methods and parallelizing the algorithms on  machines of say, 50 gigaflops, can simulate one second of 

biological time in several hours of CPU time.  

6.5.13.2 CPU sizing  

As a particle-system model, the computational load is high.  The single CPU desktop or laptop of the year 2008 can 

model up to 5000 particles.  Models of high veracity will entail about 100 000 particles.  Therefore multi-CPU, 

multi-threading machines are desirable for scientific quality modeling.  For example, a machine with 16 cores and 

16 gigabyte memory, is estimated to model 100,000 particles in about 11 seconds per model dt.  Thus, a run with 

dt=1e-4 seconds and a time simulation length of 10 biological seconds would take about 11.8 days (1,020,000 

seconds).

There are 4 major strategies for reducing the above CPU time.  First is the implementation of sparse matrices for 

collision detection. Theoretically this could reduce computations by about 2 orders of magnitude because each 

particle can only reach a very local area to it in one dt.  (This gets us down to ~ 10,000 seconds)

Second is the multi-scale approach whereby only sample patches would be modeled rigorously and the spaces in 

between filled in with graded clones as I/O maps (lookup tables created on a basis of the rigorously modeled 

patches).  This method could also realize 2 to 3 orders of magnitude reduction in computational load, albeit at the 

cost of much more preparatory verification work in the  initial phase to optimize the many parameters so as to mimic 

live cell performance.  (We are down to ~100 seconds.)

Third is a verification of the redundancy of particles and actors in the derived information processing of a single 

neuron cell, and subsequent purging of those redundancies.  Not known at this time, but it might prove to be true 

that only 1000 particles can accurately predict the behavior of 100000 particles (law of numbers).  This may support 

a reduction in computational load of 1 to 3 orders of magnitude.  This is not trivial because of the interaction 

between diffusion collisions and protein kinetics, by which modulators leverage the significant process rates of the 

cell. (We are down to ~ 10 seconds; which is 'real time'). 
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6.5.13.3 Optimization and Load Leveling  

Optimization to the hardware has two aspects.  The larger aspect is out of scope in that it is handled by the operating 

system, which assesses available resources, and assesses assigned tasks and attempts to divvy up the tasks to use all 

resources nearly level.

The second aspect concerns the style of code writing.  The generally preferred style is to write code for generality, 

readability and maintainability.  But for those few functions which receive inordinately heavy use, there is great 

need to apply the best numeric methods to minimize CPU time.  In those cases, a second version of the function is 

written, stripped down to the bone.  These _fast versions of functions use: 

1. base2 quantities

2. multi-dimensional matrices in preference to many smaller matrices

3. logicals in preference to inequalities and “finds”

4. minimal redundancies of variables   (this implies the compression of many lines of code into one)

5. Heavy use of the deeper structures of linear algebra and topology

6. The result is that this code is not readable, except as an “exploded view” portrayed in the comments.

6.5.13.4 Priorities  

Interrupt priorities determine which shall prevail in a contest for software control  

Interrupt Priority Code blocks

Priority 1 abort via keypad

Priority 2 error legs: detection, resolution, reporting 

Priority 3 User parametric settings, data base sanity

Priority 4 normal build and run

Priority 5 capture and reporting, housekeeping

Note that in any interval of critical software continuity, higher priorities may be briefly locked out.

6.5.14 SOFTWARE INTERFACES  

SI-1:   There are no Software interfaces.  The platform is the latest version of Matlab ™ as of Dec 2007.   Octave 
is a very similar application to Matlab; however, some syntax may vary.  This code may be re-compiled as C++ code 
[ by others]
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6.5.14.1 Security Requirements  

Matlab ™ .m files can be converted to .p files for greater source control.  P files are compiled binary images, and 

intended to be difficult to "reverse engineer".   Users who produce sensitive modeling runs should take additional 

precautions to encrypt or otherwise sequester their Design files and Reports.

6.5.15 BASIC EXPERIMENTS  

Follows are a starter set of experiments to exercise the functions and adjust scaling parameters for veracity.

1. Moving ions in concatenated shapes.  Create a cone and a sphere.  Join them.  Add a mix of particles. 
Verify that they are uniformly distributed after a reasonable time.  Verify that their Boltzmann velocity 
distribution is stable over time.

2. Two compartments with funnel shaped pore between them.  Determine whether a funnel can passively 
build up pressure on one side.  Vary the angle of the funnel wall and record the differences in results.

3. Two compartments with selective pore between them.  Introduce a mix of charged particles (quantity of 
positive equal to quantity of negative on each side).   Will a passively selective pore result in a build up of 
pressure?  charge a capacitor?

4. Check your membrane capacitance and saline resistances.  How do these phenomena scale to the biological 
neurons?  Can you justify a scaling down of particle quantities?  1:10?  1:100? 1:1000?  1:10000?

5. Two compartments, set up the passive steady state that mimics a dead squid axon (no pumps). Do your ion 
concentrations, pore conductivities match the squid?  What was the final resting state?

6. Two compartments, turn on the squid pumps in the above experiment.

7. Add ion channels to the above experiment.  Vary their spacing and densities.  Try to perturb them to create 
and action potential.  Can you get propagation?

8. Add interesting shapes to your quid neuron.  How does a signal pass over the soma?  You must now add the 
extracellular compartment to closely conform to the neuron shape so as to produce a realistic “layer” of 
saline.

9. Add a dendritic arbor, and synaptic boutons.  Add an axonal recording bouton.

10. Experiment with varying patterns of channel distributions.  Record which propagate.

11. Starting with your most robust patterns from above, experiment with varying channel kinetic schemes.  Can 
you get burstiness?  rhythmic?  Lags?

12. Add inhibition to your neuron.  What is the maximum ratio of inhibiting channels to excitatory channels 
before your neuron is unresponsive?

13. Move your pumps around to create end to end flux of chloride.  How does this change the shape of the 
signal being processed?

14. Make an adding neuron.  A subtracting neuron.  A multiplying neuron.  A dividing neuron.

15. Make an integrating neuron, a differentiation neuron.
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16. Create two neurons and wire them for a coincidence detector, as a component in localization from the two 
signals of the ears.

6.5.15.1.1 Instantiation model 
Instantiation model consisting of the available actors as defined herein: 

1. A precedent neuron may release neurotransmitter particles into the extracellular space.  

2. It will diffuse very rapidly (0.5 msec) across the fluid incidentally colliding with receptor binding sites.  

3. There particle-site matches may bind, causing a Na chan to open via stochastic state transitions. 

4. Na fluxes into the intracellular space causing a voltage disturbance across the membrane.  

5. This triggers the K chan to begin opening which allows K flux outward.  

6. These two disturbances set forth a "wave" of propagation to other Na and K channels. 

7. The second  to last chan at the right is a Ca channel.  

8. It releases Ca into the intracellular compartment very near to a vesicle.  

9. The last element is a vesicle, which releases GABA into the extracellular space.

10. This diffuses to the antecedent neuron's receptors.  

11. Sequestration maintains the low levels of Ca in the intracellular compartment.

6.5.15.1.2 Modalities
Non-linear systems are prone to limit cycles.  Stochastic systems randomize those limit cycles into modal domains, 

which serve rather like corals or valleys.   If enough energy is added, the trajectory can “jump” the boundary of the 

modal domain and enter an adjacent domain.  Examples might by a chaotic basal firing rate, stimulated to jump into 

a burst of firings, then dropping back down into the chaotic basal firing rate.  Other commonly encountered modes 

include periodicity, phase locking with neighboring cells, proportional response.    Because of the ubiquitous thermal 

energy, significant activity is that which is rises above the basal rate.  Though neurons may be firing at some basal 

rate all the time, the local group of these does not sum above the threshold necessary for signal transmission to 

downstream groups.
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6.5.15.2 Minimal Model     

6.5.15.3 Patch : Nanoscale  

The whole cell model may be comprised of an assembly of patches into a cylindrical shape conducive to numerical 

methods for 1E5 interactors and 1E3 actors.  Each patch model is intended to contain some minimal quantity of 

actors as necessary to study information transmission between the actors and ensemble behaviors.  The size of the 

membrane to be modeled is usually less than 1 square micron, or that sufficient to include 2 to 20 actors in their 

normal distances apart.  

6.5.15.4 Goblet : Microscale   

The whole cell model is suitable for about 1000 actors positioned in any of about 100000 membrane nodes, of which 

about 5000 are occupied by actors.  About 20000 interactors participate in diffusion and charge flux.

Vivo-shape modeling is pursued for purposes of justification of scaling and shape simplifications.  Such studies must 

be conducted piece-meal however as full scale runs would be computationally prohibitive, even for world class 

super computers.  The Vivo-shape models serve as organizational schemes for normalizing biological literature into 

single coherent cell types. 

FIGURE 18: COMPLEX NEURON SHAPE WITH SYNAPSE MARKER
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Ideal wet lab data would include a uniquely colored marker for each channel type, pump type, receptor type, and 

vesicle type.  Diameters of each process measured, and from them surface areas calculated, and then the actor 

densities calculated for each type, as a function of actor counts. Bifurcation pattern would be measured for vane 

placements.  Further metrics on the size of the soma and axon would reveal volumes, surface area , and lengths of 

each.

Full scale neuron shape complexity is extremely heavy in its computational load.  One estimate required an 800 

gigaflop computing machine, to manage 1e5 actors, 1e6 interactors, and membrane with 1e6 nodes.  However, when 

whole cell neuron data is available with fluorescent dye markers on receptors, channels, pumps, vesicles and/or 

second messenger components, valuable distributions can be gleamed from it.  Also valuable are data that identify 

the locations of synapses, bifurcations, and specific types of actors.  Color thresholds can then be set to find the 

locations of each actor type so marked.  From this their densities and distribution profiles can be generated.

6.5.15.5 Multicell Models  

The fourth opportunity for computational load reduction is an information theoretic approach which captures the 

final results of a simulation run as a input to output mapping across parametric sweeps.  This would preserve the 

mutual information between input and output, and purge the entire model down to its essential (nonlinear) transfer 

function.  Although its original veracity is then deadened, the residual map provides a fast and accurate mimic of a 

3-D neuron, for purposes of predictive models of local circuit neurons.  In the multi-scale modeling strategy, this 

represents the next layer.  (This is not to reduce CPU time, but rather to support parallelism of multiple neurons  

simultaneously.  The potential here for compression is quite high because we will be generating an interpolation on  

an N-space lookup table, where N is the quantity of parameters.)

The fifth opportunity for computational load reduction is strict parsimony regarding datatypes.  First, convert all 

variables that can be expressed as binaries to logicals, then all for which precision is not critical to more than 8 bits 

integers; then floating point 8 bit; then 16 bit; then 32 bit; then 64 bit. 

Even after combining all of these strategies, what are the theoretical limits to reduction? The simplest neural net 

model (by others) reduces the neuron to an “integrate and fire” function.  Thousands of such “logical units” can be 
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arranged in layers, and have already proven they can parallel process complex information at gigahertz clock speeds 

(faster than the human brain), in special use configuration (e.g. face recognition, biochemical configuration 

dynamics, battle scene analysis).  However, it is the stated purpose of this model to capture the full molecular 

veracity of neuronal information processing, and thus the degrees of freedom necessary to maintain the in vivo 

mutual information is the criteria of veracity.  The ability to reduce or simplify such a model is limited to the 

information throughput (channel capacity) plus the operations performed on the input information as necessary to 

generate the desired output.  Such a limit will necessarily float with the task assigned the neuron.  Thus the reduction 

strategies must be flexible and responsive to this end.  

6.5.16 NEURAL NETWORKS  

When neurons are simplified down to sum and threshold elements, then a network of “neurons” are required for 

pattern recognition, movement detection, etc..  A large number of articles have been published concerning the 

computational power of various wiring schemes of such simple elements into networks.  In 1987, investigation of 

neural coding strategies led to the Hopfield net.[163]   In 1994, Destexhe studied oscillations in networks of 

excitatory and inhibitory neurons.[164]   Several times, workers reported that neural nets were severely limited in 

the types of problems they could solve – so discouraging that most funding sources withdrew support for such 

research.[165]

By 1996, training algorithms existed to help neural nets continuously and incrementally improve their performance. 

[166]  And neural networks were back on track to solve ever more complex problems.  Mathematicians blessed them 

as being able to solve a greater number of classes of problems than could a digital step-by-step computer.   By 2003, 

a primitive worm, Caenorhabditis elegans was the first creature to have all its neurons mapped and all of its synaptic 

connections.[167]   This provided an intact, complete, tractable nervous system for systemic study and modeling of 

a computational biologic system.[168]   Connectivity of higher forms is being gradually mapped.   

It has gradually come into our awareness that simplifying the neuron is directionally incorrect.  We should be 

increasing our abilities to master their full complexity.  There are serious challenges to our hardware as to how to 

accommodate such  large set of data and processes.  One fruitful avenue which this author is pursuing is called 
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multi-scaling.  Rather than compute every ion in a neuron, representative patches of them can be intensively studied 

and mapped across the closed surface of the membrane.[169]

At the level of local circuit neurons the issues are mostly synaptic transfer functions and connectivity.  At the next 

level up things are sufficiently organized that control systems theory can be applied to model high level functions, 

such as sound location.[170]  

6.5.16.1 Artificial neurons  

Quist in 2007 burnt holes in artificial lipid bilayer membrane to simulate channels.[171]   He  advocates that 

saline/membrane artificial neural networks could be interfaces with conventional silicone chips and provides 

suggestions how to do this.  As manufacturing CPU chips becomes more an exercise in chemistry, then so the 

assembly of nano molecular gates becomes nearer to feasible.[172]  

6.6 RE-USE  

All algorithms shall be written across the most general usage space except when doing so incurs computational 

inefficiencies detrimental to the model.  In such cases, the commentary within such functions shall clearly indicate 

the compromises made in the interest of speed, and document the code (as comments) that would serve a more 

general case.  Where both the specific heavy use case and a lighter use more general case would both be used, then 

two functions shall be written; the general one by the standard name, and the specific one written with the same 

name but tagged  “_fast”.

Those functions and variables which serve to operate and maintain the database and data structures shall be set up as 

globals.  Most other functions shall be set up as local operators, to avoid the accidental overwrite of far off variables 

that happen to have the same name.
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6.6.1 LIBRARY  

The static part of the model is its libraries of types of actors, their trait values and their parametric domains.  There 

are also libraries of interactor types, membrane types,  compartmental shape types.   The first phase is to insure that 

the libraries are adequately stocked of all the types needed for the experiments to be conducted.

1. Type: intrinsic traits of an element type: 
A:  affinities, binding kinetics, conformational kinetics, phenostates, 
B:  mass, charge, radius, mobm, ...
C:  shape, zones, thickness, capacitance 

2. Dist: probabilistic distributions in space, orientation, and initial state of an element type

3. Design: a set of parametric values that define an experimental run. A selection of types and dists that 
uniquely characterize a single neuron..

4. Exp:   collection of elements, processes and signals that comprise an experiment, benefiting as much as 
practicable from lessons learned from experiments already in the library.

The static part of the model is its libraries of types of actors, their trait values and their parametric domains.  There 

are also libraries of interactor types, membrane types,  compartmental shape types.   The first phase is to insure that 

the libraries are adequately stocked of all the types needed for the experiments to be conducted.  Libraries of 

elements shall be provided as starter sets.

6.6.2 CAPTURE OF EXPERIMENTAL PARAMETERS  

An experiment consists of the selection of the actor and interactor types and their distribution patterns onto a 

specified shape.  The extracellular compartment and synapses are also be specified.  An input signal set is provided, 

and the output data to be collected is specified.  In addition some numeric parameters concerning time and space 

resolution are specified.

1. Any newly defined entities must be entered into the libraries, properly classified and characterized by trait 
values 

2. Chosen  elements from the libraries for an experimental design

3. Input signals to exercise the model designed and entered into the library

4. Output variables chosen to be captured and recorded.
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6.6.3 EXPORT CAPABILITY OF DATA TO RELEVANT USERS  

Currently, the output data is not in a standardized format for neural models, if indeed one exists.  The output is raw 

position and state data which supports the reconstruction of events as a movie and/or plots of voltages, currents, 

flux, capacitance, etc.  It is meaningful only in the context of the input set, which includes both design and signal 

information.  The field awaits the proposal of standards in neural modeling that would enhance rather than limit 

scientific efforts.

6.6.3.1 Digitization and Computational Compression  

Due to the large quantity of elements, there is a strong need is to eliminate redundant calculations, and to simplify 

necessary calculations.  As the total list of computational steps per dt, per actor is about 100, simulations can 

consume weeks of CPU time.  Size scaling is analogous to voice compression by clipping out the repeating patterns, 

and pasting copies of the unique patterns back in at the end to reconstitute the original signal.   It is anticipated that 

the molecular pattern redundancies in the neuron are large, and thus much computational compression may 

eventually be justified.

However, all of this comes at a price.  Reliability is threatened by any heuristic, short-cut, compression, 

linearization, classification, interpolation, extrapolation or estimation.  This model, necessarily will do significant 

amounts of all of the above if it achieves large scale representation of the whole cell or multiple cells.  Therefore, it 

is necessary to proceed with each of these incrementally, to verify the fidelity of the model as it departs from one-to-

one correspondence with known biology.

6.6.4 FEEDBACK & ERROR CORRECTION  

Design and performance metrics set forth criteria to be used applied to output so as to  yield error data for purposes 

of causing modifications to the experiment for subsequent runs.  Generally, levels of confidence and/or ranges of 

expected output values are defined prior to the run, and exceptions to those rules appearing in the output trigger 

some corrective measures to be taken., and generate a report of what was done.   A modeling phase in which the 

researcher ponders the output error gaps and hypothesize their cause is needed to point the direction for future 
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metrics of performance.  Sensitivity analyses that sweep some portion of the parametric space are needed to validate 

the model as representing some physiologic counterpart. 

In some instances modeling will discover missing elements, processes or values thereof.  This may be useful 

feedback for wet lab researchers, indicating possible areas of investigation so as to more completely understand 

some cellular process.  It may also reinforce or challenge prevalent working models that drive wet lab experimental 

design.

6.6.4.1 Statistical Assessment of parametric domains  

In a sense, this project is statistics-adverse.  This is so because all statistical measures involve collapsing large 

numbers of events into aggregates.  There are still a few of these of interest to information flows, however.  It is 

presumed that information  is communicated to a neighboring cell via particles small enough to diffuse/drift between 

cells within the timeslice of interest.   That is, the crossing time is the period, and its inverse is it maximal frequency. 

To insure that nothing significant is missed in this accounting of information flows it is prudent to run  sweeps of 

parametric value combinations over all physiological ranges.  Doing so increases one's confidence that all the 

common modes are discovered and characterized, with the boundary of each mapped.    One then has many sets of 

input particle patterns and their corresponding output particle patterns.  From these mutual information measures can 

be taken.  

MI(in,out) = sum(p(in,out)*ln(p(in,out)/(p(in)*p(out))));   
% MI = mutual information
% in = system input signals
% out = system output signals
% p(in,out) = joint probability of in and out
% ln = natural log
% p() = probability of occurrence

Solving this EQ is greatly simplified when the observer declares that only dendritic spikes count as input, and axonal 

spikes count as output.  However, in this model, the positions of all unbalanced ions are considered to constitute 

information; and the states of all actors constitute information.  For each of these some information is lost at the time 

of bio-data collection because, only that percentage of ions which become bound or transported are measurable. 
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And due to the use of kinetic schemes, only a few of the high runner states, some combined, some ignored, are 

measured.  

One could detect and mark which ions are not charge balanced.  But I fear this is not of significance because several 

partially balanced can add up to one fully unbalanced.   There is an analogous concern for actor states. The several 

most similar states might be expressed as combined into a single state.  Can these partials become significant to 

model behavior?  A theoretical answer:  Depends how far in space the ions are separated, and how spread in time the 

partial states are.  It is a divergence problem.  Are the numbers great enough that they average out to orderly 

behavior?  That would be an ergodic problem.  In this model such concerns are addressed empirically.

For purposes of the first development round, it is assumed that partial charges and partial states are not significant in 

altering the outcomes, within the resolution of the overall model.  In future releases it may be found that with 

increased precision such effects become significant and need be accounted for in model behavior.  It is reasonable to 

claim that the charge field will be accurate, including partial charges, down to the dt selected; and that the kinetic 

scheme will behave accurately over any number of states in the Q matrix, down to the dt selected.   That leaves only 

two variables:  the detail of the model design and the fineness of the dt. 

Sensitivity sweeps may be designed to measure the robustness of a parametric set of model scaling and mapping 

from wet lab data.

6.7 DATA BASE MANAGEMENT  

Each line segment of the contours of rotation that comprise a compartment has unique normals, necessary for 

determining particle reflections.  Each particle must know which surface is it floor and ceiling (limiting 

membranes).  Each particle must be tagged as to which compartment it belongs in, to detect escapees.  Each particle 

must be tagged whether or not it is bound and to which actor and which binding site on that actor.  Each actor must 

track its state, and track which particles, if any, are bound to each of its binding sites.  Voltage and current need to be 

instantaneously measured for each dt on a per actor basis.  Each zone has different characteristics and thus tracked 

as separate grouping.  Each ion channel and pump must be able to attract and receive realistic quantities of particles 

for transport so as to achieve a sustainable circuit of particles.
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All such data shall be organized into matrices.  Pointers shall be provided to determine the relationships between 

unequal sized matrices.  The details of database design and management are treated in a subsequent chapter. 

Covered below is the context within which database design can proceed.

6.7.1.1 Operating Environment  

Operating Environment requirements include:

OE-1: The Patch model is completely contained within a single software application in the programming language 

of Octave or Matlab.  As such it is portable to many platforms including Windows, Mac, Linux.  At the small end of 

implementations, only a single laptop with Matlab ™ is required.  In larger implementations, this model can be 

adapted to C++ over Linux on a processor cluster.)   As the hardware environment is a rapidly evolving craft, it is 

presumed that interested parties will be versed in some version and rendition of the feasible program language 

embodiments as appropriate for its implementation and maintenance.  The program lends itself to adaptation and 

expansion, so as to render an ever larger problem space tractable by expanding the libraries of actors, interactors and 

compartments..

OE-2    The program is driven by biological data.  Concerning the anatomy, physiology and chemistry of the neuron. 

Only components and processes directly relevant to the information processing capabilities of the living cell are 

considered.  It is flexible enough to handle variety of neuronal shapes and actor distributions within a cell type;  a 

rather complete variety of cell types within an individual organism;  the variance of nervous system cell 

instantiations within a species; and the variety of neurons possible across the animal kingdom.  One celled 

organisms and reactive plant cells can also be modeled for their ion channel activities, and consequent voltage and 

concentration changes. 

Several values of physical data are needed as well, such as temperature, various traits of water, and the periodic 

table.

OE-3    There is a small amount of physical data needed as well, such as temperature, various traits of water, and the 

periodic table.
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6.7.1.2 Inputs  

Input requirements include:

IN-1      Input is biologic data concerning the shape of neurons and the placement of Actors throughout that shape, 

and the initial positions and velocities of solute particles.  Input data is divided into to classes:   intrinsic data is 

called Type data, and extrinsic data is called Dist data.

IN-2      Input may also be artificially generated via statistical approximations of live cell data.  These may be 

referred to as "simplified designs".  All Input preparation is called the Design, regardless of biologic source  or 

fabricated hypotheticals.

IN-3     Input to the model may also be generative. That is, instead of mere data, it may be formulaic  The Q matrices 

for Kolmogorov states are generative.  Such functions produce DIST files, either static or dynamic.  Obviously, 

formulaic generators are an efficient mechanism for producing dynamic Distributions for the model.  This would be 

of obvious utility in setting up state machines, or for simulating the response of a neuron to a changing environment.

6.7.1.3 Outputs  

Output requirements include:

OUT-1  Output is a movie of the diffusion model, showing particles in motion, marking key events in color, and 

plotting selected key values, e.g. voltage, current, flux, concentration wrt time.  

OUT-2  Output also consists of data files which can be stored and processed in a variety of ways.  They include 

traces of all dynamic variables generated during the Run. Output visualizations may be customized to emphasis the 

phenomena of interest, and calculate some metrics that might best indicate what the next step should be.

6.8 WORK FLOW  

1. Standardize the numerical treatment of all charged particles

2. Standardize the numerical treatment of all non-charged particles

3. Develop a function set for particle movements, collisions, bindings, unbindings
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4. Add a sanity check for particle physics and conservation laws

5. Write a CAD program for shape generation:  as volume, as surface, as addressable nodes, as NN

6. Coordinate routines between particle reflections off surfaces and particle transport through nodes

7. Standardize Actor defining traits, so that any type can be called into service merely by type #

8. Manage scaling problems, space, time and quantities, for motion and states.

9. Manage meta layers of model administration:  libraries, design, build, reports

10. Map each of the created functions into the data structure needs, inputs and outputs (merge these)

11. Identify the heaviest use functions and rebuild them into highly efficient engines

12. Develop a test routine for each function over its usable domain

13. Identify opportunities for sub-assemblies for frequently called groups

6.8.1.1 The Load sequence shall be:   
Load TypePhysics Physics and Chemistry basics, constants, conversions, default values

Load TypeComp Shape and perforation choices

Load TypeMemb Surface and membrane characteristics, including rafts and capacitance

Load TypeIon Periodic Table info on mono-atomic ions

Load TypeIon2 Table on poly-atomic ions

Load TypeLigand Table on ligands: neurotransmitters, g-proteins, phosphates, glycosylates

Load TypeRecep Library of Receptors, traits, inputs, mods, states, transitions, outputs

Load TypeChan Library of Ion Channels, traits, inputs, mods, states, transitions, outputs

Load TypeShuttle Library of shuttles, and their traits

Load TypePump Library of pump types,  inputs, mods, states, transitions, outputs

Load TypeVes Library of Vesicles,traits, inputs, mods, states, transitions, outputs
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6.8.1.2 The Design sequence shall be:  
Input DistComp % parametric values for compartment shapes, sizes and placement

 Input DistConc % concentrations of particles within each compartment at INIT

 Input DistActors % distribution functions determining placement of actors

 Input ReportParams % choices on how to present findings

6.8.1.3 The Build sequence shall be:  
 

BuildC  % define compartments as a list of points, lines, surfaces, volumes

 BuildB  % define positions and velocities of all particles for INIT, per biodata

 BuildA  % locate actors per PDFs, set INIT states, forces, create icons for each 

 BuildRepor  % sets up data capture tables for future reports

6.8.1.4 The Run sequence shall comply with the following rules:   
1.  Start-up sequence first allows the particles to diffuse within their respective compartments, until steady 

state is achieved. Movement of all interactors shall be executed, then the consequences of those moves 
calculated: collide, reflect, absorb, bind

2.  Then turn on the pumps.  Run until steady state is achieved (all ion channels closed, all ligand vel=0, 
attractors off, binders off) 

3. 3All state machines (actors) shall individually initialized have their initial states determined statistically. 
This includes some binding of ions and ligands at this time. 

4.  The collide, reflect, absorb, bind processes to be simulated within the time loop shall be rank ordered by 
speed, fastest first.  This is to ensure the preservation of reasonable causality.   Aliasing error must be 
compensated

5.  To the extent possible, all coupled EQs shall be implemented within a single matrix, such that its inversion 
solves for dALL/dt.
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6.8.2  DATA IN – DATA OUT  PERSPECTIVE  

FIGURE 19: Data In     FIGURE 20: Data Out
DATA_IN AND DATA_OUT DIAGRAMS FOR NEURAL IONICS

This is a black box approach to the model which soft ware coders like to see at the onset to get the span of the 

model.  Software builds the bridge between these two, complying with a set of rules, mostly physics and conditional 

logic.
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6.8.3 INFORMATION FLOW PERSPECTIVE:  

The Information flow above invites consideration the way different sources of information convolve with each other. 

As the essence of the model is to map and functionalize information flow, this brings us closed to that goal.  It will 

become the basis for the design of the data structures, which represent physical reality at the molecular level.  The 

functions which act upon these data structures are the laws and forces of nature, moving through time.

FIGURE 21: Information flow, setting aside the ions
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6.9 TESTING  

Each function shall be justified and verified.  Each function has a set of precedents, dependents and downstream 

recipients.  Each of these relationships shall be tested over physiologic ranges.

6.9.1 FUNCTION TESTS  

T1 - Each function shall be tested for required operations over defined arg ranges, out of context,  for expected 
deliverables, prior to insertion into the model code.

T2 - Arg ranges and dimensions shall be extensive enough to accommodate all likely uses within this modeling 
environment, including anticipated increases in model sizes and complexity as hardware computing power evolves.

T3 - Each function shall be tested, in context, for receipt of defined args, and error free creation of defined 
deliverables over the defined domain and range. 

T4 - Error legs shall be added to prevent SW crashes over a reasonable range of likely user parameter entries over 
algorithmic "out of range" conditions.

T5 – "Divide by zero" warnings shall be suppressed, as there are numerous zero-crossings implied in reversing 
currents.

T6 - Timers shall be set on all RUNs, so as to measure CPU resource consumption, and report same.  When multiple 
CPU's are employed, each shall be metered separately.

T7 - Threshold values shall be set on max length of RUN in seconds, after which control is returned to the keyboard, 
and an announcement to the screen indicating such.

T8 – Task allocation routines for multi-core machines (or  Linux clusters) shall be bench-marked against the solo 
laptop performance o f the same run.  Available optimization routines shall be applied as appropriate to identify and 
adjust the algorithms of dynamic thread allocating so as to maximize CPU resource efficiency and to realize 
parallelism with minimized “bottlenecks” (rate limiting processes) and optimized load leveling.

T9 – Metrics shall be installed into the software so as to recognize that resources are overwhelmed, and a warning 
issued to the screen that a reconfiguration of the RUN and/or hardware is necessary to avoid grid-lock, excessive 
hard drive calls, or unacceptably long run times.  Suggestions shall be provided in this warning to raise priorities, 
increase memory allocation, improve load leveling, alter parametric values - so as to improve performance. 

T10 - Any routine called more than once shall be written as a separate Octave ™ or  Matlab ™ function.

T11 - No function shall be allowed to cause another function to abort the program due to errors.

T12 - Units conventions shall be maintained by a single directory of assignment, definition, scope and limitations.

T13 -  Feedback loops shall be sufficiently stable so as to avoid freeze-ups, crashes, and infinities.

6.9.2 JUSTIFICATION  

Justification is the process of selecting particular representations and algorithms as entities and features of the 

model.  Justification does not apply to the the model as a whole, only to specific functions, steps, or parts. 
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Justification is integral to the design and build process, not to the usage of the model. Justification is accomplished 

by comparing the model element and process performances to the principles of physics or to living cell equivalents 

over the physiologic domains of interest.  

Justification is the process of comparing modeling assumptions against fully robust renditions, theory and empirical 

data on principles.  The purpose of justification is to insure that the simplifying assumptions do not produce 

distorted or inaccurate predictions on how the neurons they represent will behave.  Justification applies to individual 

components, functions, subroutines of the model, step by step through the development phase.  The purpose is to 

achieve heuristic performances of a required level, usually 99% confidence levels.  However, iterative functions 

must be free from cumulative error, least they rapidly drift into unrepresentative spaces.  

Each function, during the coding activities, shall be defined as a testable operator.  Arguments and their domains 

shall be checked against best known biological data, domains, and principles.  Outputs shall be verified to be 

reasonable and within biologic ranges. 

A cautionary note: Aspects of the model may be justified over defined physiologic domains, and at some later time 

the model may be employed outside of that domain, and thereby be unjustified.  Notes must be kept of the 

justification procedures conducive to extending those teats whenever the model is to be exercised outside of those 

domains.

6.9.2.1 Justification Requirements  

Each simplifying assumption shall be tested statistically.

Justification is integral to the design.  When each function is based on underlying physics then the remaining 

question is: To what real world situations does it apply?    One the one hand, a model can be justified by its close 

compliance to the bio-data, especially dynamic and parametrically swept. But a good model has utility beyond the 

currently available sparse wet lab data.  Care should be taken to orthogonalize the parameters, not as eigenvectors, 

but as real world independent variables.

 Justification is a process that takes place during the original coding of this application.   It is best performed on each 

function or functional set, whereby the expected result would be true to natural principles.  The most common 
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challenge is that an exacting model would require too many particles and too many states to be computationally 

tractable at this time.  Therefore reductions in quantity, culling out of insignificant states, increases in the time slice, 

and short cuts in collision detections are very much needed to achieve utilitarian performance.  

Justification is accomplished by employing additional models that run individual phenomena more rigorously. 

These are the test standards.  For example, if a real cubic micron of water has 600,000,000 molecules, how different 

would our model perform if the model had only 60,000  molecules?  Would any compensating factors be required to 

decrease its error?   If we set an acceptable level of error, say 1%, how low can we go in particle count?  There are 

well established analytical approaches to linear systems, but in these highly nonlinear systems it is easier just to run 

the simulations and compare the outcomes.

1. Parametric sweeps shall be conducted over the N-space of a given actor's I/O relationships, to determine the 

degree of graininess that results from reducing the quantity of interactors and/or actors.  Results shall be 

incorporated into the instruction text accompanying each actor.

2. Parametric sweeps shall be conducted over the N-space of a given actor's I/O relationships, to determine the 

degree of stability and non-linearity that results from reducing the quantity of interactors and/or actors.  Findings of 

instability shall be incorporated as warnings whenever design sets have a likelihood of resulting in unstable results.

A log shall be kept that notes the software performance measurements with each run, specifically organized so as to 

contribute to the mapping of ranges of emergent behaviors, especially if not predicted by linear simplifications of 

that set. 

The choice of modeling scheme first involves some test cases; each measuring performance, error and 

computational load.  From these initial studies, some of the obvious losers can be weeded out.  But for those that 

some performance has been achieved, there is a mater of veracity.  Modeling is not seeking an efficient curve fit but 

rather an analogous mechanism that will continue to behave in a similar way as its bio-counterpart over a full range 

of conditions.  To this end modeling is rapidly headed towards physics-based animation.  The more firmly a model is 

based upon the physical underpinnings, the easier it is to justify.   In fact, one of the best working definitions of 

model justification is a 1-to-1 correspondence with its physical counterpart components and processes.
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6.9.3 VERIFICATION REQUIREMENTS  

The purpose of verification is to rate the model's veracity to biological phenomena.  It consists of  comparing a 

simulation (Report from a Run) to the original bio-data.   In most cases the model is expected to exhibit considerable 

error in the first and early runs.  It is the nature of this error that is suggestive of what aspects of the model can be 

improved to better match biologic events. As nature is a variety generator, we should expect that some biologic 

processes will lie outside of the modeling toolbox, and may motivate us to write additional functions.  In any case, it 

is the iterative conversation between wet lab and simulations that enlighten both efforts.  The model poses questions 

about how and which bio-data is being collected, and the bio-data poses questions about how the simulation 

experiment is defined.  The researcher benefits from both, and participates in hypothesis generation.

Means shall be provided to fully support the verification process  for each simulation run.  In preparation, bio-data 

shall be mapped into precisely the same formats as the model generated data, then the two compared for variance.    

Functions shall be provided to automate the conversion from the common formats of biodata into model forms.

Functions shall be provided to perform the following statistical measures on the model performance: variance to 

biodata, confidence levels, chi-square tests on multivariate domains.

6.9.3.1 Validation Plan  

In particle models, the computational load can easily grow to something greater than any available computer can 

handle.  The current day battle in not so much one of achieving veracity as it is of cramming a good model into a 

smaller CPU than is really needed.   That is where the compromises begin.  And is where serious error can start to 

creep in.   The very largest of these compromises is the mere act of digitizing the data.  It is so common place most 

workers take the sampling process for granted.  But the very essence of mathematics, the very essence of physics is 

firmly and utterly dependent upon the continuity of space and the continuity of time.  Discrete objects may exist in 

those spaces and time, but their position velocity and state can be measured only because of the continuity of the 

number line, the time line, the gamut of possibilities.  Even random processes in physics require continuous time 

domain and continuous process variable domains e.g. Markov processes).  Their loss, necessary to transfer them into 

a digital computer, is grave.  
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Validation, foremost, must compare digital performance to known analog (real world) performance.   This step 

often reveals the “ghosts” of aliasing error18 (reflected data).  Cumulative error easily crashes modeling programs 

because they are intensively iterative.   Methods for eliminating (not merely reducing) sources of cumulative errors 

shall be pursued.  Next comes parametric sweeps to demonstrate reasonable function behavior in isolation, not yet 

installed in the model.  For each function reasonable input and argument sets must be created though many of these 

will later be generated by the intermediate steps of the algorithms.  It is critical to well understand the behavior and 

span of each function before its goes into service, because once in the complexities of a system, root cause analysis 

is very expensive in time and effort.  The edges, minimums, maximums and inflections all deserve enough attention 

to determine the smoothness of crossing these values.  Programming for real time diagnostic plots of signals as they 

winnow through the system, with slider bars to adjust the input values, are fast ways of spotting anomalies for 

further investigation.

To the extent possible, small groups of functions should be stitched together into cooperative families.  Tests can 

then be designed to exercise the group as though a single entity.  The challenge here is to tease it in ways to assure 

that the innermost components are operating correctly in this environment.  This challenge is not unlike the voltage 

2-steps to tease out the kinetic schemes of ion channels.   It is usually not possible to test all the permutations, but 

the likely use cases are a must, as are points either side of the steepest nonlinearities.  In such nonlinear realms as 

neurons live, the challenge is to find the perimeters of each modality (when often one does not know how many 

modalities there just might be, or what their characteristic behaviors look like.  

Once the subgroups have been assembled into a full model, the serious worker starts with the simplest possible 

experiments, and gradually works to greater complexities only when the confidence levels have been established 

across the simpler levels.  Confidence is quantifiable, so log as the domain of each argument is defined.   Standard 

procedures for failure analysis in hardware products apply to software as well.  The digital constraints of software 

make for quite precise assessments, if only the time can be availed to track down all the legs.

Sensitivity analysis attempts to find unstable regions and parametric regions of higher error.   

18 In the digitization of analog data, one of the several artifacts is that data may be reflected about a sampling point, 
in its effects upon EQs.  An image of the data therefore is placed in an illegitimate position, and may show up in 
visualization as a transparent reversal of its legitimate counterpart.
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Verification is the process of designing experiments to run on the model, then to measure their performance and 

predictability as compared with empirical data.  Early verification certifies the model as a whole on benchmark tests. 

This is done to ascertain whether the model meets requirements for veracity to nature, and therefore holds promise 

for producing predictions about nature.  Subsequent verification work is performed on a variety of experimental 

runs.  To the extent that the model is already qualified, then the results are measuring the veracity of the 

experimental design, a user input.  To the extent that the model has not yet been verified in this area and the 

experimental design is a faithful representation of natural phenomena, then the verification is a measure of the 

weakness or strength of the model itself in this area.  Results may suggest ways to extend the model to make its 

parametric space larger or more complete.

Verification takes place after the model is operable.  Performance is gauged against reliable bio-data scenarios of the 

equivalent cell type, its adjacent cells, its environmental factors and its physiological input signals.  Because it is 

impossible to test all of the permutations across the full parametric range of each, reasonable samples need to be 

taken, especially near strong nonlinearities.  An active search needs to be made to detect problem areas, or areas 

which are under-represented by the model.  It is not necessary to have a perfect model that does everything - only 

that the limits are determined and announced to users.  It is wise to constrain the model from “going there” (into 

poor performing territory) by setting limits with messages to explain to the user why certain parametric 

combinations have been shut off.  Documentation may note how to remedy certain short-comings.  For example, 

dendrites might require the addition of caveoli structures to perform as cell types that utilize them.

Verification refers to the model as a whole, not to individual elements or functions of the model. Verification is the 

process applied to a simulation run, measuring whether it is a useful representation of that which it was intended to 

mimic or predict.  Certain parameters of the model may be adjusted to improve the veracity of the model 

performance, but just as importantly, the error gap between model performance and live cell performance may be 

useful in suggesting where to look next for unknown phenomena of that cell.  That is, the model is always 

acknowledged to be incomplete, and yet is useful in assisting in the next wet lab experimental design.

A valid scientific hypothesis must be disprovable.  Each model RUN is a hypothesis.  It is shown to have a strong or 

weak veracity by its comparison to living tissue under similar conditions to the parametric representations that drive 

the model.  
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6.10 GENERAL REQUIREMENTS  

1. Any routine called more than once shall be written as a separate function, suitable for general reuse.

2. There are no backward compatibility requirements regarding Version01.  This grants freedom for a 
completely fresh design to best and current practices.  This is a desirable standard for pre-release 
development versions.  It allows complete correction and alignment to first principles without encumbrance 
by previous practices.

3. difference equations are the necessary representation of differential equations in digital machines.  They are 
not exact solutions, and are prone to extreme error near regions of greatest nonlinearities.  Procedures must 
be in place to detect such sensitive domains and to adjust the dt and dx to finer values accordingly.

4. iterative equations are the necessary representation of closed-form analytic equations in digital machines. 
Such iterations demand large computational resources and are grainy.  They have the advantage of often 
revealing emergent properties of the underlying physical principles.  They are prone to drift error that must 
be compensated for, but are less likely to lose behaviors due to the user's assumptions.  This is true to the 
extent that all such iterative processes refer back to first principles.

5. No function shall be allowed to cause another function to abort the program due to errors.  That is, each 
function shall have adequate error legs to handle un-executable requests gracefully.  A pause for user 
intervention is acceptable, with screen prompts as to what value is out of bounds and how to correct it.

6. Naming conventions shall be maintained by a single directory of assignment, definition, scope and 
limitations.  Long name conventions tend to have less occurrences of ambiguity, but become cumbersome 
in writing lengthy code of tens of thousands of lines.  Short names can be quite efficient if the conventions 
are strictly adhered to.

7. Units conventions shall be maintained by a single directory of assignment, definition, scope and limitations. 
Units are critical to model efficiency and sanity.  Model units appropriate to scale and for matrix inversion 
are necessary to avoid ill-formed matrices and spurious results.

8. All feedback loops shall be analyzed and tested for code stability, and any tendencies to abort or lock up 
shall be remedied inherently, or if that is not possible, then by reverting to keyboard control.  Flow control 
shall count all iterations and provide for an exit when the code is repeating longer than expected.

9. SW Process =   {  LIBRARY  >   DESIGN  >   BUILD  >   RUN  >   REPORT   }

6.11 USE OF SUPERCOMPUTERS  

Single processor PC's are limited to about 1000 particles and 100 actors before they bog down or freeze due to 

excessive disk calls.  Computers running out of RAM will slow down to only a few percent of their former speed 

rendering them unsuitable for large scale models.  With experimental designs using  the full rigor of shape, 

collisions, forces and kinetics (without heuristics), 500 particles and 50 actors may be the practical limit for single 

processors. 

With the advent of machines with 64 to 5000 CPUs, large scale experiments become practical with quantities of 

particles and actors that substantially cover the salient aspects of a neuron.  64 CPU's with 128 gb of RAM will run 
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about 50000 particles and 5000 actors.  1024 CPU's will run about 500000 particles and 50000 actors.   Performance 

can be improved several orders of magnitude with sparse matrix handling, incorporation of collision heuristics (not 

yet developed), and a rewrite of all functions for speed, rather than for readability and maintainability.

6.11.1 CLUSTER ARCHITECTURE  

The Intel T8100 duo-core CPU with 4 gigabyte of RAM runs at  0.18 gigaflops, according to the LinPack 

Benchmark test, which solves a 500x500 simultaneous EQ problem in 0.47 seconds.  At some quantity of actors and 

interactors, PC's performance will plummet due to disk calls and/or memory overflows. The question is one of 

scalability, from the 500x500 matrix of the benchmark test to ever higher quantities of elements in the model.  

A reasonably complete model of a neuron might have 1E6 particles, and 1E5 actor states, 10 full-size matrix 

inversions per dt, and 1000 dt per run.  That is 1E16 flops, or 10 petaflop.  

Accepting 16 hours as an acceptable run time (64800 seconds), which calculates to 154 gigaflops.  That implies 

154/0.179  = 862 CPU = 1734 cores.  Making the crude assumption that software and hardware efficiencies and 

heuristics can achieve an order of magnitude improvement, and that sparse matrices can realize another order of 

magnitude improvement, then 18 cores are indicated for a fully optimized run.

Efficiency opportunities include:  stripping out all unessential tasks;  Rewriting all function code avoiding algorithm 

serialization; setting up the operating system for real time processing; hardware for maximum bus transfers between 

CPUs and memory without wait states; adequate RAM to avoid rate-limiting hard drive calls; logical short-circuiting 

of unproductive areas of large matrix operations.

Prior to major purchases of hardware, benchmark tests should be run while varying the ratio of cores to RAM, then 

cost-optimize that ratio.   

While Matlab ™ over Windows may be running in the user's laptop, Octave ™ and C++ over Linux may be running 

in the user's supercomputer.  Care must be taken that the task manager maintain dual compatibility, else convert 

syntax between the two.  Simplified task management can be realized by replacing Matlab ™ code with C++, which 
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is portable to both platforms.  An advantage to leaving Matlab ™ on the master node is that it may receive the output 

files and easily generate sophisticated movies and plots.

6.11.2 CLUSTER OPTIMIZATION  

An additional node is necessary during the early phases of task allocation algorithm for the cluster optimization.  A 

processor for software metrics and hardware tests is needed to monitor the traffic and performance of each of the 

processing nodes.  An optimizing program will benchmark and incrementally adjust the parameters of the task 

allocation strategy until all resources are well balanced for purposes of neuronal simulations.  This is accomplished 

by adapting some average simulation run to generate benchmark metric values.  The benchmark is scaled to 

determine what the largest practical model might be on a given cluster, and that performance remains high as the 

scale of the model is reduced below the maximal one (no "valleys of death", etc.).

No matter how carefully crafted, the test node itself is an additional tax on cluster performance.  Such test nodes are 

also tested for their burden to the system, and this is subtracted from the performance ratings of the completed 

system.

6.12 TROUBLESHOOTING   

6.12.1.1.1 Software logic and syntax errors
Error legs are written into each .m function at test time, so as to avoid unresponsiveness that may result from 

common user input mismatches.  

Data Structures shall be designed in regular and standardized tables with restricted additions and alterations such 

that data corruption does not occur, and so as to minimize input error-caused aborts.

6.12.1.1.2 Biological misrepresentation errors
Warning legs are written into those .m function for which there is a likelihood that entered data will run normally but 

produce spurious results.  This is a duty of the biologist during the verification phase of testing.



7 DESIGN ELEMENTS

This chapter covers aspects of the design elements as needed for:  

1. Experiment Design

2. Build instantiation

3. Run dynamics

Design Elements are the products of efforts to define canonical forms, distilled from the great variety of biological 

expressions.   This is done not to advance the understanding of biology, but rather to accommodate the limitations of 

digital computers.  The goal is to define a general form that can be caused to express over a wide range of biological 

types by merely adjusting parametric values.   A group of biological entities under study is generalized by measuring 

each according to known distinguishable features, quantifying the variation in each feature.  The necessary set of 

variables to record these features spans a domain, the parametric space.   Often, the eigenvalues on the data can be 

useful in finding a minimal set of maximally uncoupled variables that spans the space.   Thus, a core form is 

required, and that core form is parametrized so as to facilitate the speedy creation of new types merely by providing 

a set of parametric values.   Parametric domains usually have defined limits such that type varieties insane to the 

intended environments are avoided.  

Elements are objects.  They are the nouns of the system.  Elements may be passive or active. The passive elements 

do not expressive behavior except movement induced by external forces.  Passive elements do not change state. 

Active elements have 2 or more states, and the transition from 1 state to another we call behavior.  

Elements do experience actions, which we call processes.  This chapter addresses element traits, and the following 

chapter addresses the processes that may act upon them.  

7.1 DESIGN PARAMETERS  

Design parameters must safeguard the essence of each element type, while expressing all allowable variations on 

that type.   Each satisfactory parametric set, expressing a useful variety of element, is recorded in the library for 
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future use. Each created/designed variety should be valued for consistency of behavior over the span of all supported 

modeled environments.  

Following a set of parametric values, element types are selected and their traits defined, their quantities and 

positions defined.  As a set they define one another's environment, and will influence each other's behaviors.   There 

is either explicit and/or implied a set of rules of engagement between these elements.  Often these are the “laws of 

physics”, or else compromised alterations of such laws.  The model system is conservative regarding the total 

quantity of elements. 

7.2 FOUR ELEMENTAL DIVISIONS  

At the very highest classification level of elements are the divisions:

A. Actors – there are five classes of Actor: Receptor, Shuttle, Channel, Vesicle, Pump

B. Interactors – there are three classes of Interactor:  Monatomic Ion, Polyatomic Ion, Ligand

C. Compartments – are built of primitive shapes: Box, Cone, Cylinder, Disk, Sphere, Torus

D. Implicit entities – charge, flux, current, voltage, capacitance, resistance

7.3 ACTORS   

Actors are defined as large proteins embedded in the lipid membrane, stationary in position, receptive to their 

surround, and capable by one means or another of influencing that surround.   The parameters of Actors concern 

their intrinsic traits, bundled as Type, and their extrinsic  positions, orientations, etc., bundled as Dist.  For 

convenience, a set of physiological limits may also be set for each actor type, bundled as Pathos.  These provide 

distinguishing information that determine function and behaviors of each actor.  Types are collections of physical, 

chemical and biological data, to be held in a library (a hierarchical cell structure), for ease of use.  

In the design phase, types are chosen from the library and applied to the model via distribution functions that 

statistically place them and orient them.  

In the build phase, each individual actor is instantiated by initializing its bindings and state.  This information is held 

at the beginning of Inst.   
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In the run phase, bindings and states become dynamic, recalculated each dt.  The run generates a time series, 

recorded in Inst.  

Within Type, the following traits are generalized:

Type  Information necessary to distinguish  the functionality of each type from all the others, including its 

kinetics,  bindings, chemistry, and mechanical actions.

Intrinsic operations, defined in matrix forms

Bind Kinetics    R: kinetics of bind and unbind at each allosteric site, (binding site x BT x State)

State Kinetics   Q: quantity of states = qS.  (qS x qS x dc) = state transition probabilities

Phenostate O: lookup table for current state to be read for its expression upon the outside world, e.g. 
channel opening or closing, pump transport events

Transport  O: lookup table from current phenostate to function calls necessary to effect a process , 
e.g. move particle from one actor pole to its other pole for release.  Pumps and channels effect transport.  
O = [ side1 thru side2];  Pumps use side1, side2; Channels use thru.  This data arrangement supports 
molecules that convert between pump and channel.

Conductivity G: profile of particles for channel selectivity: BT x Siemens.  G serves vesicles by 
enumerating  contents.  G serves receptors by enumerating catalytic rates.

Extracurricular operations, functions defined by parametric values

Affinity    aff: radius of attraction (r5xBT), binding radius (r4xBTx binding site)

Catalysis     erg:  pumps and vesicles may require binding ATP and then release it as ADP, 
transmutation

Targets       eff: receptors and vesicles may accumulate B and target actors within r9 messenger 
shuttles

BT = particle types;  dc = bind combinations;  r4 = collision radius;  r5 = affinity radius; r9 = shuttle reach;

Dist All information as necessary to position (and orient) each instance of a type within a particular membrane

PDF        density of occurrence wrt axial length of the neuron, per type, per zone

PDZ          zone demarcations along the PDF, allows the PDF to be sectioned by zone and then 
“stretched” zone by zone, across appropriate portion of the selected shape.  Each shape must designate  the same set 
of zone over its length for this operation to function properly.
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In the Design phase, Type and Dist are selected sufficient to comprise an experimental design.  They are 

parametrized and scaled per the needs of the experiment.  

In the Build phase,the Types are instantiated across all positions they are to occupy.  Positions, velocities, 

orientations, states, etc. are all instantiated stochastically.

Patho Allows user to set min and max values on local conditions, outside of which functions may be called to 

denature the actor.  The primary use of this feature is to define physiological ranges, outside of which the model is 

flagged as being invalid.  Each venture outside of physiological range requires non-linear treatment as to what 

qualitative shift is necessary to reflect change in character of the system.  The study of pathological scenarios is 

facilitated when the model provides modal shifts from “normal” to “abnormal” under quantified conditions.    Pathos 

data takes the form: A1.type#.Pathos = [min max] x [kelv pH ...];

7.3.1.1 Distance Conventions  

r1 = radius of the naked particle
r2 = minimum hydrated radius
r3 = maximum hydrated radius
r4 = collision radius, effective
r5 = affinity radius, artefactual
r6 = nearest NN
r7 = furthest NN
r8 = shuttle catalyst station radius
r9 = shuttle max reach to actors

7.3.1.2 Mass Conventions  

m1 = naked particle
m2 = minimum hydrated particle
m3 = maximum hydrated particle

7.3.1.3 Chemical Conversions  

Mass, charge and size of molecules usually change upon chemical reaction.  For modeling purposes, a particle 

exchange takes place.  One or two reactants (instantiated B types) are exchanged for one or two products (also 

instantiated B types), according to lookup tables that specify what the event triggers are, and what reaction type is 

being triggered.   Each chemical conversion is tracked and reported as experiment output data.  Most chemical 

reactions are reversible.  Forward and backward rate coefficients are provided where ever possible.  The execution 

of the forward reaction also calls into play the probability of the backward reaction.  Thus, for example, ATPase 
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pumps can be run backward when the gradients are not favorable to forward transport, in which case they produce 

ATP from ADP.

Build All information is read and instantiated into a complete compliment of compartments, particles and actors. 

Specific locations, orientations and initial states are generated to realize the entire neuron.

Compartment Segs are assigned to zones

Compartments are generated by Segs, Rings, Nodes.  

Each node has position, orientation, nearest neighbors

Membrane/Node Assignment, pole compartment assignments

Each Actor binding site is given Pos and Affinity, state, id# of particles bound 

Particles are initialized as boli in compartments, as bound to bind sites in actors

Build converts a prototypical set of Type traits, the values of which may be instantiated into actors.

Inst { Actorclass Actortype Node# orientation state bindcombo }          % qualities of the actor

%  orientation assigns each pole of the actor to a specific compartment#.  It also holds specific xyz locations of the 
poles

%  bindcombo serves as both the bind state of the actor and the contents of the messenger package.  

Inst2 { r5particle#s1 r5particle#s2 r4particle#s1 r4particle#s2 voltage }  % relationships of the actor

% voltage is calculated from r5 qB;

Run        beginning with the initial conditions, initial particle locations, and initial actor states, a set of functions is 

executed through a single dt.  The outcome of each dt is recorded.  Dynamic functions are executed iteratively, as 

difference equations.  Each individual element carries type, state, bind, and force information with it, either directly 

or as pointers.  All dynamic EQs are evaluated each dt.  However, multiscaling is supported, whereby the actor EQs 

may be calculated on a different dt than that of the particle EQs.  

Multiscaling is of use in the long stretches between particle-actor collisions.   It is possible to iterate the diffusion 

EQs on a dt of some ratio to the dt of the actor state changes.  In that case we speak of Bdt and Adt values. 

Whenever there is a binding or transport event, requiring joint action of both A and B, the 2 dt's must be in synch. 

Which ever of these 2 is the more informationally intensive will receive the finer resolution (smaller dt).  
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Because bindings are of the essence of the system, it may be desirable to have both particles and actors on the same 

clock (same dt).   Rather than set Adt multiples apart from Bdt, it may prove better to adjust particle quantities such 

that the amount of information processing is balanced between particles and actors each dt. 

Bindings R: Each actor may at any time bind and unbind at its allosteric sites, according to kinetics

State       Q: New states are instantiated each dt, per state transition matrices + current bindings

Phenostate O: The current state is read into a phenostate which directs its impact upon the 
environment

Transport  O: Certain particles are available to be moved and/or released into a compartment

Accum       G: profile of particles accumulated in bulk, for  receptors/vesicles (This may be handled 
in R) 

Conductivity G: profile of particles for channel selectivity: BT x Siemens

Affinities    aff: Identifies particles by type within r5 for certain chemical affinities to its binding sites

Shuttle         eff: (optional) receptors may target certain actors within r9 for 2-d diffusion of 
messengers

Energy     erg:  (optional) pumps may require binding an ATP and then release it as ADP, 
transmutation

Follows are the five Actor Classes. 

7.3.2 RECEPTORS  

Receptors are point processes that transduce the concentration of an extracellular messenger concentration into the 

release of a quantity of intracellular messenger molecules.  They accomplish this by switching on and off a catalytic 

function which rapidly produces messenger molecules.  Receptors are metabotropic, and stand apart from channels. 

They utilize second messenger leverage mechanisms to modulate more than one channel (see Shuttles below).  Bio-

receptors that service only one channel (the ionotropic kind) are treated within this model as channels with allosteric 

binding sites.  That is, there is no separate element for the receptor on that channel.  

Metabotropic receptors release messengers to a 2-dimensional diffusion along the inner surface of the membrane. 

Of these, relatively few hit downstream targets that are channels.  For modeling purposes, only those that will hit 

their targets are modeled.   For purposes of the model, the entity “receptor” refers only to metabotropic receptors, 
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and  also includes the second messenger system, which consist of rays pointing to target actors in the vicinity.  These 

rays serve as tracks (ways) for the second messengers to travel.  Their communication velocities vary stochastically. 

Their success rates are also stochastic, reduced by distance.  Each receptor is assigned a shuttle mechanism that 

releases its second messenger molecules in a fan-out so as to target a pre-identified group of nearby ion channels. 

The shuttle mechanism restricts messenger diffusion as 1-dimensional travel toward a channel bind site, but does 

support variations in speed and reliability.  

The NIP significant features of receptors include the binding/unbinding stochastics of ligands, the internal 

stochastics of state transformations that reconfigure the molecule; the consequences of such reconfiguration  upon 

the probabilities of second messenger release; and finally the stochastics of release.  The actual quantity of release is 

subject to some variability, and maybe defined as modulatable.  

For modeling purposes, there are two options as to how the messenger particles are produced and released.  For fine-

grained time (dt < 1E-4 s), the receptor can be modeled as a catalyst.  For courser grained time, the receptor can be 

modeled as a packet release mechanism, similar to the vesicle.  

Recep.Type  is defined as:

1. Represented as 1 subunit.   Biological receptors comprised of many subunits may have their kinetics 
merged.

2. R: Bind kinetic scheme,  (d x BT x s) matrix, where d = quantity of binding sites, for particles <r5 distance

3. Q: Conformational kinetic scheme,   (s x s x dc) matrix, where s = quantity of internal states; dc = bind 
combos

4. O: Phenostate map: indicates which state number causes an external impact, e.g. release of messengers

5. G: Messenger release profile (q x t)

6. aff: One affinity profile for the modulator (un)binding sites and particles within r6

7. eff: Shuttle type (r9, BT, speed, variance, back-speed)

Receptors are present in the neuron membranes in distinctly inhomogeneous patterns.  These patterns are significant 

to the NIP function.   For every release of messengers, there must be an equally speedy mechanisms for removing 

them message duty.   Indeed the removal mechanism is move challenging than the release mechanism.  This is 

because finding them and returning them to some recycling process is more expensive than merely releasing a 
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packet.   The simplest way modeling the withdrawal of messenger particles is to reverse the shuttle mechanism.   To 

adjust it to realistic timings, this back speed is adjustable independent of the forward speed.   This back-speed 

represents the rate at which the living cell is capable of scavenging released messenger molecules, and going 

through the entire recycling chemistry such that particles are delivered to the receptor for it's next release.  A back-

speed slower than the shuttle messenger delivery speed to target actors implies a depletion/fatigue phenomena will 

occur with high volume messaging.

Recep.Path  lists the limits to conditions of the actor: [ min and max] for  {kelv pH  …  }   as the user may require

Recep.Dist is defined as follows:

1. PDF = distribution by type of receptor as density along axial length of neuron

2. PDZ = zone delineations of PDF, along length of neuron  (similar for all actor types)

Receptor locations are instantiated by placement PDFs characteristic of the neuron type for that actor type.

Recep.Inst is defined as:

1. Type_call info:  actortype#=1, receptor type#, shuttle type#,

2. Type_return info:   Rkinetics, Qkinetics, Otable, Gprofile, aff_params, erg_params, eff_params,

3. Build info:  node#, pole positions, compartment#s,  initial state, initial bind, initial force

4. Run info:  B(r5,comp1), B(r5,comp2), B(r4,comp1), B(r4,comp2), Bindcombo, state#, phenostate#, 
xportEQ

5. Report info: list of variables to keep as a time series

6. Report return info:  icon type, icon geometry, icon colors, icon size, quivers_onoff

Recep.Patho =  [min max] x  physiological ranges over: temperature, pH, voltage, etc. 

Crossing a pathological threshold triggers a function.  Pathos supplies a pointer to which process is to be triggered. 

Pathos triggered functions can operate on elements to:  inactivate, bind, sequester, convert, or otherwise tag the 

element as having been exposed to pathological conditions.
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7.3.2.1 Receptors, metabotropic  

Metabotropic Receptors release secondary messengers (usually G-proteins), which diffuse 2-Dimensionally along 

the membrane surface to nearby enzymes (cyclases) which in turn produce phosphate modulators to those local ion 

channels responsive to the messenger produced.  These shuttles serve as transport links between metabotropic 

receptors and channels, in a one-to-many fashion.  They are slower than ionotropic receptor-channel complexes, but 

provide quantitative leverage.  Receptors are  the primary input mechanism of the neuron.  Receptors behave 

according to transition probability kinetics.  

Icons chosen for Receptors have a 3-point circumference, but may vary in color and other parameters, so as to 

visually distinguish types.  Icons for receptors are 3-D shapes  They have input and output poles, normals for 

orienting them to the membrane. The axial poles (round) are loci for ion transport.   The eccentric poles (asterisks) 

are the binding sites for  modulating ligands.   Z=0 is the membrane plane.  X,Y=0 is the axis of the actor.   A 

function is provided, named IconGen.m, that easily generates any of thousands of 3-dimensional icons from merely 

3 argument values.

7.3.2.2 Receptors, ionotropic  

The binding sites for ligands on ion channels are referred to by others as Ionotropic Receptors.  These are not treated 

as separate entities but rather as part of the channel.   As allosteric binding sites they induce immediate modulation 

of the Q matrix element values of that ion channel.

FIGURE 22: ICON FOR A RECEPTOR, 3-D
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7.3.2.3 Shuttles  (G-Protein Messenger Systems)  

The second messenger systems of neurons are understood to perform a fan-out of the signal such that the stimulation 

of one receptor can modulate up to about 30000 channels.  It is also allowable to modulate pumps this way.  A single 

fan out provides leverage of up to 1:400, and a duplex fanout would then support up to 1:(400)^2.    Which actors 

are modulated depends upon the type of messenger particle, and the binding site affinities on each actor.  It also 

depends upon the distance between the two, with a decreasing chance of binding a modulator as the distance 

increases.  The particular effects of distance are tempered by the locations of reuptake pumps for the modulators as 

they may impact the concentration of modulator particles at the various actor binding sites.

FIGURE 23: SHUTTLE SECONDARY MESSENGER FAN-OUT

A fan out from receptor to 9 channels.

Receptor     Second messengers     Catalysts     Third messengers   Channels             

FIGURE 24: SHUTTLE DUPLEX FAN-OUT TO CHANNELS
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Duplex links require additional time for each link, as each actor has stochastic conformations to proceed through.

Shuttles are simplified mechanisms representing the second messenger systems, particularly the G-proteins..  There 

are a variety of possible organizational arrangements of chemical components that constitute a message fan out.  The 

processes by which they generate and more messengers are complex.  There is often catalysis and charge transit 

mechanisms.  These mechanisms vary considerably in the number of steps, the quantities of elements, the 

dimensionality of the flows, the overall leverage ratio, the types of targets that they impact, and the time spread of 

messenger arrivals.  They may have additional impacts upon cytological sites other than channels and pumps.  

However, for purposes of this model, shuttles are simplified to a set of links from one receptor to actors of a 

specified type within (r5) distance.  The selected actor type must have allosteric binding sites for the messenger 

being sent down the shuttle to have any effect.  The shuttle simply serves to deliver the messenger particles to 

positions within the collision radius of the actor.  From that point it is up to the actor to engage the messenger 

kinetically to determine binding and dissociation events.

Each shuttle type represents 1 of about  20 G-protein schemes.  Because each shuttle mechanism is the broadcast 

mechanism of a particular receptor, shuttles are defined as a subset of the receptor type, not as independent entities.

Once a receptor releases a packet of  messenger particles, those particles will follow the G-protein scheme of that 

receptor type.  This will effect a fan-out information leveraging mechanism to targets within certain radius (r7) with 

certain modulator sites (allosteric BT = shuttle messenger type).  The messenger arrival times may be set with 

variance so as to best represent the bio-data.  Arrival of messenger particles at the actor allosteric sites leads to 

stochastic binding, which will modulate the kinetics.  Fan out leverage from receptor to target channels may be from 

1:1 to about 1:30000.  Which channel types are targeted is determined by the BT profiles of the actor bind sites, not 

by any shuttle parameters.  It is permissible for shuttle messengers to modulate channels, pumps, vesicles or even 

other receptor types, provided they have the appropriate modulator binding sites to receive the messenger particles.

Shuttle.Type is defined by:

1. r9 distance - sets the probability of communicating to an actor type up to r9 distance away

2. Speed PDF distribution - sets the probability of delivering a message at a certain rate of speed, includes 0 
(failed delivery)
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3. Modulation kinetics - modulation of the intermediate G-protein cyclases result in altered catalytic 
production rate of the tertiary messengers.  But as we are only modeling those few that hit target channels, 
adding more will not impact anything.  Such modulation must be made to increase the speed of messenger 
delivery and/or the quantity of target actors to have any effect.   In the case of a batch release, the quantity 
of particles per release must be adjusted in such a way the quantity of actors targeted is increased, so that 
the end result best mimics the biological phenomenon.

4. Reset action and timing: defines begin time and end time, so as to reset receptor for next duty cycle.  If 
some receptor types can be reset and be retriggered while the prior set of messengers is still bound to 
actors, then surplus messenger particles must be available for the replenishment step.  Replenishment will 
call the nearest messengers of the necessary type via affinity force.

Shuttle.Dist is defined by:

1. ReceptAssignment =  position is equal to the Recept.Dist to which the shuttle is assigned.

2. Links are defined as a list of begin-end node pairs.

Note that every particle unbound is set free  into the aqueous environment.  In order to maintain normal 

concentrations,  to remove messenger particles, and to keep them from sending rogue messages, they must be 

promptly sequestered.  This is accomplished by receptor affinity force or by pumps, which collect the spent 

messengers and return them to the receptors for reuse.  This conservation of mass is inappropriate when representing 

messengers that are chemically synthesized as needed in the bio-cells.   To avoid carrying the entire 

synthetic/degradation chemical system that is not mainline NIP, it might be appropriate to sequester via pumps all 

messengers not in use.  There are critical issues of timing, in that echo effects will occur if messengers are not 

promptly removed from the target areas.

7.3.2.4 Receptor-Shuttle states  

1. Idle

2. affinity on for modulator from modulator profile

3. binding modulator 

4. altering kinetics

5. releasing second messengers

6. unbinding modulators

7. re-affixing second messengers
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7.3.2.5 Ideal Receptor  

Follows is a cartoon of an ideal receptor, to serve as a point of departure for development of R,Q,O,G matrices and 

the aff,erg,eff parameter sets.

The states are internal conformations of the molecule, and are not shown explicitly in the drawings above.  State 1 is 

the recharge time to get all messengers ready for release.  In the case of a catalytic release, then only the precursors 

must be in the immediate vicinity.  The lower (green) binding particle represents a complete set of second messenger 

particles.  The types and quantities are defined in Actor1.Recep#.G.  When there are groups of particles to be 

gathered, as in receptors and vesicles, there must be 3 stages of binding:  empty, partially full, full.   The second 

frame in the figure above repeats with each addition until the quantity qualifies as complete.  For modeling purposes 

this may be “speeded up” by increasing the affinity parameters in aff.   The objective is to get the recharge time to a 

realistic interval.  When the charge is completed, the receptor shifts to state 2, the “ready” state.  At any time during 

this state, the receipt of a first messenger particle (often an extracellular neurotransmitter) may bind according to R 

kinetics and serve as a trigger.  Such a binding causes a change to state 3, the “release” state.  This causes all of the 

held second messenger particles to be unbound, by shifting the R kinetics from high binding probability to very low 

binding probability.  The final exiting of the second messengers leaves the receptor unbound  at site1, which causes 

a shift to state 4.  State 4 releases the original trigger particle at bind site 2.  The eventual unbinding of the stimulus 

particle causes a shift to state 1.

FIGURE 25: IDEAL RECEPTOR, STATES AND BINDINGS
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7.3.3 ION CHANNELS  

Channels are proteins "floating" in the membrane, that enable the passage of one or more ion types from one 

compartment to another.  Channels are the most dynamic class due to their rapid kinetics varying their conductance, 

and their frequent and multiple  modulation.  Modulation is due to chemical modulators (Ligands, second 

messengers, or Ions) and/or membrane voltage, pH, concentrations or mechanical pressure.  The conductance of a 

channel (times the driving forces) dictates the amount of ions that pass from one compartment to another.   The 

interior energy barriers of ion channels determine the direction, rectification, types and quantities of ion species 

allowed to pass.  While ions are the fundamental mover in neuron communication, channels are the controllers of 

that movement.  Channels behave according to Kolmogorov kinematics.   There are at least 50 classifications of 

channel per species, and these are multiplied across the species varieties of the plant and animal kingdoms.

 

Icon for the channel has a 4-point circumference, but may vary in color and other parameters. so as to visually 

distinguish types.

Icons for actors are 3-D shapes that can be unique to each actor type.  A provided function easily generates these 

with just 3 numbers.  They have input and output poles, normals for orienting them to the membrane.

A library of channel types is maintained.  Each is characterized by an ion conductivity profile, an instantaneous state 

transition matrix, and a P vector for state to gate mapping.  The Q- matrix is one of 2 types, variable or discrete.  A 

FIGURE 26: ICON FOR A CHANNEL, 3-D



392

discrete Q is a set of several Q matrices consisting of fixed element values, chosen according to modulator bindings, 

if any.  A continuous Q-matrix is a single matrix consisting of elements that are functions of a modulator value, such 

as voltage.  The discrete corresponds to metabotropic and the continuous to ionotropic channels.  For discrete Q's 

there is an R function which translates the modulator state into a choice of Q matrices each dt.  For continuous Q's 

the variables within it are re-evaluated each  dt.  Ion channels open and close stochastically as a function of state 

transitions within the Q-matrix.

o = O(Q(R(d),s), where
R = binding site binding probabilities
d = currently bound particles
s = current molecular conformation
Q = infinitesimal transition matrix (as determined by R)
O = functional expression of any given conformer
o = open/close status of the ion channel
So = stochastically determined initial state of each channel

Practically, ion channels usually consist of 1 to 6 subunits which are protein molecules changing conformation 

somewhat independently.  It requires less computation to treat each subunit separately and then take the product of 

their conformers, than it does to process a single large joint matrix representing the whole channel.

Channel opening and closing rates are measured as alpha and beta, so called “rate constants” from the traditions of 

chemistry.  Unfortunately they are not at all constant, and their consultancies are of the essence.  So let us call them 

rate functions. 

                                                     ( ) ( ) 1/
0 1111 htehhhth τ−

∞∞ −+=                   

                       ( ) RTzFV
hh eV /0 δαα =                                                ( ) ( ) RTzFV

hh eV /10 δββ −−=                           

Where 
h = the aggregate performance of one type of channel subunit, as fraction open.
t = time (sec)
tau = time constant  = 1/(alpha + beta);
alpha = forward rate (opening time), as a function of voltage across the subunit
beta = backward rate (closing time), as a function of voltage across the subunit
delta = center of action as fraction of the thickness of the membrane
z = charge count on the mechanism of action
F = Faraday's constant
R = gas constant
T = degrees Kelvin
V = voltage

Andrei Kolmogorov's contribution to channelology supports the adjustment of a Q matrix from frequencies of 

occurrence to the probabilities of occurrence during dt:                                    
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where 
Q = instantaneous transition probabilities 
p = instantiated state of the molecule

The solution for which is: 

                                                                     Qdtepdtp *)0()( =
Q matrix is a table of state transition probabilities.   These probabilities may be constant or variable.  For example, 

ion channel probabilities are modulatable, by voltage and concentrations.   EX below.    

Q =                                         %  Kv Channel

c0 c1 c2 c3 c4 o2 o3 o4 b4 b5

1 2 3 4 5 6 7 8 9 10

c0 1 0 .007*e^
(v/91)

0 0 0 0 0 0 0 0

c1 2 .002*e^
-(v/65)

0 .112*e^
(v/81)

0 0 0 0 0 0 0

c2 3 0 5.0*e^
-(v/112)

0 .212*e^
(v/91)

0 3.28 0 0 0 0

c3 4 0 0 1.65*e^
-(v/38)

0 .246*e^
(v/73)

0 1.06 0 0 0

c4 5 0 0 0 5.61*e^
-(v/70)

0 0 0 8.37 0 0

o2 6 0 0 5.06 0 0 0 .027*e^
(v/93)

0 0 0

o3 7 0 0 0 4.38 0 0.561*e^
(v/39)

0 .012*e^
(v/72)

.07*e^
(v/88)

0

o4 8 0 0 0 0 2.44 0 0.019*e^
-(v/68)

0 0 .00003*e^
(v/130)

b4 9 0 0 0 0 0 0 0.6 0 0 0

b5 10 0 0 0 0 0 0 0 0.08 0 0

c = closed state
o = open state
b = refractory state

Qdtp
dt

dtdp *)()( =
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This is a voltage gated potassium channel kinetic scheme adapted from the literature.[173][ 174]   The only 

modulator acknowledged  is voltage.  No subunits are distinguished, so this is the merge of all.  Note that the zeros 

along  the diagonal will be replaced by Kolmogorov values as a function of dt.    In the bio-channel which this 

scheme represents, there may be more modulators, and therefore requiring more states and more complex formulas 

to determine the transition probability values.  When broken down, it is likely that there will be fewer states per 

subunit.  Identical subunit types will have identical kinetic schemes, but once instantiated will have different state 

sequences over time, and are likely to vary somewhat in bindings and unbindings.

The O vector interprets internal state for actual channel openings and closings.  For the Kv channel, O is:

O = [ 0 0 0 0 0 1 1 1 0 0];         % indicates that states 6,7,8 are open states, the rest closed.

The current state P determines which row in Q will be calculated to the current voltage.  Only those rows with 

modulator variables need to be calculated each dt.  If the current state is known precisely, then only that one row will 

be evaluated.  Where the Q transition frequencies are faster than the dt, then the current state is not precisely known, 

but only probably known.  In that case all non-zero probability rows must be evaluated as a function of the 

modulator values.

Once evaluated, the row becomes a PDF for transition to the next state.  When multiple rows are evaluated they are 

weighted summed for a composite probability.  The next state is determined by converting the PDF to a CDF (via 

integration), then generating a random number to determine where along the CDF the instantiation lies, and thus 

which will be the next state (s(t+1)).  

There are at least 50 types of of ion channels, all or most of which may be present within a single species.  Each 

species may have variants on these types, and one type may have variable characteristics, such as various clipped 

tail lengths that may alter its kinetics as a gradient.  For modeling purposes, each such variant is treated as a separate 

type. 

Channel.Type is defined as:

1. Consists of 4 to 6 subunits.  Subunits may be of the same or different types.
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2. One internal kinetic scheme per subunit,  an (s1 x s1 x c2) matrix, where c2 = quantity of binding 
combinations

3. One external kinetic scheme per subunit, an (s2 x BT x s1 x c2) matrix, where s2 = quantity of binding sites

4. One affinity profile per subunit for each of the binding sites  [r5 F r4] x BT

5. O:  Phenostate map s1 x gate, identifies which states result in an open pore trough the membrane

6. The subunits operate logically in series

7. G:  channel conduction profile

Channel.Dist is defined as:

1. PDF = distribution by type of receptor as density along axial length of neuron

2. PDZ = zone delineations of PDF, along length of neuron

Each type of ion channel is instantiated at locations according to a probability distribution function which profiles 

channel density along the length of the neuron.  Channels are present in the neuron membranes in distinctly non-

homogeneous patterns.  These patterns are significant the to NIP function. 

Channel.Inst  is defined as:

1. Positions + Orientations

2. Pole to Compartment map

Channel.Pathos =  [min max] x  physiological ranges over: temperature, pH, voltage, etc..  Crossing pathological 

threshold triggers functions via pointers.  These functions can operate on element to:  inactivate, bind, sequester, 

convert, or otherwise tag the element as having been exposed to pathological conditions.

7.3.3.1.1Conductivity Profiles
Channel conductivity is highly selective,  determined by the complex interactions of the ion with the fixed charges 

of the channel protein along the rather tortuous pore.  Channel conductivity may require an amount of excess free 

energy to keep the side chains protonated.[175]   Selectivity is determined by ion size and the energy of hydration. 

For example, the hydration free energy of Na+ is about 20 kcal/mole more favorable than that of K+.    For K+ to be 

selected in preference to Na+, a channel just needs not over-solvate Na+ ions.[176]    The mouth of the ion channel 
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has its own nano-environment electrodynamics, and voltage varies widely with the presence of chemical buffers.

[177]

Conductivity may be altered  by certain ion concentrations at the pore, independent of internal kinetics.[178]    Once 

an ion is in a pore, the shape of the pore, and the charges along the way determine an energy barrier profile along the 

axis.  Usually, the maximum repulsive force along the way determines the conductivity of each ion species.

A physically open channel may be functionally closed, either by hydrophobicity, by solvation of the ion making it 

too large to pass, or by charge gauntlets that produce an energy barrier too high for the ion to pass the full length of 

the pore.[179]    Thus conductivity ratios are unique to each pore's chemistry.    Molecular Dynamics studies are 

necessary to find the gating mechanisms, how they work, and what the energetics are.  As of this writing , the field 

of Molecular Dynamics has not tackled the aqueous environment with its ions and solutes impinging on the 

molecule.  However, the Poisson Boltmann EQ has been employed in models that have done so.[180]   From an 

informational point of view, it is not necessary to go into such detail.  Selectivity mechanisms are complex, but they 

result in conductivity values, which are easily handled by this model as such.  Any function that calculates the 

correct conductivity value under the physiological conditions of the moment will do.

For purposes of this model, channels are point process Markov chains and the pore dynamics are not represented. 

The conductivity values will be taken from the literature and applied as Ohm's law plus a flux due to the 

concentration gradient.  

7.3.3.2 Subunits of Ion Channels  

An ion channel may consist of 1 to 6 main, columnar subunits which penetrate the membrane, and a variable number 

of ancillary subunits that typically do not penetrate the membrane.    Each subunits may or may not be active in 

determining whether a channel is open or closed.  Each subunit may or may not have allosteric binding sites. 

Subunits are often autonomous enough in modulation and action to warrant their own Q matrices, but data is rare 

from the wet lab work in this regard.    The model provides the option to treat a channel as a single Q matrix, or as a 

set of smaller Q matrices that operate logically in series.  That is, all subunits must be open for the channel to be 

open.  Any one subunit can block the pore.
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It is desirable for each subunit to be explicitly instantiated and calculated separately for its phenostate function.  This 

is especially appropriate for channels, but may be applied to any actor class, providing the wet lab work as discerned 

specific subunits by function, modulation, dynamics, and impact.  For example, the mathematical relationships 

between channel subunits are as follows.

Each subunit has a state s, and each state maps to a phenostate h.
Output of 4-subunit channel: Y = h1*h2*h3*h4.
Conductance of the channel:  G = Gmax(ions)*Y;
Current through the channel:  I = (V-Eions)*G;
Flux through the channel:       J = I/z.ions;

Most of the mathematical description above for an actor applies to a subunit. The difference is that the subunit state 

h may not map to a phenostate.  Instead, the subunit states are logically combined into a whole channel state, usually 

in series, and then the channel is mapped to a phenostate.

7.3.3.3 Channel states  

As channels are composed of subunits, some experiments may need to portray the individual subunits stochastics, 

rather than a combined matrix.  Instantiating the subunits separately produces accurate gating patterns and allows the 

modulators bound on each unit to alter only the kinetics of that subunit without altering the kinetics of any of the 

other subunits.

Data that must be collected to support subunit kinetics and a logical merge

1. Subunit types per actor type

2. Modulator Binding Profile per subunit per pole

3. Q matrices for each subunit

4. Current Modulators Bound per subunit per pol

5. Modulation may be per subunit, and then requires a Q for each subunit type

6. Current State Numbers, one per subunit

7. Gating Function =  logic between subunits > expression

8. Conductivity profile, one per actor

These are integrated over the time envelope of channel openings.  Although the subunits appear physically as 

parallel cylinders, their operations are logically in series.
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An example of a kinetic scheme with 24 states:

Kinetic schemes are the source of molecular behavior.  Each of the rate coefficients (k- numbers above) translates to 

a probability of state transition 

FIGURE 27: Kinetic Scheme with 24 states
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With minor design changes any input code could be mapped to any output code. The temporal quality of 

performance degrades with cumulative error because of the stochastic nature of transitions, and thus only the shorter 

sequences are expected to be practical.   Th state flow above does not add nor subtract from the kinetic schemes, but 

is merely a mapping of the same information for visualization of the duty cycle and rest state.  This form makes it 

easier to add alternative paths in a way that they are seen as separate from the main path.

FIGURE 28: CIRCULARIZED STATE FLOW OF CHANNEL WITH 14 STATES
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A kinetic scheme becomes “readable” when the duty cycle is clearly visible, and the lesser traversed paths are added 

distinctive from the main path.  The probability of  the main path determines the reliability of the actor.  State =1 is 

presumed to be the rest state.   In this matrix, and failure to match the input pattern results in a failure back to rest 

state.  The output pattern has 2 openings with an interim closing at state 10.  In the event of a 19,20  back path, the 

first opening (states 7,8,9) gets repeated.  States 21, 23,24 are poison states because there is no way out, to resume 

the duty cycle.  These must be exceedingly rare events because they kill the actor.

Q =                                                       %  Bare Q matrix for Main 14 States

Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 v 0 0 0 0 0 0 0 0 0 0 0 1-v
2 0 0 1-v 0 0 0 0 0 0 0 0 0 0 v
3 0 0 0 1-v 0 0 0 0 0 0 0 0 0 v
4 0 0 0 0 1-v 0 0 0 0 0 0 0 0 v
5 0 0 0 0 0 v 0 0 0 0 0 0 0 1-v

FIGURE 29:  Auxiliary Paths added to duty cycle
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6 0 0 0 0 0 0 1 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 1 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 1 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1
14 v 0 0 0 0 0 0 0 0 0 0 0 0 1-v

The  zero values will become occupied by low level noise in a molecular embodiment.  V values are for design 

purposes, considered to be 1 if a pulse is present at that time, 0 if no pulse is present.  Input values 0<v<1 act as 

noise, sometimes read as ones, sometimes read as zeros. 

The O matrix is a phenostate lookup table (For channels, disclosing which states are open).   In this case it would be:

O =                   %   O matrix For Channel with 14 States

O recep pore value
1 read pulse closed 0
2 read pulse closed 0
3 read pulse closed 0
4 read pulse closed 0
5 read pulse closed 0
6 read pulse open 0
7 block open 1
8 block closed 0
9 block closed 0
10 block closed 0
11 block open 1
12 block open 1
13 block open 1
14 block rest 0

The blocked state of the receptor(s) is the time of the refractory period during which the ion channel is not 

responsive to input stimuli.    It is blocked in the sense that changes in the voltage do not alter the course through the 

state changes back towards the rest state.  Once back to the rest state then responsivity to voltage changes returns.
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7.3.3.4 Ideal Channel  

Follows is a cartoon of a simple ion channel, its bindings and requisite states.  This is regarded as a point of 

departure for development of more complex channel kinetics.  Because of its simplicity, this channel type is weak in 

information processing potential.  A robust general channel would be one with a mode for each of the mathematical 

operators, a modulator bind combination that would engage that mode;  then a characteristic output pattern that 

revealed which mode it was in, as well as an amplitude  “answer” to the inputted “problem”.  Because living 

systems receive inputs as continuous streaming, the channel evidently requires a refractory period to slice the input 

stream into processable time segments.  This discretizing of an analog stream allows the actor to proceed through its 

state path, including possible modal shifts, before eliciting its response of pore openings.  The response openings are 

characterized by lag, duration, and pattern.

State =1 is presumed to be the rest state, even if it is not the state of greatest residency time.  The rest state is usually 

characterized as the state possessing lowest Gibbs energy.   A low energy barrier translates to a high probability of 

occurrence of this state.  However, thermal motion, and the effects of certain binding patterns, can alter the Gibbs 

energy of each conformation, setting the molecule down a state path of variable predisposition.  Each binding 

combination requires its own transition probability table, and there is the potential, if not the necessity, for each 

combination to result in a unique modality for the molecule.  Generally, the state path is being forced up the energy 

scale along the “input” portion of the path.  During this portion, modifying bindings matter.  This is particularly true 

under voltage pressure.  Then, having reached some peak energy content about mid way around the duty cycle, from 

then on the potential energy must be released along the main state path , running slightly down hill, until it arrives 

back at the rest state.  All of this comprises a duty cycle.  There may be more than one duty cycle within any actor 

type, each one referred to as a different mode.   



403

 Modulation may alter the input characteristics or output characteristics.   Altering the input will change what may 

bind to the various binding sites.  Altering the output will change the timing and pattern of the channel opening.

In the above cartoon, it is acknowledged that binding order may be reversed to achieve the same results.  Different 

channel types will vary in sensitivity to binding order.  Some channel types may bind 2 or more types of particle at a 

single binding site.  Channels also exhibit different responses to different ligands binding to the site binding site. 

When an Mg++ binds at what normally is a Ca++ binding site, there is the possibility that the channel will behave 

differently.  It is known that Mg++ can block what Ca++binding enables or stimulates.

FIGURE 30: Ideal Channel, Bindings and States
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The internal conformational states of a channel are the heart of the model, holding the greatest potential for 

information processing at the molecular level found so far.

In the above example the rest state awaits 2 bindings, one each of intracellular domain and extracellular domain. 

When both sites are activated the molecule shifts to state 5, which is the pore open state.  Pore open states are 

extremely unstable states, causing channel closings within a few milliseconds of open time.  This is essential to life, 

as an open pore will bleed the ionic transmembrane potential to death.   Consequently,  state 5 quickly transitions to 

state 6.   States 6, 7, 8 are shown with a blocking bar to indicate the refractory period.  During these states, the 

molecule will not respond to any stimuli nor modulation.  The refractory period after the open state indicates that the 

state path is not reversible – the leg from rest to open must be different than the leg from open to rest. The timing of 

the refractory period during the state path is critical; if the channel goes through a refractory period before opening, 

then it will never open (do you want to state why?).  State 5 marks the beginning of the channel's journey back to the 

rest state. Until the rest state is reached, all other states will be predisposed to unbinding, promoting faster arrival.

In a simple kinetic scheme, the pore only opens once during a duty cycle.  It is quite possible that the state path 

could proceed through more than one pore opening before arriving in the rest state or refractory state.  Doing so 

would produce a temporal pattern, characteristic of the modality of that type.

7.3.4 VESICLES  

 There are a wide variety of cytological mechanisms for exocytotic release of messenger products out of the cell. 

The key statistical features of the vesicles relevant to NIP are the binding/unbinding stochastics of calcium, the 

variability of the contents of the vesicle, the exocytotic release timing and variability, and the distribution of release 

portions (partial, full, none).  Although they could be modeled as compartments with dynamic membranes, that 

would be computationally prohibitive at this time.  Instead, a statistical representation of their neurotransmitter 

release function is modeled, much the same as that of the receptors.  Vesicle release mechanisms are simplified to 

their intrinsic information flows, as a transducer converting an intracellular Ca signal into an extracellular 

neurotransmitter signal.  As typical with transducers there is also a fan-out leverage mechanism whereby a single Ca 

arrival triggers a massive release of particles.  The leverage may be set from 1:1 to 1:30000.    
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Vesicle.Type is defined as:

1. Consists of 1 subunit.   The many sub-components have their kinetics merged.  All aspects not significant to 
the release timing and quantities of particles are purged.  Replenishment mechanisms are greatly simplified.

2. R: One bind kinetic scheme, an (s2 x BT x s1) matrix, where s2 = quantity of binding sites

3. Q: One conformational kinetic scheme,  an (s1 x s1 x c2) matrix, where s1 = quantity of internal states, c2 
is the quantity of binding combinations

4. O: One Phenostate map: each state number may be scheduled to initiate causes a release

5. G: Messenger release profile and reuptake profile (BT x s2 x 2) 

6. M: timing issues on reuptake  (should be implied by s1 kinetics), but special mechanisms may be entailed

7.

Vesicle.Dist is defined as:

1. Position + Orientation

2. Pole to Compartment map

Each type of vesicle is instantiated at locations according to a probability distribution function which profiles 

channel density along the length of the neuron.  The locations of vesicular releases are also critical to NIP function 

by determining the output signals to which downstream cells. 

Vesicle.Inst is defined by:

1. Positions + Orientations, usually as a function of zone

2. Pole to Compartment map

Vesicle.Patho =  [min max] x  physiological ranges over: temperature, pH, voltage, etc. 

Crossing pathological threshold trigger functions via pointers.  These functions can operate on element to:

inactivate, bind, sequester, convert, or otherwise tag the element as having been exposed to pathological conditions.

Vesicles are present in the neuron membranes in distinctly non-homogeneous patterns, usually only in presynaptic 

zones.  These patterns are significant the to NIP function.  
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Vesicles are comprised of membrane lipids, with a constellation of specific proteins bound and/or associated thereto. 

They contain chemical modulators, especially neurotransmitters, and undergo controlled exocytotic into the synaptic 

cleft.  Known vesicles respond to Ca++ concentrations (in very low concentrations), according to their kinetic 

schemes;  There is some variation (noise) in whether or not a vesicle is released, how many vesicles are released, the 

exact timing of release and how much neurotransmitter is present within each vesicle.  This information is captured 

in the kinetic schemes. Vesicles act as the chemical output device for the neuron.  A faithful model of the vesicle is a 

complex undertaking.  For purposes herein, only the information-aspects of the passing vesicle are represented.  This 

allows the mechanism to be reduced to that of a receptor in reverse.  The recycling of vesicles is simplified to 

pumps, which reset conditions for the next release.

 

Icon for the vesicle is globular (10 sided), but may vary in color and other parameters to visually distinguish types.

Vesicles may be considered as compartments made of capacitive membrane filled with water, ions and ligands. 

This is however yet another cell, with all of its computational load.  To manage a complete set of vesicles, say 100, 

would not be computationally tractable at this time.  Given the information processing role of vesicles, it is 

concluded that they may be simulated as particles.  That is, if a vesicle were a ligand molecule bound to a receptor, 

and released upon modulation, the the stochastic effects could be made to mimic those of vesicles, given that a large 

number of such releases could be managed.  Therefore, vesicles will be simulated much the same as receptors, 

described above.

FIGURE 31: ICON FOR A VESICLE, 3-D
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7.3.4.1 Vesicle states  

1. Idle

2. binding Ca++

3. exocytosis of neurotransmitter into synapse

4. unbinding Ca++

5. reloading neurotransmitter

7.3.4.2 Ideal Vesicle  

The cartoon below depicts a simple case of vesicle kinetics.  It is the compliment of the receptor kinetics, so the 

details need not be repeated here.

This is admittedly a great simplification of the immense complexity of the vesicular exocytotic mechanism.  This 

representation focuses on strictly the informational events and conversions, setting aside all of the vesicle building, 

managing, moving, opening, and recycling mechanisms.  From the information standpoint, the vesicle is a 

transducer with some amplification.  Vesicles contain a large amount of variability, which is handled by the aff 

params and the functions that implement them.  Some of the variable properties of vesicles include: the type of 

FIGURE 32: Ideal vesicle kinetics, its states and bindings
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particles within a vesicle, the number of each type of particle contained, the timing of vesicle release, and the 

reliability of release. 

7.3.5 ION PUMPS  

Pumps are proteins "floating" in the membrane, that enable the passage of ions from one compartment to another. 

Pumps can transport ions from a low concentration to a higher one.  Pumps enable the compartments to maintain the 

concentrations of ions at a “resting state levels” as necessary to support multiple action potentials or graded 

depolarizations.   There are at least 6 types of ion pumps, and a number of ligand pumps which are created for a 

number of utilities.  The class Pump includes all co-transporters, exchangers, active transport, re-uptake, reset, and 

sequestration mechanisms.  The energy sources include ATP dephosphorylation, concentration gradients, or 

“hidden” re-uptake mechanisms that are modeling shortcuts for necessary processes that are not directly information 

processing.

 

The icons for pumps will have a 5-point circumference, and may vary in color and other parameters to visually 

distinguish types.

A library of Ion Pump types is maintained.  Ion pumps are indispensable in many modeling queries.  Firstly, they 

determine what the steady state is regarding tonicities.  Therefore they determine the resting potential.  One 

definition of clinical death is the cessation of ion pump activity, so critical is their contribution.

FIGURE 33: ICON FOR A PUMP, 3-D
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Secondly, pumps are logical devices, whenever they co-transport.  Rather than merely pump one or another ion to 

desired levels, they force ratio-based movements, more apt to preserve the ratio between species of ion than set the 

absolute concentrations.  Further complexity arises by the interplay of various types of pumps,  each with its own 

idiosyncratic ratio.  Tonicities can be shifted to different concentration profiles by re-weighting pump type activities. 

This can play a role in shifting the functional role of the cell across several “moods”, by altering tonicities along 

viable paths to modulate the Q-matrices of ion channels (and other actors).  

Thirdly, pumps fatigue, presumably due to energy shortages.  This effect is certainly relevant to neuron behavior. 

Pump fatigue can be simulated by giving them receptors which modulate pumping rate, and causing them to become 

starved for ligands.  Thus ligand concentration controls pump rate. If modulators alter or switch pumping curves, 

then ligands can alter the steady state conditions as well.

Fourthly, pump distribution can set up significant effects for information processing.  A cluster of ion pumps at one 

end sets up an ion current down the entire length of a process.  Such currents are instrumental to determining many 

processes such as motion detection.

The pump state diagram above traces the state path of a Na K pump driven by ATP.  Its kinetic scheme has 6 states. 

The lower traces from bottom to top, are:  intracellular Na bindings, extracellular Na unbindings, extracellular K 

bindings, intracellular K unbindings, intracellular ATP bindings, intracellular ADP unbindings.  Run length is for 0.5 

seconds.

FIGURE 34: PUMP STATE DIAGRAM, UNIVERSAL
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As the number of side chain conformations in the molecular organization of the pumps increases, the pump 

performance may diminish.  Below is the same type of pump but with a Q matrix of “noisier” values (less 

deterministic).

Trace of Na K pump driven by ATP, with 5% more randomness in its Q matrix.  Note the increase in flutter, and 

decrease in successful ion transports.  

Pumps include co-transporters, exchangers and ATPases that selectively move certain ion combinations across 

membranes. As kinetic devices they may run backwards.  Every ion that is allowed to passively cross the membrane 

must be pumped back in a timely fashion, so as to maintain the physiologic tonicities of life.  Clinical death is 

defined as a loss of pump function.  

Pump.Type is defined as:

1. Consist of 1subunit.  When comprised of multiple components, their matrices are merged.

2. aff: One affinity profile matrix, one row for each of the binding sites

3. R: One external kinetic scheme, an (s2 x s2 x s1) matrix, where s2 = quantity of binding sites

4. Q: One internal kinetic scheme,  an (s1 x s1 x s2) matrix, where s1 = quantity of internal states

5. O: One Phenostate map, which identifies which binding sites move upon which state transitions

6. One pump transport standard sequence  (optional for diagnostics)

Pump.Dist is defined as:

   

FIGURE 35: PUMP STATE TIME SERIES WITH Q MATRIX  AT INCREASED  NOISE LEVEL
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Pumps are present in the neuron membranes in distinctly non-homogeneous patterns.  These patterns are significant 

the to NIP function.

1. Positions + Orientations

2. Pole to Compartment map

Pump.Patho =  [min max] x  physiological ranges over: temperature, pH, voltage, etc. 

Crossing pathological threshold trigger functions via pointers.  These functions can operate on element to: 

inactivate, bind, sequester, convert, or otherwise tag the element as having been exposed to pathological conditions. 

Each type of pump is instantiated at locations according to a probability distribution function which profiles pump 

density along the length of the neuron, usually according to zones.

7.3.5.1.1Re-uptake
If neurotransmitters were allowed to accumulate in the synapse, then every receptor would be completely on, and 

stay that way; this would not facilitate information transfer.    For information to traverse the synapse, a 

neurotransmitter molecule must be released, diffuse across the cleft straight away, bind to an appropriate receptor 

type, unbind from the receptor site as soon as the receptor has triggered its mechanism to release its second 

messenger, get captured by a pump and returned to receptors for restaging.

Theoretically there are several ways to disable a neurotransmitter once it has bound to a receptor: It can be 

sequestered within a vacuole; denatured; pumped into the post synaptic cell; and/or pumped into the pre-synaptic 

cell.  From an information point of view, placing a pump right next to the receptor, such that the angle of receptor 

release pops it right into the pump,  would minimize the echo of allowing the neurotransmitter free to bind again to a 

receptor.  From an energetics point of view, the presynaptic cell should pump neurotransmitters back its intracellular 

derivation, recycling for re-use, used to recharge vesicles in the making.  This process involves another journey of 

diffusion back across the cleft, which raises questions:   By what means is neurotransmitter prevented from returning 

to another receptor and giving a “ghost” signal?   

If the receptor were to act enzymatically to bind the neurotransmitter to some deactivating molecule, then the 

complex could be left to diffuse at a leisurely pace back across the cleft.  There, a pump recognizing only the 

complex, not the naked neurotransmitter, would return them to the presynaptic vesicle production machinery.
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There is a similar problem for secondary messengers.  The uncharged particles cannot partake in the voltage 

gradients nor the N-body charge field.  Therefore, the value of each type must be informational or serve as an energy 

carrier.  Informational particles need to effect an “on” signal (bind event) and an “off” signal (dissociation event). 

The “on” signal is the obvious one, but the off is a bit more subtle, requiring 2 steps: the backward kinetics for 

dissociation, and then a removal from the area by pumps, affinity to other bindings (sequestration), or enzymatic 

degradation.

7.3.5.2 Pump states  

5. Idle on side 1

6. affinity on for stage1 profile

7. Staging on side 1 bindings 

8. Transporting 1 to 2

9. Releasing on side 2

10. Idle on side 2

11. Staging on side 2 from stage2 profile

12. Transporting 2 to 1

13. Releasing on side 1

Note:  pumps are often modulated by concentrations they are pumping against, to the point where they can be made 

to run backwards.  The kinetics must reflect this reality.

7.3.5.3 Ideal Pump  

The pump has the opportunity to bind on both sides of the membrane.  Various pumps, cotransporters and 

exchangers may bind 0 to 3 particles on one side, and unbind them on the other side.  The cartoon below shows 

these bind groups each as a single particle on each side of the membrane.
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The interpretation of the 4 values of the bind vector is assisted by the key in the upper left corner.  The  primary 

challenge of modeling pumps is to seize control of individual ions, particular to type, and physically move them 

through the membrane to the other side.   Once on the other side the binding rules are changed such that some 

different ion will bind on side 2 and be precisely moved across to side 1 and released.  This seemingly simple 

motion has consequences for the model.  First, mass is conserved only when a precise number of a precise type is 

subtracted from 1 compartment and added to an adjacent compartment.  This requires Cartesian reassignments from 

pole to pole, and compartment reassignments for each of the particles.  Second, ion charge alters the space charge 

neutrality of each of the two compartments.  Third, pumps can only run “up stream” (against the energy gradient) 

FIGURE 36: Ideal Pump, States and Bindings
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when there is an immediately available source of  “boost” energy.  This source can be chemical, as with ATP to ADP 

conversion, electrical, as with a voltage gradient, or “mechanical” where the concentration gradient of one ion type 

is great enough to push the pump in a  direction that pumps another particle type uphill against its gradient.  The 

change in color at bind site 3 indicates a conversion from ATP to ADP.

In the simplest kinetic case, the internal conformations only reflect the external conditions of bindings and arm 

positions.  Given the immense size of the pump molecules, it is quite possible that there are more internal states than 

those external events depicted.  Such supernumerary states offer alternative state paths, modulation and modalities 

of operation.  They also offer the possibility of regulation and compensation for external conditions.  The number of 

modulator sites on an actor is some indicator of such possibilities.  Few modulation sites would limit the pump's 

responsiveness.

7.4 INTERACTORS  

Interactors are motile particles.  They may be charged (ions) or uncharged ( ligands).  They may be a) mobile within 

a compartment, or b) temporarily bound to an actor.  They may be sequestered into small compartments (vesicles or 

core reticulum).   Their primary roles include:  

1. communicate between actors, via diffusion and/or waves  (thermal energy or EM force)

2. serve as charge carriers, determining voltage and capacitated charge

3. pass through open pores per gradient pressures, causing current disturbances

4. serve as messengers, being released from certain actor types and binding to certain actor types

Their secondary roles include:

1. setting up delicate capacitated pools that disturb easily and therefore are efficient wave generators

2. forming waves fronts that may propagate along the surface of the membrane

3. convolving their motion with the actor responses, which modify that motion

4. resolving multiple waves into constructive/destructive composite waves that serve as analog computation

5. effecting the gradual decay of all waves into back ground noise, so as to provide substrate for future waves 
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7.4.1 INTERACTOR CLASSES  

There are 5 classes of Interactors:

1. Water

2. Monatomic Ions

3. Polyatomic Ions

4. Ligands

5. Second Messengers

For most purposes, Monatomic and Polyatomic Ions can be merged into a single group.  Only when shape factors 

are a consideration need they be processed separately.  Note the water hydration shells move monatomic ions into 

the polyatomic category.  Hydration shells are dynamically built up and torn down.

7.4.1.1 Water  

Water is represented as a statistical phenomena of mean free paths, interrupted by collisions with other water 

molecules, ions, and surfaces.  Its velocities are Boltzmann distributed per its temperature and viscosity.  Particles 

proceed in random walks.  The charge effects of water smear the charge effects of ions.  Water has thermal mass, 

constructs hydration shells of varying thicknesses around ions (easily stripped off by collisions).  Water molecules 

have an effective radius, are soluble to ions, conduct electricity proportionate to the ion concentration, and are the 

primary determinant of diffusion rates of ions.  In liquid state, the density is nearly constant (varying a little with 

temperature) and therefore the inter-molecular spacing can be treated as constant.

The most redundant of all entities in the neuron is water.  What might be the NIP contribution of water?  It is a 

medium and carrier for information, just as a copper wire might be for the telephone messages.  It is an electrical 

conductor proportionate to the ion concentrations, acting as solutes.  Aside from determining the pH and the 

viscosity, it is difficult to argue that water is acting in the role of information processing.  Its charge “smear” effect is 

losing information, and diffusion in general loses information.  Much more consistent with its traits, it provides a 

matrix which mobilizes the ions to perform their roles.  It provides a pool of ions, neutralized by opposing charges. 

But whenever there is a voltage gradient or a charge imbalance, a proportionate number of charges come out of 

solution.  So long as these mobility factors are preserved, the quantity of water molecules in a neuron may be 
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reduced in number, reduced in function and/or abstracted, just so long as maintaining ion mean free path lengths, ion 

collisions that redirect ion velocities, and ion solvation sizes.  

Although pure water is an outstanding insulator, very small amounts of salt render it a great conductor. 

Measurements of conductivity reveal it proportional to the ion quantity, as every ion is a charge carrier and is 

capacity limited by that ions mobility.  However, as the frequency of the signal increases, mobility becomes less of a 

FIGURE 37: Conductivity of Water wrt Frequency
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factor.  See the figure above, from Rusiniac, 2004, which reveals the variability of conductivity wrt frequency and 

temperature.  A particle system needs a variable mobility to duplicate these results.  It is not easy to know the 

“frequency” of individual ionic collisions, unless their is coherence due to a strong driving signal.

 It turns out the conductivity of water is quite sensitive to frequency.  (see Rusiniak below)  One can see that if the 

conductivity of water were the primary determinant of inter-actor communication life would be a lot warmer ( 90C?) 

and would restrict all actions to below 100Hz.  While these curves have implications for liquid state processor 

design, the range of conductance varies only about ½ order of magnitude wrt temperature and much less wrt 

frequency.  The dielectric permittivity varies widely, almost 4 orders of magnitude, wrt frequency, but is not 

temperature sensitive.   As many neurons are operating at about 30C and frequencies between 100 Hz and 1000 Hz, 

conductance is low (7e-4 Siemens/test cylinder) but stable.  The effects of the EM force are surprisingly variable.  At 

10 Hz,         er = 1e6; while at 1000 Hz, it is down to 1e3.  This effect acts as a high frequency filter, and higher 

energy efficiency would be achievable at the lower frequencies. 

7.4.2 IONS  

Ions are represented as individual particles, present in any number of types, in quantities up to about 1E6 for PC 

computers, or as large scale computer capacity may allow.

Not only is the quantity of water molecules super abundant to the needs of a whole cell model, so too are the 

quantities of ions.  The number of ions in a model may be reduced to minimal sufficiency as determined by 

performance within range of acceptable error.  Because of the complex and nonlinear nature of neuronal behavior, 

the easiest method of determining sufficiency is to run the model as test patches while sweeping a gamut of particle 

densities and recording sensitivity to changes.  Particular care must be exercised near the boundaries of modal shifts 

(e.g. from periodic spikes to bursts of spikes).  Indeed one of the objectives of the model that can help our 

understanding of NIP phenomena would be to identify minima in element quantities that preserve the bio-

computation functions of the cell.   Sampling theory may be applied to the challenge of element count reduction if 

the dimensionality of the problem is not under-estimated.  For normally distributed values, 30 samples per 

dimension yields.
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The quantities of ions in solution may be reduced to the extent that many of them are sufficiently distant to the 

membrane functions as to be insignificant.  If they are serving as “reserve capacity” or “buffer”, then they are not 

NIP active.  Short of compromising axial and/or circumferential flux, their numbers may be reduced.  At the risk of 

some graininess, the numbers of ions may be reduced proportionate to the numbers of ion channels and pumps. 

Before deciding on a reduction number, the quantity of ions that flow through a channel per millisecond of channel 

open time must be considered.  If this number is, say, 1E3 to 1E7, then couldn't that number be scaled down by one 

or two orders of magnitude?   Only if the capacitance were also scaled down, so as to preserve the resultant 

transmembrane voltage, and only if the speed of ions through the channel were proportionately slower, so it takes 

the same amount of time to generate an action potential.    Scaling back the quantities of the elements is not trivial, 

but must be thoughtfully designed to preserve the NIP characteristics, in time and space.   Similarly, the quantities of 

receptors, channels, vesicles and pumps may be reduced short of misrepresenting the information throughput 

function of the cell.  

7.4.2.1.1Monatomic Ions
From the periodic table there are about 64 possible ions that could conceivably be found in biologic systems. 

Several of the elements can be found in more than one ionic form (different charges).   Each element has these traits: 

radius, mass, and charge.  Monatomic Ions are the dominant movers in neuronal information processing. Their 

action is predominantly a function of their charge. The flux of ions, (especially of K, Na, Ca, Cl), is sufficient to 

create high voltages (consider  the electric eel).  Ion  concentrations are built up and maintained via the pumps,  and 

their occasional flux through channels results in cascades of events that usually result in chain reactions that carry 

down the entire length of the neuron.   Each ion has its own mass, charge, velocity, and position.  Ion concentration 

is the quantity of ions, by type, in a voxel.  

7.4.2.1.2Polyatomic Ion
Polyatomic ions are numerous in quantity of types, and are irregular in shape.  They usually have rotational bonds 

that allow some change in shape, and  their stereo-isomers may be significantly different in action.  Therefore, the 

traits include mass, charge, size and conformer.  The conformation of a polyatomic ion is regarded as static.  They 

must be treated slightly differently because they do not have a radius, and may have multiple binding configurations. 

They are treated separately only to tabulate these additional traits.  Ion2 species are not merged with the larger 

Ligands because their action is predominantly a function of their charge and chemistry.
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7.4.2.2 Intracellular proteins  

Intracellular proteins may serve any of several functions: obstacles, viscosity, buffering, bind/release sites, 

sequestration, chemical transformation, shuttle, scaffolding and rafting.  Other functions are not considered by this 

model.  Proteins, in general are modeled with mass, a single net charge valance, and an equivalent radius that would 

calculate to realistic viscosity and collision values.  

7.4.2.2.1Second messengers
Metabotropic receptors will release messenger molecules into the intracellular compartment.  These G-proteins 

usually participate in  leveraging mechanism which involve intermediate catalytic production and removal systems. 

Numerous  Ion channels (and other actor types) may be modulated by the stimulation of a single receptor, up to 

about 1:30000 fan out.  For modeling purposes, any molecule that can allosterically bind to an actor on the 

intracellular pole may be considered a messenger molecule, or ligand.

Second messengers work by multiple mechanisms.  For example, and initial 2-dimensional diffusion of second 

messengers from the receptor reach catalytic intermediate nodes which release third messengers diffusing 3-

dimensionally.  The second messenger may have one group of targets and the third messenger quite a different 

group.  The second messenger may be leveraged  1:100 and the third messenger may be leveraged wrt to the 

receptor 1:10000. 

The library of Interactors in this model consists of three Types: 

Interactors = { Ions  Ligands }
Ions = { K Na Cl Ca H An ... }
Ligands = { Ach Ne Gaba Glu 5HT ATP GLY ... }

7.4.2.2.2Obstructions
The intracellular space is populated with protein structures, both static and dynamic.  These will impede the 

diffusion and drift of the smaller particles.  To the extent that this effect is isotropic, then arbitrarily large motile 

protein molecules can be introduced into the compartment.  Their mass will render them slow moving according to 

Boltzmann's velocity distribution.  Their size with increase the collision rates and therefore slow both diffusion and 

drift of the charged particles.  However, anisotropic effects may require the addition of vanes  protruding into 

compartments to direct flows. Vanes may be installed with various perforations as well.   These can imitate in simple 

form some of the effects of reticuli and structural proteins.
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7.4.2.3 Extracellular proteins  

Extracellular fluid may contain motile proteins, which contribute to general viscosity.  They may also serve as 

Ligands needed for specific messenger duty.  Additionally, glycosylation of channels and pumps may serve as 

modifiers to their Q matrices.   Extracellular protein particles may be created and simulated by the same means as 

intracellular particles.  The outermost experimental membrane may be made active in the release and the reuptake of 

those proteins so as to maintain tonicity or messenger traffic as needed. 

7.4.2.3.1Ligands
Ligands are medium-sized soluble molecules which serve as messengers between Actors.  They bind reversibly. 

Their action is predominantly a function of their shape. Ligands are released by a variety of mechanisms and bind to 

Receptors for a short time.   Such bindings act as signals, inhibitors, activators, neurotransmitters which cause the 

Actor to change state.   The binding and unbinding of the Ligand to a Receptor may be handled mathematically as a 

forward and backward Kolmogorov process.

Ligands, for purposes of this model, are uncharged particles.  A ligand is defined as any molecule that can modulate 

ion channels or ion pumps via binding/unbinding, including all neurotransmitters, hormones and messengers.  For 

purposes of modeling a ligand is the same as polyatomic ion, except with charge = 0.    

7.4.2.3.2Neurotransmitters
Many of the ligands in the extracellular compartment and in the synaptic clefts are called neurotransmitters.  For 

modeling purposes, any molecule that can allosterically bind to an actor on the extracellular pole may be considered 

a messenger molecule, or ligand.  A particle without charge diffuses via a Boltzmann distribution of velocities in 

spherically-random directions, colliding with other particles and and reflecting off surfaces.  For each dt, any ligands 

within the affinity radius of an actor pole will be considered for binding/unbinding per the binding profile.

Neurotransmitters are particles, that can act as ligands.  They may or may not have any net charge.   Their primary 

function is to modulate actors, although they also perform many longer term functions not represented in this NIP 

model.  Modulators, by the act of binding, introduce new stresses into the actor molecule, and thus change its 

conformation.  This shifting, bending, and moving of molecular parts is often instrumental to the actor's role.  Most 

often, the binding of a modulator does not directly change the actor's phenostate, as would say turning on a light 

switch result in instant light.  Rather, modulator bindings create a new set of probabilities, that determine whether 



421

the molecule will arrive at some new phenostate.  Its rather like asking a bureaucracy to turn on the light.  “Your 

request will be passed along through several desks. We hope to have it on by Wednesday.”     

In similar fashion, voltage works as a modulator.  Voltage as an omnipresent force field has the advantage of 

affecting an entire molecule thoroughly and instantly b exerting torsion on every charge in the molecule.[181]   Such 

force will still require time for the molecule to find its new equilibrium (lowest energy state), and this will still 

follow a Q matrix of transition probabilities.  

7.4.3 PARTICLE STATES  

Particles may be simple, with only size, mass and charge, but tracking them through a digital model requires a 

great number of values, nearing 100 columns of data per particle.  The basics to get started are:

1. Compartment number assigned to

2. Actor number bound to

3. position, velocity, acceleration

4. Voxel number passing through

5. Capacitance pixel number captured within

In addition, there are some historical aspects of particles that must be tracked in digital models.  For example, when 

a particle is bond to an actor, it loses its momentum.  To avoid violating the conservation of momentum law.  This 

momentum is stared as a value, and returned to the particle upon its release.

Concerning particle collision detection and resolution, there are test cases that require additional data, including 

backing up in time to before the collision took place.  These will be treated more formally in subsequent chapters.

7.4.4 PARTICLE BUILD  

TypeB.mat is the Library data set for all Particle Type archival information.  Within the data package of TypeB is 

the main traits file TB, which list all particle types by row and 32 traits by columns.  The user selects from TB which 

particle types are relevant to a given experiment.  These need not be all used.  For, example, if Mg is selected, the 
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concentration of Mg in a given compartment could be specified as zero.  The particles selected are usually specified 

as concentrations.

Only 4 columns of the 32 traits in BT are shown here.  The Concs are converted to particle counts in each 

compartment in preparation for use in the model

Dens:  From the molar concentrations, calculate the quantity of particles per cu micron. 

BC:     Multiply those density numbers by the volume to be modeled (in the EX the volume is 0.001 cu microns)

N:       Multiply the quantities by the scaling factor to reduce particle counts (in the EX this is a 100-fold reduction)

This brings us down to 7+84+84 = 175 particles in compartment 1, and 186 in compartment 2.  Next, the charge 

imbalance is checked.   For the valances given in BT, the charges are summed per compartment.

At initial conditions, in this EX, there is space charge neutrality in each of the compartments.  Any manner of 

transport, by pumps or channels, can alter the charge imbalance near the membrane however.  This results in a 

capacitated surplus charge near the membrane between the affected compartments.  Initial conditions require a 

Dens BC N
60230 N/cumicron 0.0010 N/ 0.1micron^3 100 sfN

722760 8733350 723 8733 7 87

0 0 0 0 0 0

240920 6625300 241 6625 2 66

8432200 301150 8432 301 84 3

903.45 210805 1 211 0 2

6023 0 6 0 0 0

240920 0 241 0 2 0

8500000 2800000 8500 2800 85 28

180 186

BT Concs
comp1 comp2

Type a.n. mass valance radius conc mM conc mM

Na 11 23 1 0.28 12 145
Mg 12 24.3 2 0.24 0 0
Cl 17 35.45 -1 0.21 4 110
K 19 39.1 1 0.3 140 5

Ca 20 40.08 2 0.28 0.02 3.5
PO4 49 95 -3 0.81 0.1 0
SO4 50 96 -2 0.8 4 0
An2 256 256 -1 1.5 141.13 46.49
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membrane with a charge resulting from ion imbalance within physiological range.   This is called the resting 

potential, and actors should not be turned on until this potential is established, least the conformations be denatured.

Na

Mg

Cl

K

Ca

PO4

SO4

An2

     

E
charge

7 87

0 0

-2 -66

84 3

0 4

0 0

-4 0

-85 -28

0 0   Charge neutral    

E
charge

7 87

0 0

-2 -66

84 3

0 4

0 0

-4 0

-113 0

-28 28  Charged 

membrane

The left set of values initialize the model with space charge neutrality.  Any pump or ion channel activity will 

unbalance the charges and result in some capacitated charge across the membrane that separates the two 

compartments.   The second set of values initials the model with a charged membrane.  Given a set of empirical data 

to hold to, only the residual values of An ( a catch-all for unspecified negative ions) is adjusted.   This adjustment is 

necessary, however, to avoid physically impossible or unrealistic conditions of charge imbalance.

This count of particles is introduced into each compartment near the center of the volume as a bolus.  A bolus is a 

spherical cluster of randomly placed, non-overlapping, mixed types.  The bolus is usually a fraction of the volume, 

from 90% down to 1% of the compartment volume, depending on the intricacies of shape.

7.5 COMPARTMENTS  

Compartments are created by membranes formed into closed surface vessels.  One membrane may be nested within 

another membrane.  The membranes define the both the surface and volume of each compartment.  

Typically, the following membranes are created for a single neuron simulation:

7.5.1.1 Plasma lemma  

A closed-surface delineating the shape of a neuron, or a simplified version thereof
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7.5.1.2 Neighboring neuron  

The  plasma lemmas of adjacent neurons may be represented as a compartment so shaped as to hold a realistic 

thickness for the extracellular fluids.  This is the outermost surface of the whole cell model It is a closed surface.

7.5.1.3 Core (nuclear) membrane  

The core is a central compartment within the soma for purposes of sequestration, re-uptake,etc..  It also serves to 

obstruct most of the center of the soma, so as to disallow diffusion straight across the center of the cell.  Due to the 

presence of the nucleus and reticulum, most ionic diffusion is near the plasma lemma and circumferential in 

direction, and the core compartment helps to enforce this pattern.  Finally, the core membrane reduces the volume of 

the cytoplasmic fluid to be modeled, reducing computational load.

7.5.1.4 Dendritic synaptic plugs   

Dendritic plugs are simplified synapses which provide synaptic clefts and neurotransmitter release sites (vesicles), 

and sometimes re-uptake pumps. When the whole cell model is the subject of study, it is often necessary to provide 

realistic inputs to the cell.  Most wet lab work stimulates electrically or pharmacologically, but computer models 

support the representations of synapses and neurotransmitters so as to correspond to bio-functions of same.  The 

dendritic plug is a simulation of the pre-synaptic bouton (without the rest of the cell).  It is driven by a signal 

generator, or by a pre-recorded temporal pattern. A set of such patterns can drive any number of dendritic plugs, and 

thus represent a spatiotemporal pattern.   Plugs can be placed on any planar surface of the cell.

7.5.1.5 Axonal synaptic plugs  

Axonal plugs provide signal detection for received neurotransmitter molecules as output from the neuron (receptors), 

and may also possess re-uptake pumps.  They represent the synaptic cleft and the post synaptic membrane, and as 

such reveal the lag time and noise of the synapse.  They may be parametrically modified.

7.5.2 MEMBRANES  

The membrane is a uniform curvi-planar structure of lipid material that forms  closed surfaces which define the 

compartments, their shapes and volumes.  The membrane supports within it important proteins such as channels, 
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pumps, and receptors that enable the neuron to act as an information processing system.  The membrane may reflect 

ions, or absorb them, according to beta partition factors.  The membrane is considered to be an Actor because it 

serves as a capacitor, a dynamic element.  Membranes  have important 2-dimensional properties (e.g. addresses for 

actors); 3-dimensional properties (e.g. reflections of particles); and important abstract properties (e.g. Resistance 

Capacitance grid).

7.5.2.1 Membrane Traits   

Membrane.Type is defined as:

1. Contour working points.  These are for design convenience, and library portability.  They constitute the 
minimum data to generate a closed volume as a contour of revolution.

2. PDC = zone designations along axial length of neuron per a given shape (C compartment).  

1. Intracellular  This is the main plasma lemma of the cell.  There is one per cell in a multicell model.

2. Extracellular  This is the outermost membrane in the experimental setup.  It represents the boundary of 
extracellular fluid, and therefore determines the thickness of the extracellular fluid.

3. Sequestration core   This is roughly the nucleus of the cell but serves the model in a different capacity: to 
determine the thickness of the intracellular fluid to be modeled as a thickness below the membrane, and as 
a compartment of sequestration for particles rendered temporarily  “out of circulation”.

4. Input Synapses   The synaptic clefts are of regulated gap distances, and of limited “leakage” at the edge of 
the synapse.  The post synaptic membrane is one or more circumscribed areas on the plasma lemma that 
typically are rich in receptors appropriate to the vesicle content releases across the gap on the pre-synaptic 
cell.

5. Output Synapses  Each synapse consists of a pre-synaptic membrane, and fluid gap of fixed distance, and a 
post synaptic membrane.  Particles may be exchanged both ways, depending upon the placement of actors 
of release and actors of uptake.  As receptors are not known to recycle messenger particles, there must be 
present a third type of actor which “cleans up” the cleft at rates comparable to the release rates.  The output 
synapse is structurally the same as the input synapse, but is not always necessary.  This is because voltage 
readings can be taken from the model membrane near the output pole(s) and this would yield an accurate 
signal of cell production, that the addition of an output synapse is unlikely to alter much, unless specific 
maladies of the vesicles were under study.
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7.5.2.2 Membranes present in Whole Cell Model  

7.5.2.2.1Plasma lemma  main region of computation

7.5.2.2.2Core  serves only as a parking lot

7.5.2.2.3Neighbor  sets up the connectivity of the neuron under study and therefore the many signals

7.5.2.2.4Pre-synaptic  vesicle releases and neurotransmitter reuptake, followed by vesicle reconstruction

7.5.2.2.5Post-synaptic  cell input reception

7.5.2.3 Membrane Hierarchy of Spatial Relationships  

7.5.2.3.1Membranes

7.5.2.3.2Zones  these are functional areas somewhat arbitrarily defined by human observers

7.5.2.3.3Segments   these are strictly conveniences of geometric construction of contours of revolution

7.5.2.3.4Rings  come into being as a contour is rotated.  A ring is populated with nodes for homogeneity

7.5.2.3.5Nodes  the addressable points for actors to be populated per the pdf's

7.5.2.3.6Occupancies  instantiation of actors results in certain nodes to be occupied

7.5.2.3.7Assemblies  actor groups  - some actors must act in concert and maintain fixed distances between 
them

7.5.3 SYNAPSES  

Synapses are specialized zones of  membrane, characterized by their facing a mating surface of a neighboring cell. 

Synapses are zones.  The distributions within any one zone are uniquely characterized, independent of any other 

zone type.  

The peculiar distribution of channel types about the bifurcations of dendrites determine the degree of antidromic 

propagation.[182]   Some dendritic channel constellations serve to compensate from geometrical factors like 

dendritic diameter, to grant the smaller dendrites a near equal effect on signal contribution.  This is sometimes 

referred to as “synaptic democracy”.  

7.5.3.1 Cleft  

Synapses are defined structurally in that the cleft is held as a fixed distance, thus ensuring a constant diffusion time 

across it.  Synapses may form separate compartments, such that neurotransmitter molecules cannot leak out the 

edges into the general extracellular fluid.   The decision must be made as to cleft perimeter porosity.  If messenger 
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particles are allowed to drift outside the cleft, then appropriate reuptake mechanisms may become necessary in 

locations remote to synapses.  If the cleft perimeter is closed, then all synaptic activities are isolated from the greater 

extracellular fluid.

7.6 SHAPE SIMPLIFICATIONS  
The subset of neurophysiology that applies to this modeling effort is constrained in scope by the following:

1. Only the membrane, its embedded proteins, and the adjacent ionic solutions are modeled.  Other 
cytological structures are not included, except as shape-wise obstructions to diffusion and conductivity, or 
as compartments for sequestration of ions.

2. Only those processes directly implicated in the information processing role of the neuron are included.

3. To model a neuron at nanometer scale poses computational difficulties unless a reduction in the number of 
Patches (and processing steps) can be justified and effected without loss of veracity and reliability. 
Therefore multiscaling is employed.  Nanoscale patches of membrane are modeled 1-to-1 wrt ions, 
channels and distance.  

4. Once characterized and verified to the biologic literature, patches may be cloned and collapsed from a 
system of equations to data mappings, for use in large scale tiling over closed membranes at the micron 
scale, to effect whole-cell models.  

5. Only those processes taking place on timescales near to that of the action potential are considered. 
Typically events between 1E-4 and 1E-1 seconds are included.  Nanosecond vibrations, and 28 day learning 
cycles are far out of scope.   It is possible to have the Patch sub-models and the whole-cell Goblet sub-
model calculating at different time resolutions.  

7.6.1.1 Shape factors  

The inclusion of shape was first made necessary by the inclusion of raw diffusion process represented as a set of 

particles with random positions and initial velocities determined by Boltzmann's velocity distribution equation.  Of 

the essence are the boundaries that determine reflections, and the flux routes between sources and sinks.  This 

cannot be realized without a representative mapping of shape and its bifurcations.  A great deal of effort was 

expended on what, if any, shape simplifications might be justified.  It was eventually decided that up to some point 

of spatial complexity, a neuron might be "flattened"  to a 2-dimensional projection and still perform quite close to 

how it did in its original 3-dimensional shape.  Once flattened, the whereabouts of the neuron membranes must be 

computed for purposes of particle reflections.
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Modeling only the information processing of neurons, it is presumed that most representations would have a 

minimum of a dendritic arborization, a soma and an axon, as its functional sections.   Various trials led to the 

following generic shape for modeling purposes.  

There is a second implication of shape, perhaps more determinant than even the consequences of routing ionic flux. 

And that is the "nearest neighbor" relationships between the ion channels. Obviously, beyond any bifurcation point, 

ion channels on different branches rapidly become "uncoupled" from each other, and this fact has great weight in 

determining the temporal behavior of the actors.  Replace such bifurcations with a continuous  "sheet" and the 

systemic dynamics will be something all together different.  Thus the agony between the computational 

impossibility of preserving the natural shape of living neurons and the loss of bifurcation data when employing a 

contour of revolution.  The modeling strategy is to begin with the simplest of shape and work toward biological 

veracity as the availability of supercomputers may allow.

Although there must be considered both the volumetric effects of flux and the surface effects of actor nearest 

neighbors, these two present in parallel fashion, as something of a sandwich.  It should therefore be possible to take 

them as a single "pattern" or fabric (mathematically) which needs only be represented in 3-D in the micro-

perspective, and as planar in the nano-perspective. 

FIGURE 38: WHOLE CELL WITH CORE COMPARTMENT
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7.6.1.2 Shape smoothing  

It is advisable to begin a complex model in its utmost simplest rendition, and gradually work towards fuller detail. 

Original bio-shapes can be smoothed repeatedly, until the series yields a result but a mere cartoon of its original self. 

What is lost in such an exercise is the spatial high frequencies.  What purposes might the high frequency spatial data 

serve?  The development cycle of a model would employ this series of smoothings in reverse order.  Because the 

dimensionality of parametric space is so large, and the dangers of A2D so very unpredictable in the highly nonlinear 

space of action potentials, there is considerable verification work to be done along the path to a useful membrane 

texture in the model.  Teasing apart all the possible opportunities for misrepresentation, and therefore erroneous 

results, in a  large scale model can be reasonably said to be impossible.  A superior approach is to verify 

"developmentally", over a process of gradually adding complexity, both quantitatively and qualitatively.  Such an 

approach serves the additional interest of finding points of diminishing returns on computational load for each added 

feature.   The goal is to find necessary and sufficient models that consistently and accurately predict cellular 

information processing.  The suspicion is that there will be very little of the living cell found to be dispensable, and 

therefore that modeling complexity will continue to grow for some time.

7.6.2 COMPARTMENT   PRIMITIVE   SHAPES:  

7.6.2.1 Box  

The cuboidal compartment shapes are used for patch models.  Typically one above and one below a surface of 

membrane.

7.6.2.2 Cone  

Conical compartments are often used to mimic dendritic arborizations.  Cones may be made hollow by subtraction 

of a second smaller intersecting cone.  Cones may also be bifurcated via vanes (see below).

7.6.2.3 Cylinder  

Cylindrical compartments are often used to mimic axons.  A series of cylinders may imitate the nodes of Ranvier. 

Hollow cylinders may imitate myelin.
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7.6.2.4 Disk  

Disks are planar surfaces suitable for synaptic connections.  Typically there are dendritic disks and axonal disks.  A 

larger disk minus a smaller disk creates a planar ring which may be positioned anywhere along the length of the 

neuronal shape, so as to receive inputs and/or transmit outputs.  The subtraction of a disk equals a perforation.

7.6.2.5 Sphere  

A spherical compartment may be used to mimic the soma.  It can also be used to imitate spherical-shaped dendritic 

arbors.   Spheres may be truncated any where perpendicular to the long axis of the neuron. The offset soma of the 

bipolar cells does not quite lend itself to generation via contour of revolution.

7.6.2.6 Torus  

Torus shaped compartments are typically used truncated to help form synaptic boutons.  They may also be used to 

create toroidal shaped dendritic fields.  The various quadrants can be specified so as to fit as fillets and bulbs.

7.6.2.7 Vanes  

Vanes radially section any other shape so as to mimic arborizations.  Various bifurcation patterns, including 

randomized patterns are possible so as to imitate the tapered cross sectional areas of dendrites.

7.6.2.8 Perforations  

Any shape above may be perforated so as to juxtapose any two shapes together with a continuous interior of 

specified area at the interface.  The union of two shapes requires the perforation shape at their common border. 

Typically perforations are not used as leaks to the exterior, as that would kill the cell.

7.6.3 COMPARTMENT SURFACE DETECTION  

Ceiling and Floor detection of each compartment
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7.6.3.1 Zones  

Zones are provided as markers along the length of the neuron, arbitrarily set, both quantity and location.  When actor 

distribution data is provided it may be assigned on a zone-by-zone basis, such that the PDF is stretched to fit the 

model zones.  This makes automatic the mapping of actor distributions onto a wide variety of shapes.  Section 7.8 

below addresses zones in greater detail.

7.6.3.2 Radial symmetry  

Irregular shapes consume inordinate processing time to determine particle-membrane collisions.  At the risk of some 

veracity, shapes are simplified such that membrane collisions and absorptions can be computed efficiently.  This is 

the single greatest numerical methods benefit within the model.  The employment of contours of revolution into 

cylindrical shapes allows     en bloc Cartesian to polar coordinates conversions to determine membrane collisions. 

Cylinder shapes generated via contour of rotation yield cylindrical coordinates.

x axis of rotation           ( as length of neuron)
y meridians                   ( radius)
z circles of latitude        ( circumference)

Transformations between Cartesian coordinates other coordinate systems may be orientation-preserving, and/or 

distance preserving.  An axis is a directed line, and so reorienting various elements can be accomplished as a vector 

transform, without the use of sines and cosines.
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Morphometric data is available to capture quite accurate shapes of neurons.  However, to digitally implement a 

dynamic model of such shapes is beyond the capabilities of current computers.  I have agonized over shape 

simplification for several years, with an eye towards optimizing between essential neuronal topology and 

computational tractability. How can the behaviors of the various functional zones of neurons survive changes in 

shape?  

7.6.4 DENDRITIC ARBORIZATION  

It is anticipated that eventual demands for greater veracity to the shape and functioning of the dendritic field will 

cause a severing of the goblet into 2 parts.  The dendritic cone will be replaced by a dendritic arborization according 

to characteristic branching and taper patterns.  An efficient algorithm for interactively computing the dynamics of 

such an arrangement is not yet worked out.  The soma and axon will remain as they were, because as coaxial 

concentric shapes, they are computationally less costly.

FIGURE 39: WIRE FRAME OF WHOLE CELL 
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7.6.5 VESICLE SIMPLIFICATION   

The complexities of vesicular release mechanisms rival that of the entire cell.  They have a membrane, 

compartments channels pumps, receptors, structures, messenger systems, complex opening and closing mechanisms, 

enzymes, recycling mechanisms and more.  But true to the original mandate of purging all but informational relevant 

phenomena, the vesicle shall be greatly simplified, down to something like a receptor.  It need only have an input 

binding kinetics, and output release kinetics that mimic the natural time course of events.  Re-uptake and vesicle 

recycling will only be represented by a pump.

7.6.6 INPUT-OUTPUT SIMPLIFICATIONS  

The essential mechanism of the synapse includes 2 membranes of fixed distance between  them, and the gap filled 

with saline, often at extracellular  tonicity.  The presynaptic membrane releases vesicular contents into the gap, and 

has re-uptake mechanisms to recover those contents after they have served their messenger service.    The contents 

diffuse across the gap, perhaps motivated by a charge field, and may bind to receptors on the post-synaptic 

membrane.  There is also the possibility of feedback.  Plugs have been devised to provide arbitrary input at various 

locations, and to receive output at arbitrary locations.

7.6.7 OMITTED COMPONENTS AND THEIR COMPENSATIONS  

The cell interior is not a simple saline solution, but is chemically and structurally complex.  It is comprised of 

membranes, vesicles, a wide variety of protein objects, structured means of transport, and free roaming moieties. 

This immense complexity is relevant to this model in three ways:

1. major obstructions, which can be modeled as “core” compartments:  nucleus, endoplasmic reticulum, 
micro-tubules, etc.

2. binding/release sites, such as calcium chelation and buffering, which can be modeled as binding sites 
and/or by pumping into sequestration.

3. minor obstructions, which can be modeled as increased viscosity. Protein cyto-structure delays the diffusion 
process by forcing molecules to randomly “walk” around obstructions.

4. recycling of membrane and vesicle contents is immensely complicated in the living cell.  These processes 
can be simplified into a release packet, reuptake pumps, and restaging of contents for the next release. 
Timing and variations on each are NIP relevant, but the how they are performed may not be relevant.



434

7.7  WHOLE CELL  

A neuron of 10 microns diameter soma and 10 processes of 100 micron length must have a volume of at least 

2333*pi Micron^3, and an area of at least: 1110*pi Micron^2.   10 processes is a very simple case, with bio-neurons 

easily sporting 1000 processes, to say nothing of the complexities of bifurcations and tapers.  The surface area 

expands proportionately (100-fold), although the volume may not go up significantly.  Thus, dendritic trees increase 

the chan to ion ratio.

Conventional computer graphics produces widely varying size pixels, which are unsuitable for mapping Probability 

Density Functions onto.  And also unsuitable for manifolding from 3-d to 2-d surfaces.

The volume of a neuron is often greater than 5000 Micron^3.  To which must be added an extracellular 

compartment, synaptic clefts (and note intracellular sequestration compartments as well).  And from which should 

be subtracted all of the organelles and sub-cellular structure.  It is not unreasonable to allocate 1000 intracell and 

1000 extracell Micron^3 for modeling purposes.  That translates to: 

Nmanaged = 2000*1.8E8 = 3.6E11    % quantity of particles present in the compartments
The Goblet model is a whole cell model consisting of Patches.  Because the quantity of Patches is large, some means 

of reducing the computation of individual patches must be justified and implemented.  

FIGURE 40: FIRST CAD RENDITION OF THE WHOLE CELL
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7.7.1.1 Compartment Volumes  

Interactors (ions and ligands) and compartments, of course, are volume-dependent phenomena. 

NperMole = Avogadro*particles  % in one liter.  This is ion count (not including water).
NpermiliMoleperCuMicron = NperMole * 1E-6^3 * .001 / 0.1^3  = 602300 ions/mMole

The molarity of cytosol is generally between 150mM and 500mM.  We therefore must manage about 180 million 

particles per Micron^3.  A small neuron could have a volume of 100 Micron^3, which brings the particle quantity to 

1.8E9.  We also have extracellular fluid to manage in about equal measure, so we are at 4E9 particles.  As the PC 

computer is limited to about 10,000 particles, we need to scale down by a factor of  1E5.   This first appears to be an 

extraordinarily large scaling factor.  It can be justified if the redundancy of particles is great, and the quantity of 

information being conveyed by then is comparatively small.  

If the neuron were carefully rescaled for about 100,000 patches, then each particle could be rigorously modeled. 

However, the challenge is in evaluating the effects of surface reduction verses volume reduction.  Also, rendering 

particles sparse can greatly reduce the collisions rates, which reduces the binding rates.  This can be a serious 

distortion unless compensated for by means of affinity, \velocity, or size of objects to collide.

For practical reasons, a voxel of size 0.01 microns^3 is chosen.  Voxels serve double duty.  They track 

concentrations and flux through space, and to the extent that they impinge upon surfaces they constitute addresses. 

An actor may be situated at the center of the face of any voxel impinging upon a membrane; else upon a predefined 

nodal position.  

NperCuMeter = mole*1E3;   cuMicron = (1E-6)^3;   milimolar = 1E-3;
voxel = 0.01 micron cubed = 0.01^3 cuMicrons = 1e-6 cuMicrons = 1e-12 cuMeters
Then a voxel has 0.602 particles per mM

Biosolutions often carry a sum of the partials = 300 mM, or 180 particles per voxel
Under these conditions, a PC can only model about 50 voxels for runs of 100 seconds.

It was later found that voxels invariably pick up computational load as they do not fall conveniently around the 

actors.  It was subsequently decided to abandon voxels for hemispheres specifically around each actor.  This 

incurred the computational load of polar coordinates conversion,but yielded precisely the information needed to 

interact with each actor in a physically realistic manner.



436

7.7.1.2 Membrane Areas  

Actors (receptors, channels, pumps and vesicles) and membranes produce surface-dependent phenomena. Voxel 

edges of 0.01 micron imply 10000 voxels on the surface of one sq micron.  Voronoi methods are applied to 

determine the “fair share” area around each actor.  Despite the homogeneity of the membrane and node locations, 

the actors impacts upon membrane areas vary widely because actor densities vary widely.  Furthermore, each actor 

is an intermittent transporter.  When quiescent, it is effectively not there, abandoning membrane area to other nearest 

neighbors.  This poses a problem that eventually rendered the Finite Element Method approach to modeling 

ineffective in capturing the biological processes under study. 

Ion channels densities are often about 20 chan per Micron^3 of membrane. ( min=0, max = 10000 ),  Given that 

there are usually 3 or more chan types present, 60 out of 10000 surface voxels implies that 0.006 fraction of all 

addresses (voxels) are occupied by a channel.   This is a manageable and useful ratio, serving the need to distribute 

channels over a wide variety of patterns across the membrane. 
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The Goblet is a Whole Cell model.  It usually involves sufficiently large quantities of particles and actors that it 

cannot be robustly modeled at once.  Rather a select number of canonical patches of membrane are excised out, 

modeled and characterized.  A sufficient number of canonical patches must be chosen such that all the patches in 

between the canonicals are accurately represented by gradient forms between two canonicals.

FIGURE 41: CREATION OF 9 COMPARTMENTS VIA CONTOURS OF REVOLUTION
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Each open circle is an available site for an actor.

7.7.2 ACTOR PLACEMENT  

Occupied Nodes are represented by placing markers at select nodes.  Actor placement is accomplished by applying 

the PDF for each actor type across the zones of the shape.  [See node of Ranvier for a sketch of how this is done]. 

FIGURE 42: HOMOGENEOUS NODE PLACEMENT ON CONTOUR OF REVOLUTION
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To extract an ion channel placement PDF from the biological data, take a longitudinal slice through the center line of 

florescent marker images and read the marker density values as vectors along the length of the slice (in this case a 

node of Ranvier). 

This slice is read spectrally for each of the tag frequencies of interest.  In this case Green is a Na1.6 chan, Blue is a 

Kv1.2 chan, but red is not a chan (only a protein glue that seals the ends of the myelin layers to the axon).

FIGURE 43: ACTOR PLACEMENT VIA INSTANTIATION OF PDF'S

FIGURE 44:  FLORESCENT MARKER DATA ON NA AND K CHANNELS AT NODE OF RANVIER
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                   direct from the photograph                                             PDFs   normalized to model     

7.8 ZONES  

Each membrane is conceived as a concatenation of functional zones.  This is for the convenience of the modeler, 

despite that both the biological neurons and the modeled neurons may have gradients and transitions between zones 

that blur  their distinctions somewhat.  Zones are useful for organizing and storing bio-data, for checking the 

functionality of membrane regions to the extent it is required to act with distinctive behavior from other regions and 

most importantly, for adapting limited biodata to “Stretch” across arbitrary and artificial shapes.  This approach 

gives wide utility to the biodata of a few cells.  The interim concern is that there is often insufficient biodata to 

ascertain the characterization of zones by actor densities, and therefore the modeler must work in hypothetical space 

until it does become available.

The modeler may define any number of zones, for each membrane separately, over any combination of shapes and 

distributions of actors thereon. 

7.8.1 DENDRITIC PLATEN  

The platen serves as a circular input face for the dendritic “field”, and is attached to a cone serving as the dendritic 

“Stalk”.  The platen and cone combination construct a conical chamber intended to capture several of the topological 

relationships of the dendritic field while maintaining very fast computations for a dynamic simulation.  This shape 

has evolved from a rim-only towards mimicking the tips and tapering thickness of the dendritic branches so as to 

FIGURE 45: ACTOR DISTRIBUTIONS, RAW FIGURE 46: ACTOR DISTRIBUTIONS, SMOOTHED
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slow diffusion at the periphery.   The filling in of the center of the rim (to become a solid circle) supports modeling 

the very short dendritic branches terminating close to the soma.  Lateral (circumferential) diffusion can be further 

limited by inserting vanes into this conical chamber.  The platen can accommodate several hundred dendritic “plugs” 

which produce synaptic signals.  

7.8.2 SYNAPSES  

Synapses are represented as plugs.  They are cylindrical compartments with vesicles on the pre-synaptic membrane 

and receptors on the  post-synaptic membrane.  Diffusion across the gap is supported.  Re-uptake of particles is 

supported via pumps.    Realistic signals, for example voice or music, can be simulated via ligand release rates.  

7.8.2.1 Synaptic Plugs  

The plug consists of a cylinder divided into 2 compartments.  The larger compartment is for storage (sequestration). 

The thin compartment is the synaptic cleft.  The cleft has saline in it.  Neurotransmitters can be released by the 

vesicles, bind across the cleft at post-synaptic receptors, then re-uptake accomplished by pumps located on the pre-

synaptic membrane.  The concept behind the synaptic plug is the analogy to the headset a human communicator may 

use on the telephone.  The ear piece provides an input signal and the microphone captures the output signal.   This 

skirts the geometric problem of getting many neurons to interconnect via contorted shapes.  It reduces the local 

circuit connectivity challenges to a connectivity matrix, even though most of the physical intimacies of diffusion and 

tonicity are preserved.

Synaptic plugs are diffusion/kinetic compartments that can have tonicity, actors, binding, release, and re-uptake.
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7.8.3 BOUTONS  

The portion of plasma lemma facing a synapse is characteristically quite different from the portion of the plasma 

lemma not facing any synapse.   he post-synaptic membrane is necessarily populated with high densities of 

channels, receptors and pumps.  It may or may not be convenient to populate the synaptic surround with reuptake 

mechanisms necessary to clean out the messengers to avoid echoes.  In any case, the maintenance of synaptic 

tonicity is likely to be critical to synapse performance in information transfer.

Boutons are known to grow and to alter their shapes with learning.  Although this model is upgradable to such 

phenomena, growth will not be included in this first release.   To implement such a feature, the shape would be 

recalculated, the nodes recalculated, the actors be reassigned to nodes nearest were they were in the previous shape, 

and otherwise the state actors the same, and particle positions “stretched” to fill the new volumes.

Assuming that the functional role of the bouton is to house the vesicle recycling machinery, we focus on the 

vesicular release mechanisms of the bouton.  The boutons are simulated as a group, in the form of an obtuse cone. 

Vanes may optionally be installed to effect separate timing and processing via varying ion channel and pump 

densities. 

FIGURE 47: INPUT PLUG WITH SYNAPTIC CLEFT
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7.8.4 STALKS  

Arborizations are large determinants of neural function.  They shape the field of reception.  They place the synapses 

in the loci so as to make connections with neighboring cells.   By the lengths and diameters of stalks the time lag to 

soma for each input signal is determined.  By bifurcations of stalks the partial convolutions of inputs may offer 

opportunities for inhibitory or other information-modifying treatments along the way.   Patterns of taper and 

bifurcation are characteristic of each cell type.  A method is provided to map bio-data into radial partitions hat mimic 

stalk cross sectional areas.

Close up (partial) view of the goblet shape main compartment. Each open circle is an available node for an actor.

Simulation of the dendritic arbor begins with 1 or more disks.  Stalks and bifurcations require radial partitions within 

these disks.  This consideration is addressed below.

7.8.5 MANIFOLDS  

3-D shapes may be mapped onto 2-d matrices if there are no sharp corners.  There is a significant computational 

advantage to doing so (2/3 power rule).

FIGURE 48: ZOOM-IN VIEW OF GOBLET SHAPE ADDRESSABLE NODES
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7.8.6 COMPARTMENT ORGANIZATION  

Once the main neuron shape is established, then an extracellular “wrapper” can be applied.  This yields 

another compartment (of specified thicknesses for each zone).

The extracellular membrane is fully functional, being afforded the same actors as the main membrane. 

This supports experiments to determine neighbor non-synaptic exchanges glial support exchanges, 

adaptation to drifting, and depleting concentrations in the extracellular fluid.

Membrane inner and outer surfaces serve as the Ceiling and Floor determination for each particle in 

motion.

7.8.7 HOMOGENEITY OF THE MEMBRANE  

Membranes are closed surfaces with large numbers of addressable nodes.  Each possesses two identifiable surfaces, 

which are  generally labeled “inside” (nearest the center of the core) and “outside.

It is critical that all of the addressable nodes be positioned equidistant apart, as this allows the superposition of PDFs 

on them to position actors without geometric distortions.

   

FIGURE 49: WHOLE CELL EXTRACELLULAR COMPARTMENT (LAVENDER)
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Homogeneity is a mathematical issue and in no way limits the placement of actors in non-uniform patterns or 

distributions.  The nodal spacing can be may arbitrarily fine with little computational cost. 

The generation of homogeneous surfaces consisting of nodes as equidistant apart as whole number divisions of a 

circumference allow, is valuable in that it supports addressable nodes, which also represent uniform areas of that 

surface.

7.8.8 ADDRESSABLE NODES  

Addressable nodes typically number 10000 to 800000.  They are the available sites for actors of any type.  No two 

actors may occupy the same node.  (However, a structure of actors in a functional group may be positioned relative 

to a single node, so as to preserve their distance relationships.)   The nodal density sets the limit on actor density.  In 

studies of high channel density, the node count is elevated simply by setting one parameter (dx) to a smaller 

distance.  Setting the node count high does not increase the computational load significantly when the actor count 

remains the same.

   

FIGURE 50: ZOOM-IN OF WHOLE CELL HOMOGENEOUS SPACING OF NODES
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7.8.8.1 Bifurcations  

The dendritic tree consists of tapered volumes that join in arborizations.  This pattern can be simulated by adding 

radial vanes within a obtuse cone.  Although the cross-sectional shapes are rectangular, the cross-sectional areas can 

reasonably mimic those of neurons.  Length variation is not strictly simulated in such a cone, but the positioning of 

synapses along the length (cone radius) has a very similar effect. The length and the spacing between vanes can be 

randomized to parametric variance. The fan-in topology of the dendrites have obvious summing function from an 

information processing perspective.

 A similar geometry can be employed  to effect multiple axonal outputs.  The fan-out topology is not expected to 

perform significant information processing other than as a lag line.  However, with inhibitory, modulator, or 

Bifurcations can be simulated by dividing up a radial shape with vanes.  These vanes may be randomized  in both 

length and width.

FIGURE 51: WHOLE CELL WITH VANE PARTITIONING OF DENDRITIC TREE
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7.8.9 SOMA  

 Not much is said in the literature about the role of the soma in information processing.  The obvious need for 

cellular machinery to produce and maintain a living cell dictate its presence, and a central location is strategic for 

protein and nutrient transport.  It is seems to be fertile ground for inhibitory connections.  The inhibitory processes 

are not the opposite of excitatory processes.   To accomplish excitation, every step of the process must work 

flawlessly and with some amplification.  For inhibition to succeed, one only need break or disrupt any one of the 

excitatory steps along the process.  Inhibition is disruption.  Inhibitory inputs impinging on a small diameter cross-

section of the dendrites may throttle the entire signal.  Inhibitory inputs over the larger somatic surface are not likely 

to quench a signal.  This might imply that a patterned inhibitory effort in both time and space is necessary to quench 

a signal.   We tend to think of “critical mass” of a concentration of excitatory inputs achieving propagation.  But 

with inhibition, such concentration is ineffective, simply allowing wide swaths of alternative paths around the 

quenched area.  It is expected that widely spaced equatorial inputs would quench any coincident signal, whereas the 

same number of longitudinally spaced inputs would not.

 Some neuronal types, e.g. bipolars, push the soma entirely to the side on a small stalk, leaving dendrite-to-axon 

continuity without a bulge.  Is this a hint that a membranal bulge is not completely benign, and that there are some 

information processing roles where it must be eliminated?    Is this merely to shorten the input-to-output length to a 

minimum, for speed?  Hopefully, simulations can suggest possible answers.  
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The above figure displays a study detecting ions crossing the membrane (zone = soma).   Only the particles whose 

paths crossed the surface of a sphere are shown, and their velocity quivers are also shown. They are classified as to 

whether crossing inward or crossing outward.  The points of penetration are identified.

FIGURE 52: CELL MEMBRANE CROSSINGS, DETECTION
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7.8.10 AXONAL HILLOCK  

A distinct change in ion channel types, mix and densities can effect an analog-to-digital conversion of the signal.  If 

the prior signal is a summation of graded excitatory and inhibitory inputs, Q matrices that effect an all-or-nothing 

response will be making a “decision” on the part of the neuron.  There are other ways of accomplishing this effect. 

If the propagated signal represents a gain of less than one, then the signal will be quenched in just a few ion channels 

down the line.  Therefore analog responses can be “wired” so as to act digitally.  Whatever the case, so long and the 

kinetic schemes are known, these effects can be simulated.

The axonal hillock does not require any special algorithms.  It is distinguished as a zone of sometimes unique 

channel distributions.  These are related via the channel PDFs.

7.8.11 AXON  

It was fortunate for Hodgkin and Huxley that they chose an axon to study, and the particularly simple squid axon at 

that.  Curve fitting the action potential data to fourth order equations was tractable in the 1950's via mechanical 

adding machines.  Most patches of neuron membrane are more complicated than that, and simulations have tended 

toward 7th, 10th, even 30th order matrices, that need to be inverted or exponentiated.  Axons, if homogeneous, can be 

simulated with an initial characteristic response curve then merely adding a delay to represent down-stream points 

along its length. This is computationally very efficient but will not pick up any perturbations along that length.  A 

particle system is a rather tedious way to accomplish the same thing.  It is therefore computationally prudent to 

shorten uneventful axons to the minimum, add delay functions when output phase is of interest, but interrupt that 

FIGURE 53: AXONAL HILLOCK
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process where ever perturbations are expected along the length f the axon, and there return to the particle system 

model (as a patch).

In a particle system model of axons, longitudinal communication takes place only via diffusion.  Action potentials 

are propagated as a function of membrane capacitance per ion channel and channel kinetics.  Channel activation 

kinetics determine speed, capacitance slows down that speed (as a low pass filter does), and inactivation kinetics 

prevent antidromic propagation. This is quite slow and inadequate for axons, which have evolved much faster active 

transport.  For directional sensitivity, chloride gradients are established via the placement of chloride pumps at one 

end only.   Is the passive axial diffusion of chloride fast enough to serve this function?

7.8.12 NODES OF RANVIER  

Axons may be myelinated or unmyelinated.   Unmyelinated display a high capacitance and a rather continuous 

pattern of sodium and potassium channels.  Myelinated display a very low capacitance and absence of ion channel 

below the myelin.  What do the paranode K channels do given that they are smothered in myelin?

The axon zone may be interrupted by any number of Nodes of Ranvier.  They are characterized by a sharp change in 

capacitance.

FIGURE 54: DIFFUSION WITHIN A CYLINDER
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7.8.13 MEMBRANAL STRUCTURES   

Of all the membranal proteins relevant to signal processing by the neuron, those with time constants slower than 100 

msec need not be considered in this model, as their effects can be accounted for parametrically.  Of those that are 

fast enough to participate iteratively can be handled in one of two ways:  Via an approximating function, or by 

adding a kinetics model.

7.9 BUILD OF PARTICLES  

1. The membranes define the volume of each compartment

2. A center of compartment is defined as an adequate injection point for a bolus of particles

3. The quantities of particles for each compartment are instantiated into a bolus

4. The bolus is injected into the compartment and allowed to diffuse until uniformly diffused

7.10 BUILD OF ACTORS  

1. The membrane surfaces are defined

2. Membranes are populated by nodes in quantities in multiples of the total quantity of actors on each 
membrane.

3. The distributions of actors are instantiated as node assignments for each actor type

7.11 IMPLICIT COMPONENTS   
  There are no proper elements in this division.   Certain measurable variables (observables) of the model are 

emergent, not having been specified at the design or build phases.  They are usually an interesting pattern of position 

or motion.  Positions result in concentrations and voltages.  Movements result in flux and currents.

Finite Element 
Capacitors

Once the positions of all actors on the membrane are known, an algorithm 
calculated a polygon around each actor.  This polygon has and area, and 
that area has a capacitance as a function of permittivity.  The capacitance 
value is stationary for the RUN.

Finite Element 
Resistors, Extracellular

The shape and salinity of the extracellular fluid between any 2 Actors can 
be employed to calculate the resistance between those 2 nodes.   This 
resistance can fluctuate with conc0, but usually is stable.

Finite Element 
Resistors, Intracellular

The shape and salinity of the intracellular fluid between any 2 Actors can 
be employed to calculate the resistance between those 2 nodes.   This 
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resistance can fluctuate with conc1, but usually is stable.

Channel Conductances The conductance values of each individual channel must be calculated at 
the finest available dt, as they are extremely dynamic.  These G values are 
the result of gating variables * Gmax values.

Modulators Modulators may be Ligands, ions, voltage or concentrations.  "Modulator" 
is merely a concept, referring only to whatever serves as the "input" signal 
to an actor. 

diffusion rate is a consequence of collisions and reflections

 flux, horz is a function of the distance between actor nearest neighbors

Current, ionic Is the net charge movement due to all flux of charged particles.   Currents 
occur in 3-D volumes of irregular shapes, not in 1-D metallic long 
cylinders as in solid state circuits.   This current has mass, and is therefore 
slow and has some inertia.  It is “smeared” by water collisions.

Current, electronic Is the instantaneous (speed of light) electrical effects due to electron wave 
fronts.  It is not modeled by particles but rather calculated.

voltage Pressure on charged particles, to cross a barrier (membrane) due to net 
charge imbalances. Voltage is calculated by the Nernst EQ.

7.11.1.1 concentrations  

Concentration is the quantity of particles of a single type per unit volume, especially voxels.

7.11.1.2 concentration gradient  

This is a measure of the pressure to diffuse particles of one type in a given direction due to concentration imbalance. 

It is the 3- dimensional differential of the voxel concentrations.  It constitutes a force that translates to an 

acceleration of particles of the same type.

7.11.1.3 charge density  

Charge density is the net quantity of charges per unit of volume, especially per voxel, or per the standard hemisphere 

volume around each actor pole.   Given that the membrane thickness may be significant to the sectioning of a sphere 

centered at the node location, it may be necessary to double the computation by finding the particles within a sphere 

centered at each pole of each actor.   For sparse particle densities, where a larger sphere is necessary to get a desired 

level of confidence, and where the size of the sphere is then large vis-a-vis the thickness of the membrane, it may be 

an acceptable expedient to calculate a single sphere and then sorting by compartment.  The size of the sphere is 

dependent upon the sparsest particle, often Calcium.  If calcium must be found for binding purposes, then the sphere 
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must be large enough that the probability of a calcium is acceptably high.  The advantage of the hemisphere 

approach is that when actors are close, the hemispheres may legitimately overlap, so long as their is a claim conflict 

resolution routine that allows the first actor to claim a particle causes all other actors to release their claims and 

choose another.

The charge density is not correlated with ion density.  This is because ions of opposite charge can “pair off” into a 

neutral pair that diffuses away from the contested membrane area.  This leave only unpaired charges to be attracted 

towards the membrane.  This charge attraction decays exponentially with distance from the center of the membrane.

There is however a maximum charge packing density.  Any two like charges cannot come any closer than the 

thickness of the membrane.  If they did, the repulsive force would over ride the attractive force, and one of the two 

would be forced away from both the membrane and the opposite charge to a new position at the periphery of the 

charge field.  As a result of such charge interplay, particles tend to organize in layers of ever sparser occupancies. 

Thermal motion jostles this pattern, but it is none-the-less characteristic of liquid state capacitance.

7.11.1.4 voltage  

The ratio of the charge densities on either side of a membrane determine the voltage.  However the arbitrary choice 

of voxel size for this calculation will vary the value somewhat.  While in nature the spatially instantaneous voltage 

at the exposed channel surface will determine the voltage effects upon it, we cannot calculate a surface voltage, only 

a volume voltage.  Ironically, there is a surface effect that impinges upon voltage, and that is capacitance.  Because 

ions are being transported non-homogeneously, the voltage across each ion channel is unique.   Because the 

capacitance effects of the adjacent membrane are practically instantaneous, capacitance is a dominant determinant 

of voltage in response to flux, on all but the very highest channel packing densities (where the remaining area for 

capacitive membrane per channel is low).

It is more accurate to calculate the voltage via Coulombs law when only taking into account the unbalanced charges. 

This is done by counting the unbalanced N charges  and identifying those ions of that charge closest to the 

membrane, ignoring all else both positive and negative.  This is because real particles are more organized so as to 

neutralize than ae computer simulations of particles.  
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Voltage units are redefined to apply to individual particles:  ev = (kelv/valance)*log2(q.out/q.in)

Current units are redefined as charges per msec.  Thus Ca++ would carry twice the current as K+.

Nernst Voltage is scaled to eliminate the constants = natural log of ratio of charge densities between 2 (usually 

adjacent) volumes, especially voxels.  So long as the temperature is constant, only the log of the concentration ratio 

need be in the iterative calculations.  

7.11.1.5 voltage gradient   

The voltage gradient across the membrane is the measure of the electrostatic force on a charged particle located in 

that gradient.   It is the differential of the 3-d solution to the N-body problem.  It constitutes a force that translates to 

an acceleration of particles of the same type.  

However the voltage driving each ion channel is more complicated.  The Coulomb membrane voltage plus the 

concentration gradient plus the specific ion Nernst partial voltage are all major factors that sum to determine the net 

pressure that moves ions through an open channel.  As each ion channel has multiple conductances for each ion type 

present, this calculation must be performed for each channel x each ion type, per dt.

7.11.1.6 capacitor charge  

The default value for membrane capacitance is that it is proportional to the membrane area allocated to each actor, 

divided by the effective thickness of the membrane, times the voltage across the membrane.  Any net charge 

imbalance across a membrane will be strongly attracted to the membrane via the EM force.   Capacitance is quantity 

of charges held per unit of membrane area.  The quantity of charges held is proportionate to the voltage across the 

membrane.  Capacitive charge is synonymous with charge imbalance.  However capacitors of higher dielectric 

strength can hold charges in a higher packing density, therefore higher voltage.

Conceptually, capacitance is a 2-dimensional phenomenon, but in liquid state capacitors at normal temperature entail 

a layer of near-Brownian movement of charges on either side of the dielectric membrane.  The charge density tapers 

off exponentially with distance from the membrane.  This charge is referred to as the zeta potential.  
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In experiments where the membrane capacitance is non-homogeneous, the vector of membranal area elements can 

be multiplied by an equal length vector of capacitance modifier values from say 0 to 2.  Typically such values would 

be  near 1, as the membrane capacitance does not vary much due to variation in mix of lipids and proteins.

7.11.1.7 flux  

Flux is defined as the 3-d movement of particles per second.  It can be measured in 3-d free space relative to points 

of interest via grad, div and curl functions common to physicists.  As particles may be neutral, charged positive or 

negative, or multiply charged:         

flux * valance = current

7.11.1.8 Salt Water Resistance  

Saline acts as an electrical resistor.  When a pressure exists to move electrons in at one point and electrons out at 

another point, then the resistance can easily be measured with an ohmmeter.  However, under normal physiological 

conditions this does not happen.  The normal charge carriers are ions, and to a much lesser extent protons (as 

hydrogen ions modulating pH).    Because of the capacitance effects of the membrane, almost all of the unbalanced 

charges reside very near the membrane.  Although it is possible for current to flow through the saline volumes, there 

is no charge imbalance to drive such.  The driven charge flows are between channel and channel;  pump and 

channel;  and the repulsion between like charges.  Unbalanced unlike charges must be across the membrane from 

each other; else they would cancel each other out extremely quickly (at the speed of conduction of electricity).  

As a result, most or all of the charge flux is along the membrane and acts as an oscillatory mass-spring grid, held 

near planar by attraction to opposite charges across the membrane.

Whenever a voltage gradient exists across some distance of saline, then there will be some current in the direction of 

that gradient until such a gradient is neutralized.  The resistance of the saline is in parallel to the relatively free flow 

of charged particles along the capacitance of the membrane.  Because the forces at the capacitor are stronger, it is 

likely that the dominant horizontal current is through the capacitor rather than through the volume of saline above it. 
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7.11.1.9 Electronic vs Ionic Conduction  

Electronic conduction takes place at near the speed of light, whereas Ionic Conduction takes place at the speed of 

diffusion and drift.  In modeling, diffusion is practical to simulate, but electronic conduction is too fast to do so, 

requiring quite rigid coupling between electrons.  Any pure electronic effects must be calculated and applied 

analytically, not via particle movement.  So far it is difficult to conclude that electronic conduction is present in the 

neuron membrane propagation waves.  If it were present, it would short circuit out all the neurons via the 

extracellular saline conduction, and he result would be epileptic synchrony, not information processing.  The ever-

present capacitance of lipid membranes severely mutes the electronic conduction that is possible in solid state 

materials.  Although electronic conduction is practically instantaneous, the saline resistance values between ion 

channels insures varying voltages at each actor, and the capacitance between actors acts as a low pass filter, 

absorbing all the high frequency signals.  Voltages over the membrane are analogous to surface waves upon a lake 

wit ha shallow rough bottom topography.

7.11.1.10 Channel Conductivity  

While an ion channel is in an open state, ions may pass through as a function its ion conductivity profile, voltage 

gradient, and concentration gradient.  

J = S*(V+C)*O,   where
J=flux, S=conductivity profile, V=voltage gradient, C=concentration gradient, O = gating state

Ions within a designated radius of the channel are available for such passive transport. 

Current equals net charge flux
I = sum(Jx*D) ,  where
I = current, Jx = ion flux in the axial direction, D = valance of the ions

Current is an implied variable, not physically represented as something separate from flux.  However its calculation 

may be used to determine the voltage gradient.  Alternatively, the particle transports alter the unbalanced charge 

differential across the membrane, and from these alone may be calculated the Coulomb voltage.  
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7.11.1.11 current  

Current is defined as the net 3-dimensional movement of charges per second, across some designated area.  Pumps 

are a current source.  Ion channels provide selective current “short circuits”  or “loads”.  If channels are truly 

resistive, then they should heat up upon opening to experience flux.

7.11.1.12 Circuits  

Resistance to nearest neighbors both above and below the membrane.

The figure above shows 4 nearest neighbors connected via saline conductance.  Though each ion types gets its own 

variable resistor through the open pore, all ions share the capacitance and voltage associated with the membrane. 

The pumps then again, are quite specific to ion types.  As conventional electronics expects complete circuits ( loops 

of several nodes), it is noteworthy that ion channels flicker open and closed, often spending most of their time 

closed.  This implies statistically that most of the time when a single channel is open its neighbors are probably 

closed, and thus there may not be a “complete circuit”.  Instead, the ion flux through an ion channel in response to 

concentration gradients and/or voltage gradients is absorbed by capacitance.  The charges that are captured at the 

FIGURE 55: STANDARD NODE ELECTRICAL SCHEMATIC
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capacitive membrane surfaces tend to alter the voltage across the membrane because they effectively remove 

charges from solution that otherwise would contribute to that voltage.

Development of the circuit approach lead to the following extensions:

 A 4-port RC filter rendition of a neural membrane with pumps and channels, with saline above and below. This is 

the simplest depiction of axonal conduction as an electrical circuit.  As with all such representations, discrete 

capacitance and resistive coupling between channels are required.  Such discrete elements are called into question by 

the facts of continuous capacitive membrane, and the wavelike communication of mid frequency disturbances 

(approx 1E3 Hz) not as diffusion through the saline, but rather as a wavelike disturbance of the capacitated ions.

Bifurcation circuit was considered but later abandoned due to the need for channel participation. 

FIGURE 56: 4-PORT LADDER FILTER

FIGURE 57: Bifurcation circuit
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And such a mesh of components can be shaped as per cellular portions.

FIGURE 58: RC grid representation of Membrane Patch
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 This cylindrical representative of a portion of axon supports the modeling of a filter approach to he membrane.

7.12  OUTPUT VARIABLES  

Concentrations Concentrations change as function of flux = dc.  These must be tracked 
because the Nernst potentials depend on them, and because many actors 
are sensitive to local concentrations.  Because diffusion takes time, it is 
necessary to track concs on a per voxel, or per node basis. Note that pH is 

FIGURE 59: Circuit Representation of a Portion of Axon
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also a conc of H+.

voltage The membrane voltage is highly dynamic and must be tracked both 
nodally and for each dt.  Calculated by the Nernst EQ.

capacitive charge q, the charge is local and temporal, and has the effect of sequestering 
many charged particles while the membrane is exposed to a non-zero dV. 
This is modeled by membrane charge attractors (dielectric effect).

7.12.1 SEQUESTRATION  

Regulation of the internal environment of the cell requires more than mere pumping between the extracellular and 

intracellular compartments.  The sequestration of Calcium for example is accomplished by pumping it into 

intracellular vesicles.  A single core compartment can serve the function of providing a place to park ions and 

ligands which are temporarily removed from solution.

A minor offense of sequestration in the core is the dislocation of particles that may be involved in messaging and 

other location critical roles.  Because there is only provided this single core compartment,m rather than thousands of 

local compartments, the model translocates particles in and out of core instantaneously, violating physics for this 

simplicity.  Presumably, to the pair of translocations in and out of sequestration cancel out to no impact upon the 

conservation laws.  However, charged particles are a problem, as a sudden and unnatural shift in charge is 

disruptive.  This may require shutting off valance while in sequestration.  It is not known whether doing so will lead 

to model spuriousness.  
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Within the soma, a smaller sphere is placed.  It serves as a general compartment to store particles out of circulation 

(sequestration).  The core also serves to block out most of the soma volume where  organelles would do the same in 

biological cells, and thus make the intracellular fluid diffusion active only near the plasma lemma.  The core may be 

used to store particles not is use, but as discussed about, charged particles in large quantities will distort the charge 

field unnaturally.

7.12.2 TIME SCALING  

Generally, there are 4 types of time to be discussed:  

1. biological time (that of the empirical data on wet neurons); 

2. simulation time (that particular slice of biological time to be modeled)

3. computer time, the quantity of CPU clock cycles consumed to perform a simulation

4. user time, the length of time required to perform certain human tasks and waits to effect a simulation

FIGURE 60: SOMA VOLUME REDUCTION
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Most design work is concerned with simulation time.   For example, let one second of model simulation playback 

equal 1 biological millisecond.

Computer time will necessarily be many orders of magnitude slower than biological time.  Digitization suffers a 

total loss of continuity in space and time.  This implies a large computational load to recalculate inter-particle 

distances and forces each dt.  Forces which occur without computation in nature must be tediously recalculated each 

dt as an N-body problem.  Natural systems are able to exploit the physical forces in ways that silicone computers do 

not, and thus realize many orders of magnitude advantage in energy consumption and in quantities of computational 

steps (flops).  This leads to the conclusion that biological systems are not at all slow.  The massively parallel 

architecture of neuronal processing, combined with the molecule-sized elements, effect an immense amount of 

processing in micron-scale space-time.  Popular comparisons to computer clocks and bits avoids the fact that a 

single neuron is doing a lot more than a common computer.  By assigning a neuron an arbitrarily simple task, like a 

“yes or no” decision, we trivialize the work load of a neuron, and then wrongfully declare it to be “slow”.  Computer 

time rapidly becomes a limiting factor for practical reasons.

7.12.2.1 Log Scaling of temporal events  

For some studies it may be desirable to study the effects of fast processes upon somewhat slower processes.  When 

the ratio between them is too great for the available computer, some compression of time between the two may be 

done to render the simulation tractable.  See chapter Strategies for discussion of this topic.

7.12.3 SPACE SCALING  

1. Whole Cell dimensions, in microns

2. Patch dimensions, in nanometers

3. Voxels – volume units within the Whole Cell, for purposes of flux measurements

4. Pixels – surface units at the membrane which correspond to the face of an adjacent voxel

5. Flux – net movement of ions, parallel or perpendicular to the membrane 
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7.12.3.1 Log Scaling of compartment sizes  

Large scale models, such as whole cell models may encompass 8 orders of magnitude from ions at 1e-1 nm to axon 

lengths at 1e7 nm.  This is not tractable with current computing power.  The surface area would entail too many 

actors and the volume would entail to many ions and messengers.

A practical solution is to logarithmically scale distances down to the limits of the available computer.  An algorithm 

found to be of use is:

Newsizes = antilog((desiredmaxsize/maxsize) * log(sizes));  % name of operator = scalebylog

This particular transformation does not enlarge the lowest values as does the operator:

Newsizes = logN(sizes,basis); % where basis is a value in range 1..1.1;

The scalebylog.m  function receives a list of compartment dimensions, checks to ratio of largest to smallest, makes 

no change to the smallest, but scales everything else on a log scale so proportioned that the max value has been 

scaled down to a set desired maximum size . 

For EX, let the membrane dimensions of the model be: 

   Dx   =   [ 5 50 20000 500000 6000000 1.2E8]; and set the model maxdim = 1e4.  
[newDx descalar minx] = scalebylog(Dx,1e4);    % generating output  
newDx = [5 17.416 447.97 2564 9858.8 50000].    
descalar and minx are saved for decompression later.

As this is a compression algorithm, accelerations are also compressed and velocities distorted somewhat, resulting in 

compressed lag times due to velocity.   However, such results can be de-scaled back to their original values via a 

reversing algorithm.   A function for decompression  is provided.

oldDx = descalebylog(newDx,descalar,minx);

Note that over-compression will distort diffusion results.  Nonlinear behaviors must be verified by comparing 

compressed against non-compressed results.
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7.12.4 QUANTITY SCALING  

1. Let one model Actor equal _____  live actors

2. Let one model Interactor equal  ____ live interactors

3. Let one model collision equal ____ live water molecules

4. Let one model synapse equal ____ live synapses

5. Let one pixel of model membrane equal _____ picofarads of capacitance

Particle radii relative to the particle density? Because the quantity of particles is reduced, various compensation are 

indicated.  One such compensation is to increase the radius of particles to increase the probability of collisions. 

However, this requires the enlargement of the ion channel pore sizes.

7.12.4.1.1 Quantity of elements,  factors
While modeling on personal computers, it is advisable to restrict particle counts to about 1E5, and the number of 

actors to 1E3.  This is but a tiny fraction of bio-reality for a neuron.  The use of super computers can increase these 

quantities 100-fold, or even 10,000-fold if month-long runs are tolerable. (2,592,000 sec/month)

7.12.4.2 Log Scaling of quantities  

See chapter: Strategies for a discussion of log scaling.

7.13 MODEL QUANTIFICATION  

A list of parameters will require values to run  a model.  Follows is a form to assist in collecting those value.
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SAMPLE CASE

Quantity of membranes 5

Quantity of compartments 5

Membrane areas

Membrane pixelation

Membrane capacitance

Compartment volumes

Compartment voxelation 

Species of ion

Quantities of each species of ion

Species of Ligand [ Na Cl K Ca An]

Quantities of each species of ligand  

State of each ion and ligand, free or bound to ___

Collision rates for each ion and ligand

Solvent collision rate for ions and ligands

Surface collision rates for ions and ligands

Forces resulting in accelerations for each ion and ligand

Species of Receptor

States of each receptor

Quantities of each species of receptor

Distribution of each instance of receptor

Modulators for each receptor

Affinities and dissociation rates for each receptor

Species of channel

Modulators to each species of channel

Conduction profile for each species of channel

Phenotype to each species of channel (gating function)

States of each channel  (Q =10x10)

Modes of each channel (number of Q)

State transition rates for each channel (determine dt)

Affinity/binding/dissociation rates for each channel species

Quantities of each species of channel

Distribution of each instance of channel

State stochastics for each instance of channel

Particles bound/transported for each channel
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Species of Shuttle

Quantities of each species of shuttle

Distribution of instances of shuttles

Links (receptor to channel) for each shuttle

Second messenger progress for each instance of shuttle

Species of Pump

Staging each side of each Pump

Modulators for each species of pump

State kinetics of each species of pump (Q = 6x6)

Starve and Saturate kinetics for each species of Pump (number of Q)

Affinity/binding/dissociation kinetics for each pump

Quantities of each species of Pump

Distribution of each instance of Pump

Particles bound/transported for each instance of pump

Species of Vesicle

States of each Vesicle

Quantities of each species of Vesicle

Distribution of each instance of Vesicle

Modulators for each Vesicle

Affinities and dissociation rates for each Vesicle

Contents of each species of Vesicle

Release kinetics for each vesicle

Quantity of input plugs

Contents of each input plug

Distribution of input plugs

Quantity of output plugs

TABLE 17:  MODEL QUANTIFICATION



8 DESIGN PROCESSES

The currency of this model is not energy.  It is not structure.  It is not random processes.  It is information.  

The elements described in the prior chapter, Design Elements, are each endowed with the static aspects of their type. 

This chapter addresses the dynamic functions of those elements and their inter-relationships.   There is an abundance 

of modeling approaches in the literature that serve physics, for such purposes as conserving the energy of the system 

and/or the mass of the system.  They meet conservation law requirements by aggregating the particles, forming 

grouped continuous phenomena.  But a study of information does not allow such aggregation.  To pursue the 

information flows of neurons it is necessary to dis-aggregate the analytic EQs, via instantiation.  It is necessary to 

build particle systems that faithfully process information, demonstrably representative of how living neurons 

perform their functions.  Some articles declare as “molecular models” what are analytic equations representing 

aggregated particles.  This model, however, represents particles individually so as to investigate the information 

carrying and modifying potentials of particles by position, velocity, charge, mass, type, bond tendencies, etc..

The neuron is a system which receives varying chemical concentrations over a portion of its surface, as inputs (via 

bindings to receptors).  It also emits varying chemical quantities from very certain portions of its surface (via 

vesicles) as outputs.  In between these two transduction processes, there is a vast network of ion-processing devices. 

This ionic system is driven by steadily replenished concentration gradients and voltage gradients (generated by 

pumps).  This system is heavily modulated by many types of chemical messenger molecules.  Additionally, the 

forces of voltage gradients and concentration gradients are not static and are not homogenous.  Fluctuations in both 

voltage and particle concentrations modulate transmembrane ion conductivities as they impinge upon the 

transmembrane actors.   Available energy and channel response patterns give rise to  various forms of signal 

processing along the membrane, e.g. positive feedback, regeneration, and propagation.  In complementary fashion, 

the pumps must restore what the channels “bled“ out.  That is, the passive channel transport is driven by the active 

pump transport.  The pumps are numerous enough, and fast enough, to participate in signal shaping; and that can 

only be investigate by mimicking position relationships between channels and pumps. 

468
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This model is silent to the processes of genetics, proteomics, energetics and housekeeping functions.  It is intended 

to perform basic neuron functions of graded responses and action potentials as a consequent of stimuli working 

through actor molecular kinetics.   Only those actors of immediate causal significance in the transfer and processing 

of information need be included.  The various nonlinear responses of the actors may result in a wide variety of 

patterns.  Forward compatibility shall support adding features of longer time constant processes such as plasticity 

and learning.   

Channel conductivities are altered  dynamically by internal state transitions.  These state transitions, in turn, are 

modulated by external modulators.  Modulators may be impinging forces and/or particle bindings.

In this model, particle collisions and actor state changes are energy conserving.  Mass is conserved , and may be 

regrouped in chemical reactions and hydration.   Energy is consumed in the transporting of particles against the 

gradients, but this is recorded as a bookkeeping exercise, not derived from first principle results, and therefore does 

not account for how this energy is dissipated out of the system.  It remains for others to investigate the thermal 

dynamics of the kinetic schemes proposed herein, so as to determine feasibility of molecule designs proposed.

8.1.1.1.1Element Processes
a)  Actors are any of four protein classes which are found affixed to the membrane at static or nearly static locations. 

They operate as finite state machines, with states changes resulting from the impacts of thermal motion, voltage 

pressures, allosteric bindings, and energy-yielding chemical reactions.  Some of these states result in actions that 

impact the outside world.  Actors usually have binding sites that may effect modulation, or be involved in 

transporting particles.

b)  Particles are free to move about in aqueous solution unless bound.  Particles have traits, at a minimum consisting 

of mass, radius, charge and mechanical mobility.  Ions in aqueous solution diffuse and drift throughout each 

compartment, and operate as a charged particle system.  Their motion is due to thermal energy, concentration 

gradients and drift forces.  Particles may bind and unbind to each other or to actor binding sites.  

c)  Membranes, serve as the boundaries of compartments, as charge barriers (that cause capacitance), and as sites of 

actor placements.  Membrane processes include reflection, actor placement nodes (addressable), and voltage 

building due to any accumulation of unbalanced charge.

d)  In addition to the explicit elements, there are several implicit aspects of the model.  Particle flux, voltage, current 
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and capacitance are emergent phenomena.   The concept of phenostate is also emergent, whereby an actor internal 

conformation, may in certain environments result in significant impacts upon that environment.  

Actor dynamics emerge from their intrinsic traits, collisions of motile particles and temperature.  There is a coupling 

between actor state transition probabilities and actor binding site binding kinetics.   This model evaluates actor state 

transitions for their role in holding and processing information, and for their ultimate impacts upon their immediate 

environment (also a form of information).  This model generates and tracks bindings, unbindings, conformation state 

changes and phenostates for each individual actor.   

Each particle types gives rise to dynamic behaviors emergent from its intrinsic and extrinsic traits.   Particles 

experience velocities and accelerations, collisions and bindings.   This model tracks individual particle position, 

velocity, acceleration, binding, and transport events.  

Although the compartments are static structures, they do partake in the critical dynamic of capacitated charge, which 

this model tracks.  In  digital simulation, the collisions of particles with the shaped membrane is not a passive 

phenomenon, but requires significant calculation load.

Actor intrinsic traits:  TYPEA.Chan = { bindkinetics, conformerkinetics, phenotable, transportfunction }
Actor extrinsic traits: DIST.A.Chan = { position orientation poles comp#  B#bindings  O#action }

In similar fashion, the particles (also called interactors) are characterized by their intrinsic and extrinsic traits:

Interactor intrinsic traits:   TYPE.B.Ions = { #  mass  charge  radius  mobility }
Interactor extrinsic traits:   DIST.B.Ions = { comp#  position velocity acceleration bind actor# pole#}
There are also TYPE.B.ligands, and DIST.B.ligands, treated in much the same way.

And finally, the compartment membranes are characterized in similar fashion:

Compartment intrinsic traits: TYPE.C.memb = { thickness   dielectric_coefficient   capacitance }
Compartment extrinsic traits: DIST.C.memb = { shape nearestneighbors  voltageacross  current_through }

These organizational notions are pervasive in this model.  
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8.1.2 PROCESS ENGINES  

There are three main actions that must be generated by this model:  free ranging particle movement; actor state 

changes; and the electrical phenomenon of signal propagation along the membrane.  Each of these subdivides into 

several specific types and processes.  There is generally one class of membrane, two classes of particles, and four 

classes of actors.  

It was discovered in the course of model development that the electrical phenomena of signal propagation is 

emergent from the charged particle system.  The model evolved into representations of 4 major processes: particle 

movements, actor state changes, particle/actor bindings and unbindings, and actor action functions (e.g. channel 

openings).  A summary of that development follows.

Depicted in the cartoon below is a membrane with four types of actors embedded in it and saline solutions on either 

side.

  The four actor types are: R = receptor, C = channel, V = vesicle, and P = pump.  The dashed green line is 2-D 

diffusion shuttle from one receptor to many channels.  The vesicle stochastically releases a pre-packaged group of 

particles.  And the pump attempts to restore the original “rest” conditions.

The processes of the model are divided into groups corresponding to the three main elements: membrane, particles 

and actors. 

       Receptor   Channel    Vesicle     Pump

FIGURE 61: ICONIC VIEW OF MODEL ELEMENTS
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1. Membranal processes include barriers to forces and capacitance.  As a result some unique phenomena occur 

along the membrane.  Membranes support 2-d diffusion and 1-d diffusion, and charge-motivated behaviors. 

They reflect particles that impact them according to reflection angles about the pixel normals.  Each 

membrane may be tessellated into triangular pixels.  Then, each node has a hexagonal (6 pixel) surround 

which comprise the capacitive area for that actor.  These surrounds vary in area as a function of actor 

densities.  

2. Interactors are particles in solution which possess position, mass, radii, charge, position, velocity, and the 

capacities to collide, reflect,  bind and unbind.   Momentum is employed to resolve the frequent collisions. 

Supported is 3-d diffusion, collisions with water molecules, collisions between ions, force accelerations 

with respect to both free ion charges and fixed charges, and binding to actors and membranes.

A particle system of diffusive processes must include the electrodynamics of charge fields to account for 

the significant behaviors of membranal information processing.  

 In the diffusion software engine, the electrical processes and diffusive processes can be merged , treating 

the actors as black box sources and sinks.   

3. Actors are considered to be point processes driven by thermal energy and modulated by messengers and the 

voltage force.  Some actor types (e.g. pumps) require additional energy sources to function properly. 

Model energy sources, such as ATP, are treated as allosteric modulators.  That is, the Gibbs energies are not 

calculated.  The conformational changes executed within the model actors are not energy-aware, although 

kinetic schemes imply energy relations by their  state path probabilities which give them direction.  Pump 

performance is modulated by concentration levels due to the kinetics of binding/unbinding.  The channels 

FIGURE 62: DIFFUSION ENGINE VIEW
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are driven by thermal energy and modulated by messenger bindings and impinging local voltage gradients, 

resulting in changes in conductivities (openings and closings).   Collectively, pump and channel functions 

may be referred to as transport, whereby ions and/or ligands may be moved from one compartment to 

another compartment.   Receptor and vesicle function may be referred to as transduction, converting a 

signal on one side of the membrane into a different, usually amplified, signal on the other side.

In the kinetics software engine, the actor kinetics are separated as stochastic PDEs, and diffusion deliveries are 

treated as a black box source and sink.  The reception of particles delivered by the diffusion/drift process is not 

certain, and the stochastics of binding and unbinding to actors add an additional uncertainty/variance.   

A binding or unbinding event causes an alteration of the internal transition probabilities between possible 

conformations to be altered, resulting in a phenomenon called modulation.  For durations while the modulator 

binding combination is stable, the internal conformation changes are driven by thermal noise, yet another source of 

uncertainty.  The stochastics of  messenger release may be very similar to those of modulator bindings and 

unbindings.   For vesicles, a group of particles (the vesicle contents) are placed within it, according to A4.traits 

which specify contents profile mean and variations.   The timings of recharge and release, lags, speeds and variance 

are also stochastic.  

This project was founded on the project plan to design and implement the three engines above.  However, as the 

model matured, it was found that the particle model increasingly encroached upon the electrical grid model.  The 

particle model was more predictive, solved more problems, and exhibited more useful and emergent behavior.  It 

eventually became clear that the electrical grid was to be completely replaced by the features of the particle model.

FIGURE 63: KINETIC ENGINE VIEW
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8.1.3 TAG MANAGERS  

Particles in a digital simulation require some bookkeeping.  They are assigned to a compartment and are not allowed 

to leak out unless by design.  If they become bound to an actor, they must be tagged with the actor number and the 

velocity temporarily set to zero.  Tags are changed by the binding and unbinding of a particle, and by the transport to 

a different compartment.  There may be other data necessary to capture for the sake of digital model bookkeeping. 

The collision of a particle with an actor, is “owned” by the particle.  It is individual particle motions that determine 

collisions, and such collisions are tracked via particle data tables.  However, once a collision occurs, it is the actors 

that “own” the decisions whether or not to bind.  The binding/unbinding decision process  is a stochastic one that is 

driven by the bind site probabilities residing within the Actor state machines.  Thus, the Actors are de facto Tag 

managers for bind/dissociate actions, and for transport actions.  A is mapped onto a partial of B , and then certain 

functions are applied to B.  These functions include chemical reactions, and relocations.  They include catalysis, 

such as the rapid creation of messenger particles by a stimulated receptor, and the conversion of ATP to ADP by 

some pumps.  In order to handle a query about a particle location, velocity or state, the particle must maintain 

pointers to the actor that captured it.  If such queries are intensive (asked every dt) then an inverted table needs to be 

generated each dt., mapping B to A   The normal relationship would be: given an actor#, return all particle#'s 

involved with that actor and their status.  The converse would be:  Where is B? 

AB = getBindinfoAB (actor# );  
AB = [actor# pole# bindingsite# particle# rlevel];   % where rlevel =  { 1 for bound naked, 2 for bound 
hydrated, 3 for within binding radius; 5 = within affinity radius, 6 = this actor is nearest actor };

BA = getBindinfoBA(particle#,rmax);                   % where rmax sets maximum rlevel returned
BA = [particle# actor# pole# bindingsite# rlevel]; 

To the extent that particles may incur probabilistic events with membranes, the kinetics of such particle interactions 

and molecular state transitions have both forward and backward probabilities.  Such probabilities can be 

accommodated whenever the particle is identified as a Kolmogorov entity, in which case an R matrix shall be 

provided for that Actor across all particle types.  The treatment of R matrices is stochastic, similar to the Q matrix of 

the Actor internal state, except that forward reactions must be multiplied by the local concentrations of particles, 

based upon first order rate kinetics.  

From the software perspective, all collisions and binding state updates can be performed en bloc, regardless of 

ownership by the Actor, Particle or Compartment membrane, as   B X [A B C]
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In the working model, the membrane nodes were given 200 traits.  The particles were given  34 type traits and 100 

instantiation values.  The actors were given a complex of 10 type matrices and 34 traits and 40 instantiation vectors. 

See chapter “Data Structures” for details.

8.2 RC_GRID  
The nodal EQs solve for the currents through the membrane at a single node each dt.  These currents are dissipated 

and propagated horizontally to neighboring nodes via the saline conductors between nodes both above and below the 

membrane.     

The RC_Grid is an electric network consisting only of resistors, capacitors, voltage sources and current sources.  It 

is ultimately responsible for the propagation of the action potential and all other graded responses of the neuron. 

Each actor occupies one node.  Each node may be vacant, or occupied by one actor. The effective area of an actor 

extends half way to its nearest neighbors. (calculated via Voronoi's algorithm).

Membrane capacitance is allocated to each occupied node, not to the edges between the nodes. The nodal 

capacitance values are per Voronoi polygons of varying sizes and shapes. However, the shape has been standardized 

to a hexagon wherever possible to assist in CPU speed. 

The edges are all comprised of saline resistors, both intracellularly and extracellularly, which connect each node to 

its nearest neighboring nodes.  The nearest neighbors are calculated via the Delaunay algorithm, and may vary from 

3 to 12 in quantity, at the choice of the user.  The computational load goes up with the NN count, but the richness of 

coupling is accordingly increased.
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8.2.1.1 Channels are variable resistors  

The voltage sources across channels are Nernst potentials calculated for each ion type at each actor.  Each such 

partial  subtracts from Vm to get the net voltage potential driving that type of ion.   If there is no conductance for that 

ion type at that node, then that Nernst potential is undefined ( 0/0 ), but is practically zero, in that its term is dropped 

from the GHK EQ which sums the partial voltages into an aggregate value.    Be reminded that channels are gates, 

with low duty cycles.  Although every electrical circuit needs a complete circular path, closed channels disrupt that 

path.  The membrane capacitance must serve as a buffer for currents from pumps and intermittently open channels.

8.2.1.2 Pumps are current sources  

Ion pumps are current sources.  A node is a pump if it has any negative conductance values. Pumps impact flux, 

concentrations, current, membrane charge, all on a basis of peculiar ratios between ion species.  As a group, pumps 

create a non-orthogonal basis for charge balance restoration after each channel event, and thus are logically complex 

when solving for solutions.  Co-transporters can be treated as coupled double-barreled, or triple-barreled, 

transporters with local presence of special 'ligands' (e.g. ATP) that drive some of the ions against their gradients 

between the compartments. The energetics of “pumping” can be treated as a negative conductivity or as a energy 

conversion machine.  Pumps are generally cycling rather rhythmically, for two reasons.  Because they pump only 1 

to 5 ions per cycle, and channels can allow the flux of 1E6 ions in a single pore opening, the pumps must work 

continuously to restore a quantity exceeding what the channels allowed to passively transport.  The pumps may be 

modulated to set their saturation concentrations, but are less likely to be modulated as dynamically fast as the 

channels because their very few ions in transport cannot have much effect that isn't masked by the channel openings. 

The general RC Grid circuit well represents both ion channels and ion pumps.  Co-transporters may appear 

graphically as several separate channels with dotted line coupling between them.  They require the additional logic 

of ratio pumping, which is represented in an electrical circuit as "mechanical linkage".   Kinetic representation of the 

pumps can effect any stoichiometric ratio.

For purposes of pump BUILDs in this model, what ever ions are pumped from compartment A to compartment B are 

listed in “Bind1” ( a table of pump staging required ions, starve concentrations, saturation concentrations); and from 

compartment B to A as Bind2.  From these data are calculated sigmoid performance curves as determinant of ion 
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binding and unbinding statistics.   A third pump table manages: maximum pump rate and energy consumed per 

pump cycle, the pump position, its pole locations.  Pumps may be set up to receive their bind1 ions in sequential 

order, or in “no order specified”.  They may require completing the Bind1 sequence then Bind2 sequence alternately 

or simultaneously.  Such settings depend upon the biological data which characterizes each Type of pump. 

Pump RUN data is managed as pump states, via Bind1, Q, and Bind2.  Pump functions include: Attractor, Binder, 

Transporter, Unbinder, Converter (ATP).

8.2.1.3 Saline Resistance  

Copper wire and carbon blocks are very predictable in their resistivity, and so might saline be in a cylindrical shape 

with a metal plate at each end.  But saline in the cell is employed as a conductor from point to point, or from point to 

surrounding surface.  It therefore does not produce a resistance linear with respect to distance between source and 

sink.  Ion channels are effectively point sources and sinks, with extremely small “cross-sectional area” of 

conductance, the lines of current tend to balloon out from the source point into the open liquid space, then shrink 

back to a sink point at one or more neighboring channel.  Most of the resistance is concentrated at the poles.  The 

belly of the path is fat, therefore of low resistance, and so resistance does not vary much with distance.  Or is this 

effect not a volumetric effect, but rather a surface effect?

There is not as much point-to-point conduction as textbook drawings of the neural membrane would suggest. 

Channel duty cycles as mostly in the closed state.  Most of the time, current flow is point source to membrane 

capacitance.  This presents a large planar sink with a cross-sectional area hundreds or thousands times larger than 

than the ion channel pore (suggesting a cone of resistance, or more accurately, a fountain shape).  The dominant 

variable of resistance is tonicity.  Conductance is proportional to the ion density.  Divalent ions have twice the EM 

force applied to them in a field, and thus move about twice as fast.  If electrons can be freed by the presence of a 

charge field, then the ion masses become irrelevant, and the velocity of conduction approaches c.   This is a matter 

of great import to the model.  Are there free electrons available for conduction near the membrane (above and 

below)?
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8.2.1.4 Capacitance  

Capacitance is essential to simulate an action potential in neurons.  The physics says F= q1q2/r^2 for EM force, with 

a dielectric barrier holding apart dissimilar charges, and voltage applied via ion pumps.

Inter-particle forces result in acceleration.  The sum of all forces impinging upon a single particle determine the 

acceleration of that particle for one dt.  A plate charged oppositely on each face does not produce a capacitor when 

elasticity is high. Reflective surfaces bounce the particles back, unless water is present to smear this effect. 

Elasticity might be reduced, but such reductions in velocity cool the solution.  Water as a solvent diffuses the bounce 

but does not help get particles to stay near the plate, quite the contrary.

                                                                                                       

Note the accumulation of charges at the central membrane by the end of the run of only only 25 dt.

Results of a dielectric membrane, and a 5% charge imbalance.  Negative charges pile up against the membrane on 

the side with a surplus of negative charges, and are repelled away from the membrane on the side with a deficit of 

negative charges.   The quantities of charge attracted to the membrane are equal on either side.  The “charging 

curve” continues until the remaining particles (not at the membrane) are net-neutral in charge. The dielectric factor 

of the membrane can increase the capacitance due to dipole surface effects within the membrane. This is modeled by 

adjusting the “effective” thickness of the membrane.

There is an equal number of positive and negative charges on either side of the barrier (located at x=10).  These form 

a capacitor within several dt.  The neutral particles remain randomly distributed.

FIGURE 65: UNBALANCED CHARGE, T=25FIGURE 64: INIT USING BOLI, T=0
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Electro-diffusive equilibrium is temperature sensitive.  At equilibrium, the voltage pressure is proportional to the log 

of 

 the charge density, per the Nernst EQ.  The equilibrium state is derived by Weiss as:[183]

phi(x,inf)-phi(x0,t0) = (gask*kelv)/ (-z*faraday) * ln(conc(x0,t0)/conc(x,inf));
d2 phi(x)/ dxdx = 2*z*faraday*conc(inf)/permit * sinh(z*faraday*phi(x) / (gask*kelv) );  % 
d2 Phi(X)/ dX2 = sinh(Phi(x) );                      % removing all constants via normalization, where Phi(x) 
debye = sqrt (permit*gask*kelv/ (2*z^2 * faraday^2 * conc(inf) )    % The space constant equals the debye length.

phi(x) = phi(0)*exp(-x/debye);     % the Debye length is about 1 nm

The charge field along the membrane drops to zero within 3 Debye lengths = 3 nm.  The need for a buffer region 

outside the charged region is not yet determined, and would depend upon the variations in charge on the membrane. 

Studies by Johnston and Wu concluded that action potentials only deplete about 1e-5 fraction of the total charge on 

the membrane. [184]   This suggests that very little if any additional fluid thickness is necessary to model the 

membranal system.

FIGURE 66: DISTRIBUTION OF NEUTRAL PARTICLES
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The above are measures of charged particles at various distances from the membrane.  A simulation of particles in 

equal concentrations of positive ions and negative ions on each side of a membrane.   Then a charge imbalance is 

introduced of 5%.  X-axis units are nm.  The particles follow a “charging curve”  in that the negative are attracted to 

the right surface of the membrane and are repelled by the left surface.  Vice versa for the positive particles.  The 

number of particles captured in capacitance are exactly the number of the charge imbalance. The remainder are 

therefore experiencing a charge-neutral environment and are completely free to diffuse in random walks.

Particle systems with charge are problematic at the boundaries.  A common technique of physicists is to define the 

model as a cylinder such that the system repeats endlessly with clones of itself rather than meet an actual edge. 

These are referred to as periodic boundary conditions.  However in this model the compartment boundaries are the 

membranes and that is where the critical action is located on both sides.  Periodic boundaries would not support such 

clearly denoted shapes, inputs and outputs of neurons.  The solution turns out to be quite simple.  Charge imbalance 

occurs only very near the membranes, within 3*Debye,  where the membrane serves to capacitate the surplus 

charges.  All the rest  of the volumes are charge neutral.  As elaborated elsewhere,  charge-neutral volumes are null 

areas as far as information processing goes, except in the synaptic cleft, where diffusion is primary.  They act as 

sinks and sources for the membrane system ions, whenever the voltage across the membrane changes.

F

FIGURE 67: DISTRIBUTION OF NEGATIVE 
CHARGES

 

FIGURE 68: DISTRIBUTION OF POSITIVE 
CHARGES
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8.2.1.5 RC Grid Nodal schematic  

FIGURE 69: ELECTRICAL CIRCUIT FOR A SINGLE NODE IN THE RC-GRID

The RC_GRID is a closed surface network of low pass filter stages.  It is sustained by energy consuming current 

sources, the ion pumps.  It is modulated by varying the conductance values (vertical resistors labeled G only). 

Despite its effectively infinite series of low pass filters it is quite capable of propagating a pulse made up of 

frequencies as high as 5 k Hz.    This presumably is due to the strongly non-linear response characteristics and to the 

positive feedback loop that drives the action potential.

The RC_GRID is implemented as a modified nodal analysis method matrix representation.

The BUILD includes one matrix for the intracellular saline resistances, one matrix for the capacitance, one matrix 

for the extracellular saline resistances.  This trio is doubled when the closed shape is split sagittally into "left" and 
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"right" panels.  Such a split has the advantage of minimizing distortions of node to node relationships when 

projecting the 3-D half onto a 2-D matrix. 

 
Solving for voltage changes across the entire membrane, on a node-by-node basis.

FIGURE 70: RC GRID MATRIX

General form of the matrix to solve for dV across a tessellated surface. Given N occupied nodes, the the matrix G is 

an N x N matrix expressing all the relationships of each node to its nearest neighbors.

R values are to nearest neighbors.  C values are nodally allocated to local area via a Voronoi-like algorithm.

Element data is stored as  ELE = [ x1 y1 z1 x2 y2 z2 type value];     It is generated by a spreadsheet driven by input 

of channel positions, pump positions, radius, thickness, length.  In a 10x10 grid there are 200 nodes and 500 

elements.

By convention, x is axial, y is radial, z is circumferential.  There are 5 axes of resistors: outer-x, outer-z, inner-x, 

inner-z, and through membrane y. There is 1 axis of capacitance: through membrane y.   And 1 axis for pump 

currents.  It is computationally expedient to initialize resistances inverted as conductivities.  We then have:

G1x, G1z, G2x, G2z, Cy are static or nearly static values; 
Gy(t) and Py(t) are dynamic values, parametrically driven by modulators and internal kinetics. 
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FIGURE 71: CYLINDRICAL RC GRID CIRCUIT

The cylinder above is a  10 x 10 x 2 nodes grid.  Element data is stored as  ELE = [ x1 y1 z1 x2 y2 z2 type value]; 

It is generated by a spreadsheet driven by input of channel positions, pump positions, radius, thickness, length.  In a 

10x10 grid there are 200 nodes and 500 elements.

By convention, x is axial, y is radial, z is circumferential.  There are 5 axes of resistors: outer-x, outer-z, inner-x, 

inner-z, and through membrane y. There is 1 axis of capacitance, through membrane y,  and 1 axis for pump 

currents.  It is computationally expedient to initialize resistances inverted as conductivities.  We then have:

G1x, G1z, G2x, G2z, Cy as static or nearly static values; 
Gy(t) and Py(t) as dynamic values, parametrically driven by modulators and internal kinetics. 

The use of the words “electronic” or “electric” are misnomers, or misused, when describing the workings of 

neurons.  First of all, they employ ions, not electrons.  This would not matter much if it was a one-to-one mapping or 
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analogy between the two.  But ions are chromic, where electrons are not.  The pallet of ion types opens up many 

possibilities that are not possible in electronic circuits.  None the less, our point of departure is an electrical circuit.

FIGURE 72: ELECTRONIC MODEL EQUATION FLOW

          
Currents, which are the net electrical effect of ion flux through ion channels, directly effect the local membrane 

voltage, which dissipates out in the RC grid to nearest neighbors.  Membrane local capacitance is essential to 

determine the membrane voltage. 

8.2.1.6 Electrical Networks  

FEM grids Resistance-Capacitance are measurements of the state of the system, particularly the particle positions, 

and the voltages and currents their charges induce.   Although this project included the construction of an RC grid in 

its specific aims statement, it is found through model building that the resistors of such a grid are embodied in the 

particle system behaviors, and that the capacitors of that grid are also embodied in the particle system behaviors. 
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And finally, the conducted (transported) ions through the ion channels must be calculated via the Nernst EQs. 

Newly transported particles immediately participate in the capacitance, either increasing or decreasing it.  The 

challenge is to get the force, size, charge, and velocities to scale proportionate to actuality so as to yield model 

timing accurate to bio-phenomena.

 Implicit Components are:

Finite Element 
Capacitors

Once the positions of all actors on the membrane are known, an algorithm 
calculated a polygon around each actor.  This polygon has and area, and 
that area has a capacitance as a function of permittivity.  The capacitance 
value is stationary for the RUN.

Finite Element 
Resistors Extracellular

The shape and salinity of the extracellular fluid between any 2 Actors can 
be employed to calculate the resistance between those 2 nodes.   This 
resistance can fluctuate with conc0, but usually is stable.

Finite Element 
Resistors Intracellular

The shape and salinity of the intracellular fluid between any 2 Actors can 
be employed to calculate the resistance between those 2 nodes.   This 
resistance can fluctuate with conc1, but usually is stable.

Channel Conductances The conductance values of each individual channel must be calculated at 
the finest available dt, as they are extremely dynamic.  These G values are 
the result of gating variables * Gmax values.

Modulators Modulators may be Ligands, ions, voltage or concentrations.  "Modulator" 
is merely a concept, referring only to whatever serves as the "input" signal 
to an actor. 

diffusion rate is a consequence of collisions and reflections

 flux, horz is a function of the distance between actor nearest neighbors

Current, ionic Is the net charge movement due to all flux of charged particles.   Currents 
occur in 3-D volumes of irregular shapes, not in 1-D metallic long 
cylinders as in solid state circuits.   This current has mass, and is therefore 
slow and has some inertia.  It is “smeared” by water collisions.

Current, electronic Is the instantaneous (speed of electricity) electrical effects due to electron 
wave fronts.  It is not modeled by particles but rather calculated.

voltage Pressure on charged particles, to cross a barrier (membrane) due to net 
charge imbalances. Voltage is calculated by the Nernst EQ.

8.2.2 ABANDONMENT OF THE RC-GRID  

The decision to abandon the RC-grid is based upon the following findings.  While the resistors of the RC-grid 

connect only to nearest neighbors, saline in actuality is “connected” to all points on the closed surface of the neuron. 

The particle system accurately reflects this fact.   While the capacitors of the RC-grid are created as discrete, 

proportionate in capacitance to the membrane area immediately surrounding each channel and pump, in actuality, 
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membrane capacitance is continuous over the entire surface of the neuron.  This continuity results in markedly 

different behaviors.  This continuity allows the capacitance to act as a conductor over all the surface, thus bypassing 

the saline resistance.  Because the capacitance of unbalanced ion concentrations are infiltrated by balanced saline 

solution, the capacitance is a mixed component of both capacitance and resistance, distributed all along the surface. 

This is not easy to model with discrete electronic components.  However the particle system model is an accurate 

representation of such distributed commingled capacitance and resistance.  Finally, the nano-geometry of like-

charged particles forming a monolayer sheet along the membrane surface can produce some emergent properties, 

like frictionless transport for the next higher layer of charges.  Because the purpose of this model is to seek out the 

means by which information is transmitted (preserved) from channel to channel, every opportunity must be afforded 

the particles to reveal the patterns by which information is coded and moved.  It is quite possible that due to the 

mass and charge repulsion of the ions that some wave phenomena are present, as any mass-spring system can 

oscillate unless critically damped.  Because waves transcend the entropy of diffusion, they would be of great interest 

in the investigation of information transmission.

Additionally, given a continuous saline compartment, and a continuous capacitive membrane, the model is expected 

to reveal new knowledge concerning the “clearing” of old messages out of the system to make way for new 

messages.  That is, any information moving through the system must have sufficient persistence to move to its 

destination, but little more.  A particle system model is expected to reveal some of the nuances of how this might 

occur.

8.3 THERMALLY DRIVEN STOCHASTIC SYSTEMS  

Biological systems are characterized by large numbers of coupled chemical reactions all, or mostly all poised at their 

“tipping points” such that they can go either way with little or no energy consumption.  This allows complex 

systems to be driven largely by thermal energy, with the addition of consumable energy forms like ATP to set the 

direction of dominant flows.  Therefore the main metabolic pathways direct and establish the purpose of the system, 

while thousands of thermally driven side reactions maintain the homeostasis and adaptations of the system.  This 

model avoids most of the cell thermal dynamics by restricting elements to 4 classes of protein defined by state 

transition probabilities, allowing ions to move in response to diffusion and drift, and leaving the membrane as a 
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fixed structure.  Of the membrane elements, only the pumps consume energy;  the rest are either static or driven by 

ambient temperature (Brownian impacts).  Note hat thermal energy is not consumed.  Each molecule returns as 

much as it receives.  There is no lower form of energy to degrade to, and this model does not employ explicit 

endothermic reactions.  Energy transfers are irrelevant to information processes except as needed to drive the pumps 

in their roles of restoring trans-membrane charge gradients and tonicity gradients.  Although the pumps are crucial to 

viability, it is not yet found that pumps are informationally significant in the short time frame of action potentials. 

They may be said to be informationally significant in that their fatigue alters channel behaviors in ways that 

diminish the information processing potential of the cell, and may trigger modal shifts to “low-energy mode” 

reductions in information processing.  In this model pumps may fatigue due to ATP shortages. 

 The stochastic processes of interest are the molecular states and bindings of actors.  The actors work as finite state 

machines, per the kinetics of their chemistry and molecular contortions.  Every molecular conformation has a set of 

possible transformations to alternate conformations.  This may be enantiomeric or reactive chemistry.  Each of the 

possible transformations has a probability of occurrence wrt to the most significant parametric factors (modulators). 

Each transformation has a forward probability and a backward probability.   These transition probabilities may have 

a value of  between 0 and 1 for each dt.     As they are probabilities over time, their values change with the width of 

the timeslice.  If the dt is sufficiently short then the probabilities of all possible next states will be <1.  But if the 

probability of occurrence is such that two or more events will likely occur in the time duration of interest, then the 

probability will calculate to be greater than 1.  This violates the definition of probability, but is a necessary concept 

for repetitive events.   To avoid distortions in event frequency, dt should be chosen small enough to avoid transition 

probabilities greater than 1, but there always exist a few outliers.  A decision must be made whether to clip these, 

write a routine to stuff two or more events into a single dt, or shrink the dt to reduce the stochastic probabilities to 

less than 1.

As we are concerned with events per unit time, the probabilities gleaned from the literature are not unit-less, but 

rather have units of frequency (1/s).  In most applications of probability the chance of occurrence is multiplied by 

some value of that occurrence.   However, in stochastic probabilities such multiplication works for all state changes, 

but it does not work for calculating the probability that no change will occur.  All of the state i to state j transition 

probabilities scale linearly with dt.  But the state i to state i probability requires special attention.  The chances of a 

state remaining unchanged, of course, is a real number between 0 and 1 for any system, biological or silicon.  But 
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the modeling simulation of that possibility is heavily dependent upon  the size of dt.  As nature enjoys continuous 

time, large artefactual error is picked up when dt is not much smaller (<<)  than than the natural period of events. 

The probability of remaining in the same state = 1 - sum(transitions to other states).  A dt value of <1/8 the period of 

the highest frequency in the transition matrix should be chosen to avoid aliasing error.  

Transition matrices that are symmetric produce fully reversible processes.  At sufficiently short time slices, all 

relevant processes are reversible.  But the very transition itself changes the transition matrix.  And this next matrix 

alters the path preferences.  Therefore, dt chosen too large may see altered (unrepresentative) limit cycles.

% Q collects the event frequencies per second of all possible transitions, and 
% therefore establishes the ratio between the transition possibilities,
% but is properly silent on the probability of "no change" (hold state).
% Normally, Q(pivot) = diag(Q)  =   1 - rowsum (all other possibilities)
% but when that sum > 1, then what must be Q(pivot)?
% the solution is to reduce dt such that the sum of all possibilities is smaller than the accuracy desired.
Qdt = Q*dt;                                           % Qdt is a vector of the probabilities of transitions within 1 dt
Pdt(pivot)=0;                                         %  pivot is the position in the vector that is the diagonal element
Pdt(pivot) = 1-sum(Pdt);                       % let dt = 1/8*(1/max(Qfreq)
Pdur = qt*Pdt;                                       % qt = duration as quantity of dt's
Pdur(pivot) = Pdt(pivot)^qt;                   % Pdur is a vector of transition probabilities in qt*dt = duration

Each of the above vectors of probability for a single molecule (or subunit) are stacked to form an S1xS1 matrix of 

possible conformational state transitions, where qS1 = the quantity of internal states.  The challenge is that these 

probabilities are even more dynamic than the neuron signals being propagated, changing as fast as 1E-6 to 1E-17 s . 

The fastest of these must be characterized as to their impact upon information processing.  Typically, the fastest state 

transitions are found to be not significant to information processing, as they are classified as flutter.  Those short 

states that are declared to be only noise or flutter are bundled into consecutive groups.  For example, a fast buzzing 

between two states may be blurred into a single hold state with similar net effects.  

A similar problem occurs with slow states.  If they never occur then why would you model them?  One noteworthy 

exception to the dismissal of slow states is the modal shift or toggle.  No matter how rare is a modal shift it is the 

consequences of that change and the duration of that change that matters.  To study these toggled modalities, take 

them out of the stochastic processor and fix them for the desired duration and run the model.  This can easily be 

done with a state number over ride line of code added right after the state instantiation on target actors.  To work 
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with modal limit cycles, a modified Q matrix can be substituted in, by zeroing out other possibilities.  One must be 

careful to not dismiss any gateway states whose absence would render other states inaccessible.

The state transition matrix must be expanded into the third dimension (at least) according to how many modulator 

combinations significantly alter the transition probabilities.  It is the modulation state (R) that determine which of 

the pages of the matrix apply each dt.  Where dc = quantity of bind combinations possible within R.  It is the internal 

conditions at the time which determines the page of the BT x d x S matrix that applies (where BT = list of particle 

types; d = list of binding sites on actor;  S = list of actor states).  Particle bindings and unbindings determine which 

R combination applies each dt.  It is the prior state that determines which row in the S x S x dc  matrix applies (dc = 

binding combinations), and the instantiation of the CDF from that row that determines the new state.  Once chosen, 

the new state number is mapped to its phenostate, which calls functions making impact upon the surround (open 

channel, transport, release of messengers, etc).  

Actors will have some number of configurational states, 2 or more.  If an actor had only one state, it would not be an 

actor.  The interactors (particles) have only one state.   Configurational states in reality may be in the millions, but 

the biologists find that only a few of them are significant for their impact upon their environment.   Typically 3 to 30 

states are represented as a “kinetic scheme”, as determined by repeated stimulation trials such as the two step 

voltage clamps.  

Actors usually have one or more modulation site(s).  These support allosteric bindings of certain messenger 

molecules.  A modulation site may be either extracellular (at pole 2) or intracellular (at pole 1).  In either case, a 

binding has the effect of altering the values of the kinetic scheme.  Furthermore, the conformational state of the actor 

also tends to alter the binding rates at each allosteric site, influencing the forward and backward reaction rates. 

Receptors may be conceptualized as either catalysts, or as reservoirs of messenger particles at the ready.  When the 

catalytic rate is faster than dt, the quantity of catalyzed second messenger molecules per dt must be staged by pre-

binding them at the receptor's intracellular pole, ready for release.  Particles are not allowed to appear from nowhere, 

so all must be created at the Build, and merely moved about thereafter.  Particles may be stored at the receptor, then 

released during each dt there is binding of a primary extracellular messenger.  Once depleted, the restoration 

mechanisms of affinities and/or pumps should replenish messengers at a realistic rate. 
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 Therefore the kinetics of the extracellular pole are altering the kinetics of the intracellular pole.  Although each pole 

may have any number of distinct binding sites, for purposes of the model there is no advantage to trying to give each 

a unique position on what is ostensibly a point process.  Therefore the two poles of the actor represent by 

superimposition all the binding sites for purposes of both bindings and releases (stimuli and responses).

Actors may also have transport binding sites.  For example, pumps must have one or more (usually 2..5) binding 

sites for specific ions to be transported.  The binding rate must be high on the intake side and low on the output side 

of the membrane. Conversely the dissociation rate must be low on the load side and high on the unload side.  To 

trigger the actual transport through the membrane, it is the complete staging of ions on one side that alters the 

conformational kinetics enabling transport.  Those altered kinetics are then predisposed to move some arm across 

the membrane, taking the ion(s) with it.  This movement imposes a torsional alteration of the kinetics, such that the 

ion bindings are weakened, and thus released.  Then the exchange ions become highly attractive (high forward rate, 

low backward rate).  Such dissociations again alter the conformational kinetics, predisposing the movable arm to 

develop and affinity for the binding of the exchange ion types.  The successful exchange binding causes kinetics to 

return back across the membrane.  And finally, such movement alters the binding kinetics so as to favor release of 

the exchange ion(s).  

Adding to this complexity, pumps usually have modulator sites, and energy sources as well.  Modulators can have 

effects of : speeding or slowing the pump rate; altering the maximum pressure (concentration + voltage) that can be 

pumped against; altering the preference for type of ions and ligands that are to be transported;   and altering the 

affinity for low concentration particles.  Energy sources are necessarily altered chemically.  This is significant to the 

model because releasing an ATP rather than an ADP is informationally significant, both to pumps as a concentration 

of available ATP, and as a messenger, because there are ATP modulation binding sites on some actors.

The kinetics of modulation are not qualitatively different from the kinetics of a transport or second messenger 

catalysis. The concept of modulation exists only at a more macro view.  Every binding and every force impinging on 

a molecule “modulates” it to some degree.  That is, binding necessarily alters the state transition probabilities. 

Therefore, modulators and transport particles may be treated by the same mathematical representations.  Only the 

transported particles must be re-assigned to new compartments.  In this model, transport is triggered by the 

phenostate, not directly by the Q.   The phenostate is merely a lookup table that maps state to environment impact 
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function.  Channel phenostates are open and closed.  Pump phenostates are binding arm on side 1 or side 2. 

Receptor phenostates are release mode or replenish mode.  Vesicle phenostates are release mode or replenish mode.  

The kinetics of an actor may be organized by degrees of freedom.   The conformational states comprise one degree 

of freedom.  Each modulator binding site adds another degree of freedom.  And each transport binding site adds 

another.  For example, an actor with 5 conformational states, 2 modulator binding sites and 1 transport binding site 

would have  4 degrees of freedom.  If the first modulator site could bind either of 2 ligands,  the second  could bind 

1 type of ligand, and the transport site could bind any of 3 types of cation, then the size of the kinetic scheme would 

be:

5 x 3 x 2 x 4  = 120 matrix elements     ( Note that a vacant possibility is added to each binding site)

8.3.1 ACTOR KINETIC SCHEMES  

The validity of kinetic schemes has been challenged numerous times.[185]   They apparently hold up because they 

mathematically reflect chemical interactions per the Michaelis-Menton EQ, because they lend themselves to 

increasing refinement as new information becomes available, and because no other representation has performed as 

well.  There are often several competing Q matrices proposed to represent a single actor type.  As each is a 

simplification of actual kinetics with some arbitrariness on the part of the worker to chose how many states will 

comprise the model, each scheme may serve a different purpose best  to the needs for which it was created.   

A founding assumption of all kinetic schemes is that molecules have no memory, aside from their current state, and 

therefore qualify as Markov processes.   This is a simplifying assumption that has held up well for three decades.  It 

is an important one vis-a-vis information processing by these molecules.  Can a memory-less entity process anything 

more than a one-to-one mapping?

Kinetics are embodied as infinitesimal transition probabilities, according to Kolmogorov/Chapman/Colquhoun 

stochastic methods.  Actors have multiple conformational states ...  which implies they have memory.  

Each protein molecule is capable of numerous conformers.  Given its environmental parameters, each state has a 

numeric probability of occurring.  In conditions of conformer changes slow enough to detect each transition, it is 

then possible to calculate state change as a function of the current state (conditional probabilities).  In very fast 
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changing conformers, the probabilities can only be calculated irrespective of the previous state.  Generally actors 

change states faster than can be measured, and thus we use memory-less probabilities (unconditional probabilities). 

This is admittedly the weaker representation.  However, large numbers of actors in aggregate average out, in both 

space and time (ergodic), to perform quite reliably and predictably, true to the natural processes they represent.

Each kinetic process requires a forward rate and a backward rate.  In complex chemical networks, the words 

“forward” and “backward” lose their meaning, so I reference them to the products themselves. Given conformers 

A,B,C, there are rate constants for AB, BA, AC, CA, BC, CB.  If s = [ A B C ], then all rate constants can be 

captured in an  s  X s  matrix, with the diagonal being the “rate” at which the product remains the same.

Each protein molecule is capable of numerous conformers.  Given its environmental parameters, each state has a 

numeric probability of occurring.  Large numbers of actors in parallel yield a summed behavior that sharpens the 

duty cycle and averages the noise to near zero.   A singular actor will perform over time to much that same sum, 

therefore exhibiting ergodic behavior.  Either way, a stochastic actor can perform quite reliably and predictably, true 

to the natural processes they represent.

Consider the simple case of one modulator site on a pump that exchanges 2 NA+ for 1K+.  With 3 ions being 

pumped plus 1 modulator site, there are 4 variables (degrees of freedom).   In the simplest case each binding site is 

either vacant or bound to its complimentary B type.   2^4  =  16 combinations.  That requires 16  pages of Q 

matrices.   Some compression can be realized if many of the Q pages are nearly the same.  If the two Na sites are 

kinetically equivalent, then there only need be 9 Q pages.  However, an extra lookup table is necessary to map the 16 

combinations to only 9 choices.

An exchanger has a minimum of 6 states: load1, transport12, unload2, load2, transport21, unload1.

Additionally, when a load state involves more than one binding, more states may be necessary to represent the 

changes in affinities.   Same thing with unloading states.   A pump exchanging 3 for 2  would have 14 phenostates, 

before modulators. With 2 modulator sites, there are 4 modulator combinations and the number of states rises to 

14*4 = 56.  



493

Q = 

The above Q contains 43904 probabilities.  When glycosylation and phosphorylation sites are taken into account, the 

quantity of bind combinations can be much larger.  This does not take into account voltage modulated probabilities. 

Then there is still the possibility for numerous intermediate and alternate states that are internal, showing themselves 

as hold  states, alternate timing, change in mode, or reversals.  A pump could easily have 100 significant states, 

which may reveal multiple state paths (duty cycles).   The various  transition probabilities and affinity values must 

account for pump starvation, pump saturation, pump reversal, pumping reliability, and resetting the saturation point 

as a function of modulator combinations.  All of these are accomplished through the Q and R (only).

ATPases add to the complexity of the state transitions and state paths.  But they add the clarity of direction for the 

duty cycle.  Any form of injection of energy into a cycle tends to determine the direction of spin and spin the cycle 

faster than it would without such energetics.  We tend to think of catalysts and enzymes as passive surfaces that are 

conducive to particular reactions.  But in the case of pumps, at least,  the ATPase is a nano mechanical device that 

turns on high affinity receptor sites, then physically moves it through the membrane , then turns off the affinity such 

that the particles are repulsed out of the pump.  This is an interesting form of dynamic enzyme, and the cleaving of 

ATP to ADP + Pi drives this mechanical action.  Because the pump is a stochastic finite state machine, it is not 

deterministic in its pumping performance.  

56x56 x p
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When pump mis-binds are taken into account (for example, taking a Mg++ for a Ca++), the affinities and transition 

probabilities can become more complex.   An environment of 10 particle types, 3 allosteric bind sites, and 56 

internal states would produce an R matrix of  10^3*56 = 56000 probabilities forward, and again that many for the 

backward reactions.   This is a lot more data than can currently be found in the wet lab reports on actors.

The generalized concept of an actor is that each consists of:   R, a modulation matrix, which relates bindings to state 

probabilities;  Q, a transition matrix, which is altered by the allosteric bindings, and tends to proceed through a duty 

cycle;  O, a phenostate map, maps the internal state to the external expression;  and a G vector which determines the 

particle effects as a function of the phenostate.

The above depictions {R Q O G} give us a set of structures within which to collect much data on the actors, 

sufficient to bring them to life as Markov processes.   Additional modeling accessories have yet to be added: 

affinities, energy consumption, and messenger launches {aff erg  eff}.

8.3.1.1 Adapting Biologic Q matrices  

Physiologists often report the binding of modulators as though  each was an internal state change.  The problem with 

this method of representation is that the actual binding of a ligand is an external event, mostly outside of the 

“control” of the transition matrix, determined by external concentrations and temperature.  The transition matrix 

may embody the actor's affinity for a particular ligand type, but not the concentration nor the velocities of the 

ligands.  A modulator binding is an external event that, once it occurs,  alters the transition matrix, often quite 

dramatically.  New transition probabilities need to be determined for the bound state.  Indeed for each combination 

of bound states.  Therefore every actor type needs to have one transition matrix for each of its possible ligand 

combinations.  Diffusion will determine which ligands collide with the actor.  Forward and backward stochastic 

rates determine if they bind and when they unbind.  The particular combination of bindings determines which 

transition matrix is is effect for the current dt.  The transition matrix can be altered as a function, or can be swapped 

out by a choice from a deck of conditionals.

Here is an example, adapted from Breitinger, 2001[186] for a Kca potassium channel with 2 Ca++ allosteric binding 

sites, and one open state (OLL).  O = open; C = closed; I = inactivated; L = ligand bound.
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This scheme, adapted from Breitinger, has only three  internal states {C O I}, and two external allosteric binding 

sites {L1 L2}.

This diagram is a mixture of internal conformers and external bindings.  When these are separated out:

Then the bindings are treated separately as the external events at ligand sites, by creating a  modulator  matrix R:

R =    

R L1 L2
1 0 0 1
2 0 1 2
3 1 0 2
4 1 1 3

Qpage

          where

L1 is the occupancy of the first allosteric binding site, L2 is the second.  With only one possible type of ligand (Ca+

+) to bind to either L1 or L2, there are only 4 possible modulation combinations for this actor.  R assigns a number 

to each of these ligand binding combinations (row).  RQ is a pointer to which page within the Q matrix applies 

under these binding conditions, with a default that Qpage = 1.  In this case the literature reported that combinations 2 

and 3 elicited the same effect upon the conformational kinetics, so did not warrant separate pages in Q.

FIGURE 73: KCA CHANNEL KINETIC SCHEME

 

FIGURE 74: KCA CHANNEL CONFORMATIONAL KINETIC SCHEME 
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This Q matrix has only 3 pages because R row 2 and R row 3 are identical.  Its element values (transition 

probabilities) might look something like:

Q can be interpreted thusly:  When no Calcium ions are bound, the actor is in Q.page1, which only allows state 1 

(C=closed).   When one calcium is bound, Q switches to Q.page2, a new set of transition probabilities , which allows 

for a recovery from an inactivated state with one calcium, but little else (transitioning from I to C).  The binding of 

the second calcium switches the conformation transition probabilities to Q.page4 which favors the open state for a 

time, then the return to closed, then a quick shift to Inactivation state.  This particular scheme can easily short circuit 

its own opening by going straight from CLL to ILL, skipping OLL.  If that is what the molecule really does, then 

this scheme is a fine representation.  But if the biologic molecule expresses a proclivity to open before going into an 

inactivation state then a different scheme would be necessary to represent this in the model.  An efficient gating 

scheme that avoids wasted and lost signals, would be more likely the following:

Directional preference is accomplished by weighting the clockwise pointing reactions more heavily than the 

counterclockwise pointing reactions.   In general, purposive systems employ cycles predisposed to one direction 

over the other, rather than mere chance to accomplish a function.  One might reasonably expect that a recently 

loaded closed state might be most favorable to transition to an open; that an open state might linger as open for some 

useful period of time, and then incur a strong predisposition to enter an inactivation state (refractory period).  And 

after the refractory period has expired, then strong proclivity to return to the closed state (ready for another ligand to 

arrive)  The above scheme is a minimal arrangement to accomplish this if the rates: k12, k23, and k31 are high while 

Q.page1 Q.page2 Q.page4
1 0 0 0.9 0 0.1 0.1 0.6 0.3
1 0 0 1 0 0 0.5 0.5 0
1 0 0 0.3 0 0.7 0.1 0 0.9

FIGURE 75: K CHANNEL KINETIC SCHEME WITH I-O TRANSITION
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the reverse direction rates k21, k32, and k13 are low.  But this says nothing about lingering time in any given state, 

and this leaves a default time of 1 dt.   - Not very satisfactory given that dt is an arbitrarily set parameter having 

nothing to do with biology. 

So how might one control dwell times stochastically?   Adding reaction probabilities for remaining in the same state 

improves performance.  

Given a refractory period longer than a channel opening, one would expect k33 > k22.  Alternatively, additional hold 

states can be added.  

Another example showing the RQ matrix of a channel with 3 binding sites (d1<Ca++, d2<Ca++, and d3<NT),   4 

internal states, and 1 of these sates results in an open channel phenostate.  

RQ =               

m1 m2 m3 m4 m5 m6 m7 m8
Ca++ 0 1 0 0 1 1 0 1
Ca++ 0 0 1 0 1 0 1 1
NT 0 0 0 1 0 1 1 1

RQ maps all the possible binding combinations back into the state transition matrix, as a pointer to the active page. 

If the binding of one modulator site alters the affinity of bindings at other allosteric sites then an additional R matrix 

is required to express this.  The actual state change is effected by the  particle collisions.  It is inappropriate to 

include these within the Q because R refers to the binding and unbinding rates only, not to internal configuration 

state changes. 

R(S1, forward) =            

R m1 m2 m3 m4 m5 m6 m7 m8
Ca1 0.24 0.11 0.11 0.25 0.07 0.44 0.67 0.98
Ca2 0.53 0.45 0.34 0.16 0.45 0.24 0.65 0.27
NT 0.66 0.87 0.12 0.2 0.78 0.31 0.03 0.94

R typically is of high dimensions because there exists one degree of freedom for each binding site.  Each binding 

site has forward and backward binding/dissociation rates.  However, these rates are highly modulated by the state of 

the molecule.  These binding rates are the forward rates employed to determining bindings to the various sites on an 

actor.  There must be a same-sized matrix of complimentary values for the unbinding rates.  Each conformation state 

(S1) is likely to produce different R forward and backward values. There are as many pages in R as there are state 
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numbers in S1.    

Let D be the number of binding sites on an actor, and  DC the number of binding combinations.  DC can also be 

thought of as a modulation state.  Then, DC = Π(Bj+1);   where j = the binding site number, Bj = the particles that 

can bind to the jth site, the “+1” represents a vacant binding site.

Then the quantity of elements in R = 2*S2 + S1;  where S1 = the quantity of internal conformations, and the 2 

represents the forward and backward binding rates for each of the possible bind combos.

The bind combo dc is, after all, a collapse in dimensionality of the bind site degrees of freedom, but it is convenient 

to map directly to specify which page in the Q matrix shall apply.  

                   R r1 r2 r3 r4 r5 r6 r7 r8
1 2 2 4 5 6 6 8Qpage

When there are two or more equivalent bindsites, then either one maps to the same Q page.  In the above example, 

values 2 and 3 are the same when the two binding sites for calcium are interchangeable, as are 6 and 7.

Q, as already discussed, is the sate to state transition probabilities, and is corrected for the dt in effect in the run in 

any simulation.

Q =             

page1 1 2 3 4
1 0.44 0.37 0.11 0.44
2 0.98 0.75 0.7 0.22
3 0.67 0.51 0.23 0.43
4 0.12 0.47 0.77 0.64

   

  

                    

page 2 1 2 3 4
1 0.17 0.57 0.31 0.45
2 0.98 0.84 0.54 0.28
3 0.04 0.78 1 0.11
4 0.78 0.36 0.57 0.44

  

    

                        

page 4 1 2 3 4
1 0.3 0.25 0.73 0.82
2 0.87 0.44 0.05 0.31
3 0.66 0.65 0.88 0.01
4 0.34 0.2 0.67 0.85
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page 5 1 2 3 4
1 0.98 0.91 0.31 0.43
2 0.96 0.73 0.74 0.13
3 0.91 0.51 0.15 0.7
4 0.67 0.21 0.7 0.01

                     

page 6 1 2 3 4
1 0.83 0.7 0.6 0.57
2 0.38 0.25 0.96 0.7
3 0.97 0.81 0.43 0.29
4 0.5 0.27 0.09 0.67

                     

page 8 1 2 3 4
1 0.96 0.26 0.7 0.01
2 0.8 0.05 0.55 0.45
3 0.52 0.52 0.87 0.36
4 0.02 0.73 0.75 0.09

       

RQ is a map that inputs the R value combination  and outputs the page in Q. 

The current internal state, S1(t)), chooses the row in Q.  

The instantiator (random number across the CDF of the row) chooses the column, which reports the new state, 

S1(t+1) .   

The new state s(t+1) = Q(s(t), CDFinstantiation,Qpage).  

The new state is then read for its phenostate,  O(s(t+1)).

O =   1 2 3 4
0 0 0 1

         %  says that states 1,2,3 are closed, and state 4 is open.

O reports whether a channel is open or closed after receiving input of the new state s.

Some workers seek to reduce the computational load by collapsing a group of conformations into a single state when 

they are all determined to map to the same phenostate.  However, there is the possibility that doing so will lose 

modalities of behavior that the larger group of states can perform and the reduced set cannot.  For example, the shift 

from a single spike action potential response to a burst of about 50 actions potentials in tight sequence, is a modal 

shift that can easily be accomplished by switching pages in the Q matrix, provided there is an adequate number of 
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states.  But without the various pages in Q indicated by various modulator combinations, such modality shifts may 

be impossible to simulate as inherent qualities of the transition probabilities.

The phenostate is often portrayed as binary (open or closed;  pumped forward, pumped back), but the complexities 

of nano environments introduce many variables.  It is the domain of Molecular Dynamics (MD) to model such 

phenomena, and this new field cannot be adequately treated in this project.  However, the results of MD can usually 

be incorporated into this model as a look-up table.  For example, if MD workers report ion passage details affected 

by the presence of Zn++ , then their results can be mapped into a binding site affinity for zinc and consequent 

alteration of the Q.

As the R and the Q determine the the dynamics of the molecule, it is worth pondering what their mathematical 

relationships are, and whether or not all of their complexity is to be modeled.  Each molecule has degrees of 

freedom, which define a possibility space.  Each dimension is sized depending on how many choices are available 

for that site,  ranging from 2 to qB for binding sites and qS for conformational changes.  It may be surprising that the 

binding sites had such high dimensionality while all of the rest of these complex molecules add merely one.  Well, 

that is an artifact.  The molecule has a huge number of degrees of freedom, but they have been collapsed into a 

kinetic scheme.  Similarly, all of the binding site combos can be collapsed into a binding scheme, which have 

already named (dc).

In pursuit of information, it is prudent to ask what balance might be struck in the degree of “collapsing 

dimensionality” in the interests of purging everything but the high runners.  

Changes in state are expressed as ∆S.   ∆S = s x s, in that a change of state ∆S = S1 →  S2, which requires an s x s 

table.  Changes in bindings are expressed as ∆D = D x B, in that a change of binding requires an interaction between 

the binding site D and the particle B, which requires an D x B table.  However, neither of these two tables are static. 

They are switched by the conditions of the molecule.  The s x s table is modulated by the D x B conditions, and the 

D x B table is modulated by s.

∆S = S x S (x D x B),where modulation is in parentheses.
∆D = D x B (x D x S), where the second D allows the conditions at one binding site to alter the kinetics of 
other binding sites.
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These two EQs are partial views on the same molecule, and therefore can be assembled to represent the whole.

Let ∆M be defined as any changes in the overall condition of the molecule.  Then:

∆M = B x D  x S x S x D x B;

 Because the first B above equals the last B, this system of equations is circular:  In matrix algebra, there is a circle 

of multiplications to get to the next event in the cycle.   Each step spins off certain effects: state binds, transport, etc..

Where B = particle availability; D = bind site occupancy; S = state .  Then, B to B is the particle collisions.  S to S is 

the state change.  S to D is the effects of state change upon binding kinetics.  D to B is the dissociation kinetics 

instantiating unbindings.  B to D is the binding kinetics.  D to S is the effects of the binding combo upon the 

conformational kinetics.   Because B can be viewed as representing the “outside world”, an alternative graph can 

separate the internals from externals.  It would show an arc from D to D, the effect of the binding combo upon the 

binding kinetics, with dotted lines to B from both D's.  From this modeling perspective, B is part of the system under 

test (SUT) and so the S S D B D ring shown is chosen.

This ring spirals through time into a helix.  The state transitions can be modeled rigorously, as within Molecular 

Dynamics, or they can be simplified into schemes (reductions in complexity by choosing only the high runner 

states).  

A further complication arises with the presence of subunits, necessary to faithfully comprise a whole actor molecule. 

There are two possible treatments.  The first is to treat each subunit independently, and only at the O matrix of 

phenostates, “wire” them together in logical series.  This works when the subunits perform independently.  If the 

subunits are combined chemically such that the state of one can alter the state of  another, then the subunit state 

spaces must be merged into a single larger matrix.  This is done by aligning the subunits along the diagonal, and 

adding in the coupling element values (off diagonal values).
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Q  =     ( channel with 4 subunits )

A Q matrix containing 4 subunits, with miscellaneous coupling between subunits.  The extra burdens of this 

approach include:  separating and evaluating 4 states, treating each subunit as a separate entity, and looking up the 4 

current state numbers in their respective phenostate tables; and then preforming the inherent logic of the gate 

positions to determine the final condition of the pore.  

In any case, 4 separate stochastic processes determine the states or each subunit.  For demonstration, let a subunit 

have 6 states.  Then a stochastic process of one subunit will trace something like:

h1

h2

h3

h4

FIGURE 76: INSTANTIATION OF STATE FOR A CHANNEL SUBUNIT
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Repeating this process for each of the subunits, then assembling them, with logic, into a whole, results in:

The top 4 traces indicate the state number of each subunit.  The lowest plot is the net result, showing whether the 

channel is open or closed.   The phenostate trace is not shown.  Of the 6 states, 1,4,5,6 are closed states, and 2, 3 are 

open states for the respective subunit gate.

This enacts four independent subunits, which can be individually swapped with other types of subunit.  It is also 

possible, that despite the assembly of subunits to make a channel, that the subunits do not act independently.  The 

nature of their bonds might shift charge or contour the subunit shape.  In this case, the entire channel might best be 

modeled as a single entity, rather than 4 sub-entities.    

Note the low duty cycle of channel openings.  Had there been only 1 open state out of 6, the open time as a 

percentage of the duty cycle would have been much smaller.  Real channels must have a duty cycle less than the 

aggregate pumping capacity.  Pumps transport at rates about 1/1000th channel conductivity. When the quantity of 

pumps is about equal to the quantity of channels, then the duty cycle must be less than 0.1%.

A program has been written that traces the primary and secondary duty cycles through the state space.  Quite 

significantly, the quantity of cycles determines the quantity of modes, and the quantity of branch points around each 

cycle determines the potential for pattern recognition.   Follows is a simple Channel duty cycle, for a channel with 

two requisite binding sites, a singular opening, followed by a refractory period:

FIGURE 77: SIMULATION OF CHANNEL WITH 4 IDENTICAL SUBUNITS, 6 STATES EACH
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State 9 then proceeds to state 1 (arrow not shown).  The prerequisite of two bindings prior to opening helps to insure 

the open time will be short compared to the closed time.  Also the refractory period extends the closed time such that 

there is even less opportunity for open time.  Perhaps most crucially, state #5 is highly unstable.  There is just no 

way to maintain state 5 more than 1..2 ms.  Because a channel stuck open could kill the cell, and there may be a 

million channels on the plasma lemma, there must be essentially zero chance of lingering in state #5.   Therefore 

state #5 should be the highest energy state, with little energy well to hold it there; perhaps no well at all; just a hill. 

By this reasoning, state #1 should be the lowest energy state, most relaxed.  Then the molecule will linger there in 

the ready state, receptive to the binding events.    Ideally, each binding event would use to collision energy to 

heighten the Gibbs, helping it get up the energy hill of channel opening.  Then all of the refractory states would be 

downhill wrt energy.

Only state #5 had a phenostate of consequence.  It calls for a lookup of the conductivity profile for this channel type, 

then a count of ion types on the profile and near the channel pore, then a calculation of the Nernst partial voltages 

for each relevant ion type.  These are merged into driving forces via the voltage across the membrane and the 

concentration gradients.  The conduction of ions is:  J = duration open * concentration differential * net driving 

force.

FIGURE 78: Simple Channel Duty Cycle
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8.3.1.2 Phenostate  

When the conformational transitions are represented by state transition probability matrices, and the number of 

states is greater than the number of expressions (e.g. open, closed), then a means must be provided for mapping the 

various internal states onto their outward expression.  This is not difficult but is necessary. 

In living cells, there is no need for the concept of phenostate.  Some molecular conformations of ion channels result 

in an open channel and other conformations result in a closed channel.  This is simply a geometric implication of the 

conformation.  But in the digital world, the internal state is only a number; generated as the output of a separate 

stochastic process.  That instantiated state number is mapped, via a table, to a function list, to determine what 

impacts this new state might have on the molecule's relationships with the surrounding environment.  Digital 

modeling must explicitly transform the intrinsics to the extrinsics.  The extrinsic state (open or closed) is called a 

phenostate because it is the external expression of an internal process.  This notion of phenostate is but a ghost of the 

digital computer.   It is the result of breaking into two events what in the wet world is a singular event.

Doing so, however, has some advantages.  It forces the modeler to explore the relationship between internal events 

like state change and external events like collisions.  When looked at from the perspective of physics, the problem 

may be characterized as the engagement of an unbound group with a bound group.  But when investigating the 

information flows, disaggregation is necessary (no groups), so as to follow specific instances of the influence of the 

intrinsics upon the extrinsics, and vice versa.  Modulation is conceptualized in the literature, but the phenostate 

process, much less so, though these are complimentary processes.   The phenostate deserves equal bearing with 

modulation, because these two are in series, participating within the same loop, passing the same quantity of 

information along the neuron.  The weakest link in a series of steps limits the entire neuron.  Given evolution's 

ability to achieve extremely high efficiencies, we should expect the phenostate process to be the equal to the 

modulation process in regards to information capacity, and also as regards reliability.

Though the actor's internal states are of the essence of the information processing engine, each of these states may or 

may not have an impact upon their surround.  In a digital model, it is the phenostate table that holds this information, 

which states have external impact, and what function would implement that impact.  Thus, transport phenomena 

occur only at certain state numbers, upon which the phenostate table calls into action the appropriate function to 

reassign the particles on certain bind sites to a new compartment. This function is triggered by the phenostate, 
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therefore only indirectly caused by the Q state.   Channel phenostates are open and closed, though the Q states may 

include various flavors of closed, like { rest, refractory period}.  Pump phenostates are {binding on side 1, release 

on side 2, bind on  side 2, release on side 1}.   Receptor phenostates may be {catalyst off, catalyst on}.  Vesicle 

phenostates may be  {release mode, replenish mode, hold, rest}.  

 A simple look up table can convert each conformation into its outward expression.  This allows all of the internal 

kinetic probabilities to remain preserved in large number, while the simpler outward expression typically has fewer 

possibilities, and these need be reported to the model for subsequent effects (releasing messengers, opening for flux, 

exocytosis, pumping, etc.).  The internal states shall be referred to as conformations or simply states (s as a product 

of Q).  The outward expression o is a product of the table O shall be referred to as the phenostate, meaning “states to 

show forth”.

o(t) = S(t) * O;         % where  S(t) = instantiation of the state at time t;   o(t) = 1 if open, 0 if closed;

state 1 2 3 4 5 6 7 8 9 10 11 12

gate 0 0 0 0 0 1 1 0 0 0 0 0

TABLE 18: O MATRIX FOR CHANNEL PHENOSTATE WITH 12 STATES
This is an example of a 12-state channel, that requires a lookup table to convert the state # to the action this actor has 

with its surround.  In this case, 2 of those states, #6 and #7, cause the channel to be open.  All other state #s leave the 

channel closed.

8.3.1.3 Transport  

We no longer talk about semipermeable membranes.  We now know that the membrane is exceedingly impermeable 

to ions.  Rather, single protein molecules may be embedding into that membrane and serve as point processes for 

purposes of transport and catalysis.  Such actors may be divided into 2 classes:  transducers and transporters. 

Transducers effect horizontal processes, and transporters effect vertical processes.

The horizontal process switches on and off a catalysis of messenger particles.  The vertical processes effect the 

passage of particles moved through an actor from one compartment to another.  This may be a electrogenic process, 
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or merely a physical relocation process.  In every instance there is both a concentration gradient and voltage gradient 

to contend with.  Transport in the model may take place via the following mechanisms:   

1. 1-d diffusion/drift:   adjust pore diameter to align to natural conduction rates (suitable for modest downhill 
conduction rates in channels).

2. Mechanized transport arm: pump cycling determines rate.  Simple non-modulated single-particle pumps 
conform to:     P(C) = Pmax * ( 2*C/(1+(C/k))),    Where P = particle pump rate, C = concentration on the 
pump intake side, k = pump dissociation constant.     As C approaches k, the pump saturates.  Suitable for 
transporting up-gradient, and for ratiometric transport.

3. Energy barrier profile forces:  radial energy profiles may reject particle and/or accelerate it. Useful for 
detailed ion channel dynamics.  Charge patterns within the pore of the channel can create a ballistic 
gauntlet that only a certain ion type can get through.   Suitable for more detailed nuance of when particles 
will pass and not.

4. Super-conducting passage: transport quantity is accomplished by contrived high affinity attraction to actors, 
and moving these across the membrane so as to match natural transport rates (usually of several actors). 
Even simple funnels accomplish this effect up to about a 15% bias on ratios between the two sides.

Any actor capable of being modulated mid-duty cycle is responding to a temporal pattern.  It acts uniquely to a mid-

cycle modulation, then it qualifies as a pattern recognizer.  Multiple modulation changes during a duty cycle 

constitute a temporal pattern.  If that pattern is the one most strongly responded to, then such an actor is acting as an 

input pattern recognizer.   Point processes can also act as pattern generators, mapping input patterns to output 

patterns.  This makes feasible such behavior modalities as bursts, rhythmicity, chaotic openings, and patterned 

openings.  

8.3.1.4 Capacity  

Channels conduct at about 1000 times the rate of pumps.  Therefore:

 Pump quantity * pump rate > channel quantity * conductivity * duty cycle* safety factor;

Aqueous ions hydrate with 1 to 3 shells of water molecules, resulting in varying outer diameter and mass.  This 

variance  makes for a rather fuzzy definition of what is to be modeled.  In this model, ions can be randomly assigned 

some degree of hydration by variance about a mean, each dt.  This composite mass  determines diffusion and drift 

rates. 
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8.3.1.5 Selectivity  

Concerning channels, pore diameter is not especially determinant in its selectivity of ion type passage.  Selectivity 

filters are more sophisticated than mere geometry can model. The ion channel inter-pore charges are sufficient to 

strip off most or all of the water molecules of hydration, in a manner that increases the ion selectivity of that pore. 

This is accomplished via replacement of very nearly like-charged charge points alone the pore. The ion jumps from 

charge point to charge point along the pore are very fast, approx. 1E-12 s.  Ion channels are often funnel shaped, 

which act as bio-diodes.  They can accomplish approx. 15% differential in concentration gradients with only thermal 

energy driving the system, according to model simulation results.  These complexities are averted by the model 

employing empirical conductivity data to calculate the flux through a channel opening.  

There is often flutter between nearly equivalent configuration probabilities, which is driven by, and proportional to, 

temperature.  Time constants are determined by mass and elasticity, but are made stochastic due to water collisions, 

and are quantal due to nearby charge attractions that result in ionic bindings.  

Active systems are driven by one of several possible potential energy sources:  thermal energy, which gives pressure 

as a function of concentration gradient; the EM force, which gives pressure as a function of the voltage gradient; and 

chemical reactions (usually ATP to ADP) at allosteric binding sites on actors, which release quanta of potential 

energy from the chemical bonds.  
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8.3.2 BINDING AND UNBINDING  

The kinetics of binding and unbinding are stochastic, the net result of forward and backward chemical reactions. 

The forward reaction depends upon ligand or ion availability, which is directly related to collisions. For modeling 

purposes, a  proximal ratio is necessary to determine “availability”.  This is especially necessary when one model 

particle represents some multiple of biological molecules.  A single model particle representing 10,000 biologic 

particles cannot possibly experience a realistic collision rate.  Therefore, compensating factors must be added.  But 

first, questions must be answered:  What is the information value of the collision rate?  What is lost when down 

scaling it?

8.3.3 G-PROTEIN SHUTTLES  (SECOND MESSENGERS)  

Shuttles provide leverage between a ligand binding and the number of ion channels opened/closed as a result.  They 

consist of a reduced quantity of trajectories to the likely target actor bind sites.  Messenger transverse these 

trajectories at physiological velocities and when arriving at the bind site engage in the normal kinetics of a collision.

For modeling purposes, it is necessary to know the types of ion channels targeted, what the lag time is, and what the 

variances are.  All of the above can be reduced to a straight-line “shuttle” representation that predestines messages to 

be send from a given receptor to a set of nearby target channels, with a somewhat varying amount of time 

transpiring to do so. Thus we draw message ways as transverse edges between the receptor and its nearby ion 

channels as designated in the build of this type of receptor. 

FIGURE 79: RATIO OF BOUND TO UNBOUND APPROACHING EQUILIBRIUM
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A shuttle system of second messengers is persistent, but inactive until a ligand binds to its receptor.  Then second 

messengers are bound to their “start positions” 

Second messengers proceed at mildly randomized velocities, arriving over a programmed time spread to their target 

channels, as binding modulators.     Upon completion, the second messengers remain persistently bound to their 

target ion channels until the phosphate concentration dies down, and dissociation kinetics unbinds them. The 

feedback mechanisms are such that phosphate concentrations remain static until the original ligand is dislodged from 

the receptor.  

Note that the entire G-protein/second messenger system is “owned” by the receptor, not the channel.

The model shuttle system representing second messengers is a persistent structure, but inactive until a ligand binds 

to its receptor.    Then second messengers are bound to their “start positions” .

Bio-data shall be processed on Secondary Messenger quantity, speed and variance., cAMP  cGMP  phosphorylation 

modulation & its time envelopes; so as to form shuttle Types for library.

FIGURE 81: LIGAND BINDS TO 
RECEPTOR

FIGURE 80: RECEPTOR IDLE 
WITH TARGET ACTORS

FIGURE 82: INITIATING G-
PROTEIN RELEASE

FIGURE 83: MESSENGERS IN 
TRANSIT

FIGURE 84: MESSENGERS BIND 
TO TARGETS
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8.3.4 MODULATORS  

The state transition probabilities of channels and pumps are not static.  The elemental values (or formuli of the Q 

matrices are altered by modulators.  These modulators may exert their impact as forces (e.g. voltage or mechanical 

displacement) or via particle collisions (ligands, protons, ions).  Therefore the term “modulator” is one of semantic 

ambiguity and cannot be effectively used as a software class.  We would do better to replace our concept of 

modulator ( a noun ) with modulation ( a verb ).  Further mixing inconsistent types, voltage is continuous while 

particles are of course discrete.  To produce a single modulation function,  discrete can be added to a continuous 

number if all arguments are linear in effect. Else, all values can be binned for like effects; and the bins of course are 

discrete.  This latter method is the least computational, because it supports producing the least number of Q matrix 

pages to represent behavior.

It should be understood however, that in the application from biologic literature, some modulators are Interactors, 

some are stressors, and some are virtual (like voltage, which as far as the Software is concerned, is the result of a 

calculated sum of charges divided by another sum of charges).  Thus the term “modulator” will not be used within 

the algorithms.

Q matrix values are calculated by equations that are a function of the relevant modulator levels.  When multiple 

modulators act upon a single actor type, this equation set may represent non-linear, time-dependent interactions 

between the modulators.  Generally, such equations are curve fits to the empirical biodata.
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FIGURE 85: CLASSIC VOLTAGE AND CURRENT EQS SYSTEMATIZED

Software architecture, depicting relationships between the HH EQs and the Kolmogorov EQs.  Note that there are 

two feedback loops, the membrane voltage and the ion concentrations.  

Each of the InterActors has one or more tags.  While a state is an internal conformation, a Tag is an external 

condition.   Tags would not be necessary if digital computers were perfect mimics of space-time.  However, the 

digitalization process is leaky and creates uncertainties about which compartment a particle is in.  Tags are merely a 

concession to the weakness of the digital model, providing a convenient means to keep track of the interactors.  

Typical tags mark Interactors as: in a certain compartment, in aqueous or lipid matrix, bound or unbound.  Tags are 

dynamic, therefore they are recalculated every dt.  

Tag changes are under “change management” to avoid corrupting the operations of particles and actors.  That 

implies access is by limited functions that preserve the data free from corruption, and comply with other rules of 
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physics and housekeeping.  There may be implications in tag changes that require state changes.  Certain tag 

changes may be probabilistic, and produce probabilistic effects.  In that case Kolmogorov Q matrices may be called 

into play to calculate those probabilities.   The actors do not own the particles, yet negotiate interactions with 

particles.  If an actor state requires a particle be bound, unbound, transported or converted, there may be a 

probabilistic process called that does not guarantee that the actor's request will be fulfilled.  Conversely, even when 

the actor state is not calling for any function, certain thermal energy effects may impinge on the actor state, bringing 

about state changes that do not serve the duty cycle.   These are the characteristics of a stochastic processor.

8.3.5 MODALITIES  

In 1990, Shrager computer modeled a demyelinated axon.[186]   He divided the axon under study into 20 equal 

length compartments;  modeled Calcium effects upon the axon membrane; and produced oscillations as extracellular 

calcium concentrations were reduced to near zero.  Calcium modulated the behavior of sodium channels and 

potassium channels.  His found oscillation required two opposing forces metered by each other so that each limits 

the other.  When potassium current consisted of positive charges outward and sodium current consisted of positive 

charges moving inward, then these two forces were opposing.  

It is understood that the depolarization of the resting potential by sodium influx triggers the potassium channels, 

after a 1E-3 s delay, to open.  If a mechanism is added whereby the action of the potassium channels, after a delay, 

triggers the opening of the sodium channels, then a sustainable oscillation should occur.   Normally sodium channels 

have a refractory period to prevent this.   When modulation of sodium channels has the effect of shortening (or 

eliminating) the refractory period to where the sodium channel could respond to the voltage changes induced by the 

potassium channels  (about 3E-3 s), then oscillation occurs until some change breaks the cycle.  

Bursts are characterized by very distinct on and off events, not gradual and not chaotic.  This sharp modal change 

would require either a sharp voltage range shift (unlikely) or a modulator that could be released near the ion 

channels to turn on the oscillation, and then somehow sequestered again to turn it off (or vice versa, where a 

modulator is removed from an ion channel to start a burst, and replaced to turn it off).    A model can be said to be 

systemic when one or more feedback loops are present.  Without feedback loops, the model is merely a step-by-step 

process. 
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Focused, synchronized activity in a dendritic tree will maximize the wave peak at the soma.[187]  Many dendritic 

arbors consist of two zones, the distal and the proximal.  The proximal zone acts to suppress the inherent 

nonlinearities so as to emulate a linear response for all points in the tree.  The distal end is variable, modified per 

learning and plasticity.[188]  Workers are variously aware that the modalities of firing patterns cannot be modeling 

by firing rates or binary open/closed kinetics, but perhaps assumed these phenomena emerged from multicell 

synaptic structures.[189]   They had noticed that the activations and deactivations of sodium channels were often 

incomplete and chaotic,[154]  and this suggested that kinetics play a role more than the Hodgkin Huxley equations 

would have suggested.  They built stochastic models to simulate the kinetics of shifting between the modalities of: 

single spikes, oscillations, and chaotic firing.[190] [191][192]  

Some potassium voltage gated channels have I/V plots that are monotonic and smooth second order curves.  A single 

variable input (V) does not support any significant state conformations.  Some reported sodium channels I/V plots 

appear to be third order (two inflections).  But as I/V plots are recorded from aggregate large numbers of like 

channels, these plots average out the kinetic subtleties.  From them, we can only measure the openings and closings 

of  the channel, and will be deprived of the internal state transition kinetics.  

Not expressed in the I/V plot are the time lags between stimulus and response.  Not expressed is the inactivation 

function.  For these and other reasons, two-dimensional plots are not adequate to model membranal performance. 

Each allosteric modulation site adds at least 1 degree of freedom (requiring another dimension in the input/output 

plot.  But there are also hidden states, that can be thought of as intermediate conformations to get from modulation 

effects to phenostate expressions. 

Every state transition requires time, and reversible processes make the outcome a bit uncertain.   The opposition of 

the Na and K  flux can produce oscillations when the kinetics of one is fast the other slower. [193]

Each of the historic models has been reviewed for its ability to perform modally, that is exhibit multiple modes.[194] 

The HH, Fitzhugh-Nagumo, Morris-Lear, Hindmarch-Rose, Conner  was analyzed mathematically for limit cycles. 

They can imitate the aggregate, but not the unitary channels.
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The mechanisms of neuron and neural tissue behavior take place at smaller scales than previously thought.  A single 

cell has been shown to be capable of a seizure.[195]   This implies that the channels are acting among themselves  in 

feedback loops (recurrence). 

Protein molecule state transitions are analyzed as first order processes, with an exponential curve wrt time as their 

solutions.   Given complex data, a number of exponential curves can be “peeled” out by subtraction, leaving a 

remainder from which more exponentials can be peeled out.   This can be repeated to some level of accuracy or 

diminishing returns.   Each found exponential is weighted in amplitude and by time constant.   The measurable 

current is then presumed to be:

I(t) = I(inf) + w1*exp(-t/t1) + w2*exp(-t/t2) + .... + wn*exp(-t/tn);    % where I(inf) is steady state

This is only a curve fit of exponentials, but is justified by kinetic first order reactions.  The problem is that it is not 

the conformational change that is being measured, but rather the effect that conformational change happens to have 

on conductivity of the channel.  In many cases that would be none, and so those conformations are invisible and 

ignored.  

Another problem arises once terms are added together.  Information is lost, more so when the quantity of terms is 

unknown.  Given a sum of 7, what originally comprised it?  1+6, 2+5, 3+2+2, 1+1+1+1+1+1+1 ?  Using only 

integers, there are 14 possibilities, and of course using decimals, there are an infinite number.  We receive the sum 

effects of conformational changes as a measurable current through the open pore.  Teasing them apart leads to what 

are called “kinetic schemes”  

The argument is made that to achieve higher frequencies of flux across the membrane, one cannot reduce the mass 

of the ions, so must have greater forces.   Higher voltages were found to support higher frequencies by Buckingham.

[158]

 The input waveform is the spatiotemporal integration of spikes, and may present as rather sinusoidal (single 

frequency) or more jagged (mix including high frequencies).  It is the high frequency part of the spectrum that can 

most easily trigger the rate-of-change sensitive ion channels.  Therefore the temporal shape of the input wave makes 

a difference.  Some of these effects can be mimicked spatially.  With inputs converging from various length 

dendrites, they assemble in a phase pattern that can shape waves over a wide range of possibilities.[196]   To probe 
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for the temporal shape domain of various dendritic spatial field shapes, various patterns across the field were 

stimulated[188]   And what did they find?   

8.3.5.1 Q matrices, stationary stack  

Q matrices follow a specific form.  Size = N x N, where N = quantity of states.  The upper triangle is populated with 

alpha values = forward transition probabilities between the various states.  The lower triangle is populated with beta 

values =  the backward transition probabilities.   The diagonal however is not the probability of remaining in the 

same state.  As one has been subtracted from this value.  Thus the diagonals are always negative.  Q = transition 

probabilities – eye(N) = the eigenvectors of the Actor.  Q easily solves for the eigenvalues of the Actor.

8.3.5.2 Q matrices, variable  

The Q matrix is a state transition probabilities table.  Q matrices follow a specific form.  Size = N x N, where N = 

quantity of states The upper triangle is populated with alpha values = forward transition probabilities between the 

various states.  The lower triangle is populated with beta values =  the backward transition probabilities.   The 

diagonal however is not the probability of remaining in the same state.  This is because the Q matrix is pre-

processed for solving eigenvalues, by subtract 1 from each diagonal value.  Thus the diagonals are always negative. 

Q = transition probabilities – eye(N) = the eigenvectors of the Actor. 

8.3.5.3 Kolmogorov Scaling  

Kolmogorov stochastic state transitions are derived for each of the actor types.   A stochastic process is one which is 

not deterministic, but rather requires a substantiation process via a random number generator and a Cumulative 

Distribution  Function (CDF).  Such a function implies a mean, a variance and even higher orders of statistical 

performance.  The end result of a stochastic process for an actor is a change in conformational state.  These states, if 

transient, are relevant to information processing by the neuron.  

If state transitions were instantaneous, awaiting only the proper conditions, then a finite state machine would be the 

proper representational model.  However, the kinetics of cellular chemistry are stochastic.  That is, they are multi-

state  entities with probabilities in time that that determine which and when a state change occurs (instantiation). 

They are not instantaneous, but always require some (varying) amount of time to make a transition.  Stochastic 
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transition matrices are called Markov chains if the states are memory-less  Most chemical states qualify as Markov 

processes.  The actors in this model are all Markov, which qualifies them for ease of solution via Kolmogorov Q 

matrix exponentiation.  The output of a Kolmogorov Q matrix (s x s) is a vector p, (1 x s), which is a probability 

distribution (PDF) for all s possible states.  If the rate coefficients (alphas for forward rates and betas for backward 

rates) are stationary, then this calculation need only be preformed once, at Build.  If they are transient, then they 

must be performed each dt.

Actor configurations may be of two types: finite modulations, or variable modulation. Finite modulations are 

effected by ligand bindings.  Usually an actor has 0, 1 or 2 such binding sites.  Zero binding sites implies that this 

actor type has a 1 page Q matrix.  One binding site  which accepts only 1 type of particle implies { vacant 

occupied } modulation possibilities; therefore a 2 page Q matrices.  Which one of the Q's is in use is determined by 

whether or not the bind site is occupied.  An actor with 2 binding sites will have at least 4 pages in the Q matrices, 

one for each of the possible combinations of bound and unbound sites.

Vesicles may employ a stochastic process in determining the particle contents in each vesicle.  When charging up a 

vesicle, the ratio of particle types is specified as a profile.  The variance of each constituent type is also specified. 

The content of a single vesicle is instantiated as a random selection across int(G), the CDFs of content distributions.

The Hodgkin Huxley EQs were exponential curve fits to aggregate channel current recordings.  Chapman applied 

statistics to the neural data so as to predict the channel openings wrt time, and also gave us analytic EQs to 

determine the steady state ratios of state dwell time.  Chapman adapted Kolmogorov stochastics to quantum 

mechanics of single channel openings.  Though Kolmogorov representation gets a lot closer to first principles, its 

predictive accuracy is limited by the fact that the protein molecules comprising an ion channel may have billions of 

possible states, but only a small number of those are of consequence to the conductivity of that channel.   The 

available data, mostly nanoamp readings to measure the conductivity, do not, and cannot, "read" all the states.  Thus 

we remain blind to most of the conformers, and collect a woefully simplified state diagram which is a substitute for, 

but not a replica of, the actual ion channel states.

QtP
dt

tdP )()( =



518

 According to standard probability conventions, P is a vector of unit-less values that sum to one.  However stochastic 

probabilities are in units of frequency, and are divided by time to get the resultant probability of occurrence.  This 

probability of occurrence may be greater than one, if indeed two or more occurrences would have occurred in that 

unit time. It is prudent to chose dt such that all probabilities are less than one, else distortions occur.  Certain 

corrective measures can be made for fast processes.  Generally an average state is representative of flutter too fast to 

be informationally significant in this model.

 Q is a matrix of alpha and beta rate coefficients between the various states, forward (upper triangle), and backward 

(lower triangle).

8.3.6  STATE FLOW DIAGRAMS    

Follows are the state transition diagrams for each of the Actors.  While in a particular state, the specified function is 

called every dt.  To transition to another state, all conditions must be met for that transition.  Once all conditions are 

met, then probabilistic attempts are made to change state.  These state transition diagrams are simplified versions of 

reality, called schemes.  Reality often has both forward and backward probabilities along each edge.  This model 

will accommodate forward and backward probabilities whenever the actor is identified as a Kolmogorov entity by 

providing a Q matrix in the DESIGN load.  Else the actors work as finite state machines and change states the 

instant prerequisites have been met for such (deterministic).  A few of the early, simpler state diagrams, motivated 

only by phenostate requirements, are shown blow.
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FIGURE 86: STATE DIAGRAM FOR A 
SIMPLE RECEPTOR                 

FIGURE 87: STATE DIAGRAM FOR AN 
ION PUMP WITH 4 STATES

A Recep must be Typed over several aspects:

1. Vector of interactors attractiveness  (set attractors to a pre-calibrated rate that mimics in vivo)

2. Vector of interactors. binding constants, alpha and beta

3. Response profile to each possible binding  (how much message? noisy? delay in sending it?)

The message can be massive or merely electromechanical linkage within an ion chan.   Massive messengers require 

a 3 step process:  

1. release; 

2. diffusion to the nearest chan; 

3. binding to the chan.  

Presumably the chan is capable of being modulated by the messenger particles.
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FIGURE 88: STATE DIAGRAM FOR 2-WAY 
EXCHANGE PUMP WITH 5 STATES

           

FIGURE 89: STATE DIAGRAM FOR 3-
WAY EXCHANGE PUMP
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EX   Given that interactors = [ K Na Cl Ca H An Ach NE GABA ] 

Type value comments

Attracts Ach ( Modulators may be assigned a serial number)

Attraction Force 0.01 (scaled relative to velocity)

Binding alpha 0.6

Binding beta 0.3

messenger Ca++

release amount 7 (ions)

noise 0.2 fraction of max signal

release time  alpha 0 delay

reset time  beta 0 delay

TABLE 19: PUMP WITH 4 STATES

            
FIGURE 90: STATE DIAGRAM FOR A 
ION CHANNEL WITH 4 STATES   

FIGURE 91: STATE DIAGRAM FOR A 
SIMPLE VESICLE
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FIGURE 92: STATE DIAGRAM FOR ION CHANNEL WITH 6 STATES

State Diagram for a hypothetical ion Channel with 2conductance values

Each of the above state transition diagrams can be treated as logical calls of certain functions given certain states. 

However a superior approach is to treat each as a Kolmogorov SDE model, wherein forward and backward 

probability values are provided.  These transition rates may or may not be modulated by any of the available 

modulators, including voltage and concentration levels.  

Note that pH may be a modulator.  It is merely an H particle concentration level as far as the digital model is 

concerned. Voltage is a common modulator to any transmembrane molecule with non-homogeneous charge 

distributions.

State transition diagrams are populated by empirical data processed by "peeling" exponential curves from a 

presumed summation of curves.  The resultant "Schemes" are simplifications of reality.  Therefore, multiple schemes 

may be produced from the same data.  They must compete for the best fit and the most robust behavioral 

representations of the channel type.   From a modeler's point of view, it is worthwhile to run both schemes with 

experimental designs intending to detect any behavioral difference between the two, .  If there are no consequential 
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differences, then choose the computationally lighter load.  If there are interesting differences then keep both in the 

library. 

8.3.6.1 States and Tags for Actor-Particle Interactions  

States are those changes in molecular configuration intrinsic to the entity (e.g. mass, charge, radius).  Tags are those 

changes in environmental relationships extrinsic to the entity (e.g. position, velocity, force impinging, compartment 

assigned to, in capacitance).

Each actor has three types of state.  It has its modulator binding state (impact of environment upon the actor), it 

internal conformational state, and its phenotypical state (its impact upon the environment).   The first two are 

kinetic, represented by probability transition matrices, usually dynamic.  The latter is usually a simple lookup table, 

not requiring stochastics to map internal state to external effect.

When mobile particles become bound to an actor, their positions are set equal to the pole location to which they are 

bound, and their velocities are set to zero.    The actor must know specifically which particles are bound to it.  Only 

by this information could particles be unbound or transported to the other pole.  

Optionally, each particle could be tagged as to which compartment it belongs to, and which actor it is bound to if 

any.  Upon transport, its compartment tag would be changed, its position changed to the opposite pole, and the 

kinetics of its release would be changed.

8.3.7 IDEAL ACTORS  

Primary characteristics of actor type:

1. Characterize a singular type and assign it a permanent name or number

2. How many binding sites in this molecule?  Are there any other action sites (voltage, pore_opening)?

3. Which side of the membrane is each binding site on?

4. What are the affinities of each binding site, of all the possible particle types?

5. What is the action of each binding sites or other action site?

6. What are the internal configuration states of the molecule?  (this is often an abbreviated scheme)
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Secondary characteristics of actor type, higher order relationships:

1. How do the B particles relate to the binding sites?

2. How do the binding sites relate to the states?

3. How do the states relate to the actions?

4. How do the actions relate to the B particles?

To these ends has been developed the concept of actor Type data.

TA = { BA R RQ Q O G aff erg eff }

% BA is a list of particle types needed, order-sensitive, as tabulated in R
BA_h1 = '[C1 C2]';   % compartment have differing particle concentrations
BA_h2 = '[Na Cl K Ca Gly Glu cGMP ADP ATP]';

% R is the bind and unbind kinetics for each bind site wrt state of the molecule 
R_h0 = 'R(state,B,cd,d,fb) dimensionality';
R_h1 = 'states';
R_h2 = '[vacant Na Cl; vacant ADP ATP ]';
R_h3 = 'bindcombo = row of RQ';
R_h4 = 'bindsite';
R_h5 = 'forward or backward rate coefficients';
 
% Q is the conventional state transition matrix
Q_h1 = 'currently in state';
Q_h2 = 'going to state';
Q_h3 = 'bindcombo = row in RQ';
 
% RQ maps the R bind combo into the Q page#
RQ_1 = 'occupancy of bind sites = bindcombo';
RQ_2 = 'bind site';
 
% O maps the Q state into the external action, if any
O_h1 = 'state';
O_h2 = 'external effects = [in thru out convert]';
 
% G is the conduction profile of channels, the particle contents of vesicles
G_h1 = 'binding site';
G_h2 = 'B type';
G_h3 = 'state'; 

% aff assists R in receiving the appropriate particles for binding
aff_h1 = 'bind site';
aff_h2 = '[d o B A r4 f1 r6 f2 var]';
aff_h3 = 'B types, when there is more than 1 type binding';
 
% erg provides reactions that supply energy (e.g. ATP > ADP + Pi), for pumps
erg_h1 = 'reaction number';
erg_h2 = '[reactantA reactantB productA productB]';
 
% eff assists recep O in transmitting the appropriate messengers to targets
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eff_h1 = 'bind site';
eff_h2 = 'd o B A r4 f1 r6 f2 var';
eff_h3 = 'B types, when there is more than one messenger type';
U = subunit data.  How to divvy up the Q matrix into subunits and the logic of the gates between them.

TA_h = 'cell {1  2  3  4  5  6  7   8   9   10 11}';
             {BA R RQ  Q  O  G aff erg eff  id  U}';

% TA is only the type data.  There is also needed distribution data DA , and from these two instantiation data IA is 

generated.  IA has static elements and dynamic elements.  

EX  Recep1 has 1 bind site extra for gly and 1 bind site intra for cGMP
Rq(:,:,1)  = [ 0   0   0   0   0   0   0  10;            % mean

         0   0   0   0   1   0   0   0];
Rq(:,:,2) = [ 0   0   0   0   0   0   0   1;             % variance

        0   0   0   0   0   0   0   0];

Rcombo =  [ 00 10 11 01];   qRcombo = 4;
R = [bindsite x B x Rcombo x forwardbackward

% recharge state (0 0)
R(:,:,1,1)  =  [ 0   0   0   0   0   0   0   0;            % forward

          0   0   0   0 .99  0   0   0];
R(:,:,1,2) =   [ 0   0   0   0   0   0   0   1;            % backward

          0   0   0   0 .01  0   0   0];
% ready state (1 0)
R(:,:,2,1) =  [ 0   0   0   0   0   0   0 .98;            % forward

          0   0   0   0   1   0   0   0];
R(:,:,2,2) =  [ 0   0   0   0   0   0   0 .01;            % backward

         0   0   0   0   0   0   0   0];
% stimulated state (1 1)
R(:,:,3,1) =  [ 0   0   0   0   0   0   0 .98;            % forward

         0   0   0   0 .01   0   0   0];
R(:,:,3,2) =  [ 0   0   0   0   0   0   0 .01;            % backward

         0   0   0   0 .99   0   0   0];
% release state (0 1)
R(:,:,3,1) =  [ 0   0   0   0   0   0   0 .01;            % forward

         0   0   0   0 .01   0   0   0];
R(:,:,3,2) =  [ 0   0   0   0   0   0   0 .99;            % backward

         0   0   0   0 .99   0   0   0];
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where each page represents a certain bind combination.  [pole1 pole2] = { 0 0; 1 0; 1 1; 0 1};  Note that the binding 

conditions are the primary determinant of the next state.  This is characteristic of a transducer, as opposed to an 

information processor.  Vesicles have a very similar ideal form; with  pole1 and pole2. reversed.

8.3.7.1 General Form for Actors  

R:   All actors are capable of binding and unbinding certain types of particles
Q:   All actors are capable of changing conformation (state-to-state transitions)

O:  Pumps are capable of moving binding sites from one side to the other side of the membrane
O:  Channels are capable of opening up a pore through the membrane
G:  Channels have conductivity profiles (selectivity through the pore)

aff:   All actors have certain affinity profiles for particles to bind to their binding sites
eff:   Receptors have certain ability to broadcast particles via G-protein systems
erg:  Pumps may consume energy by converting one particle type into another type

recharge ready release1 release2
 00 1 2 3 4

1 0.99 0 0.01 0
2 0.99 0.01 0 0
3 0.99 0.01 0 0
4 0.99 0.01 0 0

recharge ready release1 release2
 10 1 2 3 4

1 0.01 0.99 0 0
2 0 0.99 0.01 0
3 0 0.99 0.01 0
4 0 0.99 0.01 0

recharge ready release1 release2
 11 1 2 3 4

1 0 0.01 0.99 0
2 0 0.01 0.99 0
3 0.01 0 0.99 0
4 0.01 0 0.99 0

recharge ready release1 release2
 01 1 2 3 4

1 0 0.01 0 0.99
2 0 0.01 0 0.99
3 0 0.01 0 0.99
4 0 0.01 0 0.99
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ACTOR TRAITS R Q O G aff erg eff

action E-I kinetics I-I kinetics I-motion selectivity E-motion inbound Energy converted E-motion outbound

matrix SxPx(DxB+) SxPx(S) SxW Wx(BxFi(B)) [B r4 Fe(B) r3] [in1 in2 out1 out2]  [B qB  A vel var -vel] 

Recep x x x x
Chan x x x x x
Ves x x x ?

Pump x x x x x

clas

In summary:
The R matrix is the modifier of Q.
The Q matrix is the modifier of R.
Q     expresses via O.
R     expresses via Bind combinations
aff   Bindings are facilitated by aff
erg   Pumps consume energy according to erg; or any chemical conversion intrinsic to the duty cycle
eff   Dissociations are guided by eff

R (un)binding B to actor
Q internal state of actor
O internal motion of actor
G conductivity of channel

A actor types
S actor states
D allosteric binding sites
P page = combo(DxB+)
W [pole1 pore_open pole2]
B particle types

B+ B + null + voltage
Fi(B) driving force partials
Fe(B) driving force partials

aff affinity of B to D
r4 distance reach of affinity
r3 distance reach of bind

erg energy consumed per cycle
in1 in2 .. inn energy source reactants

out1 out2 ..outn energy byproducts
eff emitted B from A

qB quantity of B released
vel messenger mean velocity
var variance on velocity
-vel return velocity (reset)
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8.3.7.2 Recep General Function  

A generic receptor scheme requires 4 states.  There is typically one Bind and Unbind processes for a ligand.  This 

changes the state of the receptor so as to release a messenger (ligand or ion).  

EX:   Recep for Ach, nicotinic type

Above is an example of a kinetic scheme for a Ach nicotinic type receptor, adapted from Salamone, 1999.  

A = k2/k1;        B = g2/g1;         T = a/b;    R = g/d;   Q = sqrt(T*R) = m/L;
A = 10e-6 M;   B = 100e-6 M;  T =  100;   R = 0.2;  Q =  0.935 ;   

FIGURE 93: KINETIC SCHEME FOR ACH-N RECEPTOR
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Notice all hold states have residual values, and for others there are missing values.  For any given dt, and the 

probabilities of transitioning to another state are calculated and summed.  The residual time equals the hold state 

probability.

Receptors are presumed to be transducers, a switched catalyst that converts an extracellular NT binding event into 

an intracellular stream of second messengers until the NT dissociates.  This constitutes a mathematical integration. 

Whenever a receptor behaves in a more complicated fashion than simple on/off, then there must be greater kinetics 

internal to the molecule.  A Q matrix can be designed to mimic various lags, variance, volume control via 

modulation,  as real receptors may display.   A pure is receptor is optimized by a faithful one-to-one between 

detected signal and delivered message.  However, in biology, things are rarely simple, and multiple functions may be 

present.  

FIGURE 94: Receptor Duty Cycle
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8.3.7.3 Receptors, ionotropic and metabotropic  

Binding sites located on ion channels are ionotropic, and induce immediate modulation of the Q matrix element 

values of that ion channel.  Remote receptors that employ G-protein messenger shuttles to modulate one or more ion 

channels per receptor are metabotropic.  The latter requires additional iconic structures to enact the communication 

linkages between receptor and a set of channels.

Receptors broadcast information to a set of channels.  From an information perspective, the issues are timing, 

leverage, and modulation.  If there is no intervening modulation between the the receptor's release of messenger 

particles and the channels' receipt of such messenger particles, then the problem is reduced to timing and quantity. 

These can be handled is a straight forward manner as a state transition probabilities table for the timing, and straight 

line links (serving as shuttles) to move the particles to their targets. 

The axial poles (round) are loci for ion transport.   The eccentric poles (asterisks) are the binding sites for 

modulating ligands.   Z=0 is the membrane plane.  X,Y=0 is the axis of the actor.  

8.3.7.4 Ion Channel state transitions  

A library of channel types is maintained.  Each is characterized by an ion conductivity profile, an instantaneous state 

transition matrix, and a P vector for state to gate mapping.  The Q- matrix is one of 2 types, variable or discrete.  A 

discrete Q is a set of several Q matrices consisting of fixed element values, chosen according to modulator bindings, 

if any.  A continuous Q-matrix is a single matrix consisting of elements that are functions of a modulator value, such 

as voltage.  The discrete corresponds to metabotropic and the continuous to ionotropic channels.  For discrete Q's 

there is an R function which translates the modulator state into a choice of Q matrices each dt.  For continuous Q's 

the variables within it are re-evaluated each  dt.  Ion channels open and close stochastically as a function of state 

transitions within the Q-matrix

O = P*S*Q(R), where
R = receptor binding or modulator value
Q = infinitesimal transition matrix (as determined by R)
S = current molecular conformation
P = functional expression of any given conformer
O = open/close status of the ion channel
So = stochastically determined initial state of each channel
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Practically, ion channels consist of 4 to 6 subunits which are protein molecules changing conformation somewhat 

independently.  It requires less computation to treat each subunit separately and then take the product of their 

conformers, than it does to process a single large joint matrix representing the whole channel.

Ion channels can be fitted with energy barrier profiles which will influence which velocity ions get through.

Ion channels consist of 3 to 10 subunits, each of which may or may not be active in gating or inactivating that 

channel.  Subunits are generally regarded as independent finite state machines, but theoretically may be coupled.  If 

dependent, then the Q-matrices of the subunits would be represented as sub-matrices within a greater channel Q-

matrix. 

Let us begin with the Hotchkin-Huxley model of ion channels.  One type of sodium channel was deemed to be 

present.  It consisted of identical 4 subunits, referred to as 'n'.  There was also one more channel type present, the 

Potassium channel.   It consisted of 3 identical subunits referred to as 'm' and a fourth subunit referred to as 'h'.  All 

subunits were deemed to possess gates, any one of which could obstruct the channel.  Therefore the probability that 

the sodium channel was open was n^4, and the probability that the potassium channel was open was h*m^3.  The 

opening and closing rates are measured as the forward and backward “rate constants”alpha and beta, which 

unfortunately are not at all constant.  So let us call them rate coefficients. 

In the circumstance of opening and  closing, a complete cycle consists of  one alpha and one beta.  Thus the period = 

alpha+beta; and accordingly the frequency = 1/(alpha+beta).  In solving a first order differential to get the aggregate 

response, the time constant tau = 1/(alpha+beta).  This is best thought of as a frequency – how many open-close 

cycles occur per second.

Because h,m, and n refer to subunit gate openings, a more general form is sought that would accommodate any 

subunit and any number of subunits per ion channel, and any mix of subunit types per ion channel.  

We can call each subunit h, and number then h1, h2 ... hn.   A library of subunits can be used to mix and match to 

create new ion channel types, or merely refer to existing types by listing their subunits.  As it is expected to be 

tedious to always construct an ion channel from an existing library of subunit types, it is allowed to define a new 

channel and its subunit types simultaneously.
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The general form of the Hodgkin Huxley EQ for one of the channel subunits:

( ) ( ) 1/
0 1111 htehhhth τ−

∞∞ −+=

For a channel with 4 identical subunits the gating function would be h1^4.

The source of tau in the above EQ is the reciprocal of the sum of the forward and backward rate coefficients.  The 

exponential response of one subunit changing forward and backward rate coefficients in response to its modulators 

is:

The forward and backward rate coefficients originate, in the case of certain voltage modulated subunits as:

Kolmogorov's contribution to channelology was that he provided the methods to generalize all subunits of ion 

channels as finite state machines with stochastic transition probability frequencies :                                    

 Q is the instantaneous transition probabilities matrix for all relevant states (configurations) of the subunit and P is 

the vector of all states with the probability of being in each state at that moment in time.  The upper triangle of Q is 

the forward coefficients and the lower triangle is the backward coefficients.  Q can be any size from 2x2  (for a 

single alpha and beta, to NxN where N = the number of relevant states.  P can be treated as a PDF, and instantiated 

to a particular state for any instant in time.

Q is in units of frequency,(events/sec), and must be adjusted to the span of dt to be valid in discrete time. 

None-the-less any conversions to discrete time are fraught with potential errors when the span of Q-matrix values is 

great, or when all values are many orders of magnitude away from one.

EX: a Q matrix for a Kv Chan type:     

( ) tehhhh βα +−
∞∞ −−= )( 0

( ) RTzFV
hh eV /0 δαα = ( ) ( ) RTzFV

hh eV /10 δββ −−=

Qtp
dt

tdp *)()( =

dtQeQdt *=
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The simplest 4 subunit channel would have kinetics similar to:

In the above case, each subunit is either open or closed.  When all 4 subunits show open, then the actual channel is 

open.  Other logical relationships between subunits are possible.  There are reasons why channels are all vastly more 

complex than this value set.  The homeostatic characteristics of living forms is in large part dependent upon ion 

channels that modulate in accordance with changes in their environment.

This example is a voltage sensitive potassium channel.   

Q yields a probability density function for a given prior state.  This PDF (the vector from Q chosen by the prior 

state) can be instantiated by converting the PDF into a CDF , then applying a random number generator to choose 

the next state.  Once a P has been instantiated to a state s for a given dt, it must be interpreted for its external 

expression (open or closed).  When more than one subunit is gating, then there are several P's and several 

TABLE 20: CHANNEL WITH SUBUNITS, PHENOSTATE LOGIC

SIMPLE CHAN
consisting of 4 subunits

sub1 sub2 sub3 sub4 phenostate
bind closed open bind closed open bind closed open bind closed open

0 0.99 0.01 0 0.99 0.01 0 0.99 0.01 0 0.99 0.01
1 0.01 0.99 1 0.01 0.99 1 0.01 0.99 1 0.01 0.99

sub1 sub2 sub3 sub4
bind bind bind bind open

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 1 1 0 0
0 1 0 1 0
0 0 1 1 0
1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1
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instantiated states.  A logical gate function must then be applied to  interpret the particular combination of subunit 

states for the over all channel opening/closing expression.

Two kinds of Q matrices are possible, the variable Q and the discrete Q.   The variable Q is most often responding to 

voltage, but may be responding to other continuous parameters such as pH or temperature.  The discrete Q's, which 

are a stack of possible Q's, one of which is chosen by the particular combination of bindings of modulator ligands on 

the subunits is present.

It is computationally desirable to convert the continuous forms to discrete, because this allows all of the Q-matrix 

calculations to be performed in the BUILD, rather than the RUN.  The sacrifice is that continuous values must be 

made discrete (binned into the most significant domains, which need not be of equal width.  By this means the given 

continuous variable(s) are looked-up on a bin table which yields a pointer to which Q-matrix to use for that dt.  The 

look-up table will have a dimension of N when N equal the number of input variables, be they discrete or 

continuous.

8.3.7.4.1Actor Subunits
 Some actors are know to consist of 2 or more subunits that are assembled and inserted into the membrane to 

become functional.  There is a question as to whether there is any advantage to modeling the actor as a single entity, 

ignoring the subunits , or alternatively treating actors as “mix-and-match” assemblies from a library of subunits. 

The major consideration is computational load.  Each actor subunit has its own Q matrix.  If the values within the 

matrix are not significantly altered by the coupling (binding) of say 4 subunits into a single ion channel, then 

treating each subunit as a separate entity is computationally efficient.  However, if the binding of subunits involves 

stressing the molecule so as to change their Q matrices, then each channel type (as a combination of various types of 

subunits) will be unique.  This nullifies the utility of subunit Q matrices, because none survives the association 

anyway.  The resultant singular Q representing all 4 subunits as a single entity is necessarily more complex.  Four 

5x5 matrices involve a lot less computational load than one 20x20.  But the 20x20 would be necessary to reflect the 

kinematic coupling between the subunits as they become one.  The pivotal question is:  Is the intensity of coupling 

between subunits sufficient to necessitate merging the 4 subunit Q matrices into a single Q matrix so as to accurately 

represent the state transitions? 
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Given 4 subunits each with 5 significant states, they could be treated separately as four small computations to 

determine the phenostate of each.   In the case of an ion channel, a simple AND function would determine the 

general phenostate of open or closed for the whole channel.

In a similar situation, but if the subunits bind in such a way that their state changes are coupled to each other, then 

the subunits must be represented as a single larger matrix that provides the coupling terms at various locations 

outside of the four subunit blocks.  This simply acknowledges that the actor has become a larger entity with 20 

significant states.

8.3.7.5 Vesicle General Function  

For purposes of information flows, the vesicle is modeled as an inverted receptor.

H1  : H2  : H3  : H4

A1

H1

H2

H3

coupling 
terms

H4
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8.3.7.6 Pump General Function  

 Ion pumps are indispensable in many modeling queries.  

1. They determine what the steady state is regarding tonicities.  Therefore they determine the resting potential. 
One definition of clinical death is the cessation of ion pump activity, so critical is their contribution.

2. Pumps are logical devices, whenever they co-transport.  Rather than merely pump one or another ion to 
desired levels, they force ratio-based movements, more apt to preserve the ratio between species of ion than 
set the absolute concentrations.  Further complexity arises by the interplay of various types of pumps,  each 
with its own idiosyncratic ratio.  Tonicities can be shifted to different concentration profiles by re-
weighting pump type activities.  This can play a role in shifting the functional role of the cell across several 
“moods”, by altering tonicities along viable paths to modulate the Q-matrices of ion channels (and other 
actors).  

3. Pumps fatigue, presumably due to energy shortages.  This effect is certainly relevant to neuron behavior. 
Pump fatigue can be simulated by giving them receptors which modulate pumping rate, and may become 

FIGURE 95: Vesicle Duty Cycle
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starved for ligand.  Thus ligand concentration controls pump rate. If modulators alter or switch pumping 
curves, then ligands can alter the steady state conditions as well.

4. Pump distribution can set up significant effects for information processing.  A cluster of ion pumps at one 
end sets up an ion current down the entire length of a process.  For example, such currents are instrumental 
in motion detection.  

A library of Ion Pump types is maintained. 

The rest states s1 and s5 are optional.  The red arrows show alternative and mis-step transitions that show up in the 

transition probabilities matrix.  It is helpful to add in the actions that take place between states.  Either the prior state 

triggers the action, or some external event triggers the change in state.  

FIGURE 96: PUMP STATE FLOW DIAGRAM

FIGURE 97: Ideal pump with 10 states and actions
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For pumps that require binding dissimilar ion types, it is more accurate to add a position for each possible binding 

event, including extras for binding in alternative orders.  Below is the Q matrix for a 16 state pump.

Q =

.
A generic pump scheme requires minimum of 6 states.  But these are only the internal transformations.  There are 

also the possible external events of binding and dissociation.  

Each of the Bind and Unbind processes may be assigned {0 : many} particles to be pumped.  A particle may be an 

ion or a ligand.  Energy may be implicit (as when driven down the sodium gradient), or explicit (as with converting 

ATP to ADP).  Chemical energy sources are presumed to be available intracellularly, not extracellularly.

This scheme requires that all of the particles bound at Bind1 be unbound at Unbind1,  and all of the particles bound 

at Bind2 be unbound at Unbind2.  

For purposes of transport, pumps and channels are assigned 2 poles.  Each pole is assigned to a compartment at 

Build, according to physical placement in a particular membrane.  Each of the state transitions is purported to 

consist of one (or several) first order kinetic interactions.

1. S1   state 1   empty, Attractor1 binds “Bind1” particles

2. S2   state 2   loaded, Attractor1 off

3. S3   state 3   transporting towards Pole2, note consumption of energy

4. S4   state 1   release all Bind1 particles

0.52 5.93E-007 0.97 6.81E-007 0.02 8.79E-007 9.71E-007 2.86E-007 0.02 2.69E-007 7.87E-008 6.28E-007 1.83E-007 2.55E-007 7.81E-007 0.04
3.16E-007 0.64 0.06 8.35E-007 1.79E-007 1.05 6.03E-007 8.33E-007 8.70E-008 0.01 8.68E-007 7.86E-007 3.21E-007 9.12E-007 2.90E-007 0.06

0.03 0.94 0.34 8.96E-007 2.49E-007 3.57E-007 0.01 7.70E-007 3.18E-007 9.54E-007 0 7.49E-007 2.56E-007 3.68E-007 5.51E-007 2.52E-007
8.86E-007 4.13E-007 1.94E-007 0.65 0.01 0.04 8.63E-007 2.01E-007 4.53E-007 1.18E-007 7.97E-007 0.01 9.41E-007 3.80E-008 5.75E-007 1.01

0.01 7.70E-007 9.13E-007 0.01 0.36 8.06E-007 0 7.65E-007 1.61E-007 2.49E-008 7.86E-007 1.83E-007 0.01 6.51E-007 2.04E-007 3.99E-008
8.63E-007 0.05 6.84E-007 0.96 9.21E-007 0.85 0.01 6.16E-007 5.99E-008 4.22E-007 3.31E-007 8.44E-007 9.88E-007 0.02 5.55E-007 6.24E-007
2.45E-007 6.08E-007 0 3.10E-007 0.01 0.01 0.54 9.64E-007 4.45E-007 6.44E-008 9.50E-007 7.16E-007 9.52E-007 8.38E-008 0.01 3.87E-007
4.34E-007 7.95E-008 7.13E-007 4.47E-007 9.03E-007 9.47E-007 6.95E-007 0.67 0.01 0.01 8.28E-007 0.01 8.74E-007 1.15E-008 5.49E-007 0.11

0 4.15E-007 4.85E-007 9.64E-007 1.90E-007 9.51E-007 8.41E-007 0.01 0.26 9.24E-008 0.01 6.13E-007 0.01 3.66E-007 6.98E-008 3.32E-007
2.16E-007 0.01 8.33E-007 4.62E-007 9.93E-007 3.21E-008 6.76E-007 0.01 5.10E-007 0.12 0 8.74E-007 1.47E-007 0.01 8.60E-007 9.32E-007
7.75E-007 8.43E-007 0.01 4.96E-007 3.26E-007 2.76E-007 7.01E-007 9.80E-007 0.01 0.01 0.04 7.93E-007 6.50E-007 4.16E-007 0.02 4.68E-007
8.72E-008 5.24E-008 2.55E-008 0.02 2.28E-007 6.78E-008 8.95E-007 0.01 8.30E-007 6.10E-007 9.89E-007 0.89 0.01 0.01 2.39E-007 7.10E-011
4.00E-007 7.28E-007 3.36E-007 1.92E-007 0.01 8.27E-007 5.87E-007 2.61E-007 0.01 3.95E-007 3.44E-007 0.01 0.75 4.66E-007 0 7.26E-007
5.90E-007 1.15E-007 4.87E-007 8.98E-007 8.11E-007 0.01 3.25E-007 5.90E-007 4.27E-007 0 2.40E-007 0.01 2.45E-007 0.8 0 3.99E-007
1.97E-007 4.85E-007 2.25E-007 3.89E-007 9.24E-007 5.81E-007 0.01 7.45E-007 7.33E-007 9.61E-007 0.02 6.24E-007 0 0 0.44 2.29E-008

0.96 0.06 5.55E-007 0.01 7.19E-007 3.44E-007 2.08E-007 0.11 5.27E-007 7.50E-007 9.09E-007 3.53E-007 2.33E-007 5.08E-007 3.19E-007 0.08
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5. S5   state 2   empty, Attractor2 binds Bind2 particles

6. S6   state 3   transporting towards Pole1, note consumption of energy

Bind1 =  [ atomic weights ID the ions to be bound at pole 1;
                  Starvation concentration parameter for each;           % units are particles/cumicron
                  Saturation concentration parameter for each ];         % units are particles/cumicron

Bind2 =  [ atomic weights ID the ions to be bound at pole 2;                               
                 Starvation concentration parameter for each;            % units are particles/cumicron
                 Saturation concentration parameter for each ];          % units are particles/cumicron 

%%    BUILD:
posA = BuildPump ( TypePump, TypeAttract, DistPump )   % maps types of pumps to locations
TypePump (Shape, Bind1, Bind2, PumpRate)          
    % a pump type is defined by an icon, poles, binding functions, and pump rate
TypeAttract ( MW, R, F, r )   % parametrizes each attractor, draw radius, force, bind radius
    *  MW = molecular weight of ion to be attracted and pumped
[ PosPump, PolAttract ] = DistPump ( pdfPump, posC )   % posC = node locations on comp
Bind1 = [ AW, starve, saturate]    % creates a sigmoid probability curve for bindings
PumpRate =  max pump cycles / msec
 %%    RUN:  
Function  [NewPos, NewTag] = pump ( DistPump, Pos, Tag)   % completes 1 pump cycle
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A generic pump scheme requires 6 states.  Each of the Bind and Unbind processes may be assigned {0 …many} 

particles to be pumped.  A particle may be an ion or a ligand.  Energy may be implicit (as when driven down the 

sodium gradient), or explicit (as with converting ATP to ADP).  

IDEAL PUMP 001 101 100 000  010 011

load1 load1 transport12 unload2 load2 transport21 unload1
001 1 2 3 4 5 6

1 0.98 0.01 0 0 0 0.01
2 0.98 0.01 0 0 0 0.01
3 0.98 0.01 0 0 0 0.01
4 0.98 0.01 0 0 0 0.01
5 0.98 0.01 0 0 0 0.01
6 0.98 0.01 0 0 0 0.01

transport12 load1 transport12 unload2 load2 transport21 unload1
101 1 2 3 4 5 6

1 0 0.99 0 0 0 0.01
2 0 0.99 0 0 0 0.01
3 0 0.99 0 0 0 0.01
4 0 0.99 0 0 0 0.01
5 0 0.99 0 0 0 0.01
6 0 0.99 0 0 0 0.01

unload2 load1 transport12 unload2 load2 transport21 unload1
100 1 2 3 4 5 6

1 0 0.01 0.98 0.01 0 0
2 0 0.01 0.98 0.01 0 0
3 0 0.01 0.98 0.01 0 0
4 0 0.01 0.98 0.01 0 0
5 0 0.01 0.98 0.01 0 0
6 0 0.01 0.98 0.01 0 0

load2 load1 transport12 unload2 load2 transport21 unload1
000 1 2 3 4 5 6

1 0 0 0.01 0.98 0.01 0
2 0 0 0.01 0.98 0.01 0
3 0 0 0.01 0.98 0.01 0
4 0 0 0.01 0.98 0.01 0
5 0 0 0.01 0.98 0.01 0
6 0 0 0.01 0.98 0.01 0

transport21 load1 transport12 unload2 load2 transport21 unload1
010 1 2 3 4 5 6

1 0 0 0.01 0 0.99 0
2 0 0 0.01 0 0.99 0
3 0 0 0.01 0 0.99 0
4 0 0 0.01 0 0.99 0
5 0 0 0.01 0 0.99 0
6 0 0 0.01 0 0.99 0

unload1 load1 transport12 unload2 load2 transport21 unload1
011 1 2 3 4 5 6

1 0 0.01 0 0 0 0.99
2 0 0.01 0 0 0 0.99
3 0 0.01 0 0 0 0.99
4 0 0.01 0 0 0 0.99
5 0 0.01 0 0 0 0.99
6 0 0.01 0 0 0 0.99
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Due the the combinatorial expansion of space and the permutation exploding in time, the quantity of elements in the 

multidimensional matrices representing just one actor can be huge (3600 in a very simple pump).  Fortunately, such 

matrices are sparse, and approaches can be developed that trace out the duty cycle, then populate one-bit errors as 

alternative paths, then two-bit errors, and on until some point of diminishing returns.  Beyond that background noise 

can fill in the rest of the fields for greater authenticity, albeit at heavier computational load.   

Ideally, molecular dynamics will soon be able to generate all the probabilities for a given molecule in a given 

environment, so there need not be interpolation, guesswork and background fill.  With such data, runs can be made 

to determine the truly significant bits, and the rest can be purged for leanness in  the systemic studies.

8.4 EM DRIVEN STOCHASTIC SYSTEMS  

8.4.1 VOLTAGE AS POTENTIAL ENERGY  

Trans-membrane voltage is a force upon each charged particle.  It is a modulator to many actor types.  It is a driver 

determining the quantity of charges driven through open channels.  It directly determines how many ions are 

contained in membrane capacitance.  Voltage can be calculated for each pixel of membrane, or for each actor 

vicinity (r5).

Many neurophysiology texts begin the consideration of voltage with the Donnan's Equilibrium, which expresses the 

tendency for each ion type to achieve the same charge ratio between adjacent compartments with permeability 

between them, except that multiple charge ions tend towards the ratio of the square roots for valance =2 and cubed 

roots for valance =3 .
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Donnan's, of course, expresses the relationship between the ions at their steady state, given the EM force due to 

voltage differentials.  This EQ does not determine which one or which combination of ions determine the voltage 
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that all must align to, to achieve equilibrium.   It only represents the tendency through pores.    The GHK EQ helps 

to establish which of the ions will dominate in determining the membrane voltage, in the steady state.

Generalized GHK Voltage EQ, which employs a Nernst approach to calculating Voltage.  It is intended to measure 

the voltage through a man-made voltmeter with probes in each solution, as it measures the ability to inject electrons 

on one side of the membrane and receive electrons on the other side to complete the circuit.
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where kelv, R, K, 2.3026, and 3.3219 are constants that may be kept outside the dynamic equations.  The log has 

been changed from natural to base 2 in the discrete problem to facilitate particle counts and particle ratios.  

V.steadystate  =  kelv * log2 (( sum(G.i*conc2.i) + sum(G.j*conc1.j)) / (sum(G.j*conc2.j) + 
sum(G.i*conc1.i)));
             where  i  is a list of all cations and  j  is a list of all anions

conc1 is the concentration extracellularly, and conc2 is the concentration intracellularly
G.i  is the permeability of the cations, and G.j  is permeability of the anions.  

             Permeability is to flux as conductivity is to current. 

Because this EQ is completely dependent upon channel selective conductances, it can only apply where those 

conductances are valid.  That is, the values must be local to a specific channel constellation in a particular state of 

openings.   Because the openings are extremely transient, so to is the applicability of this equation.  The EQ is most 

often labeled as the voltage across the membrane, but in fact calculates the pressure through a given channel set, not 

across the membrane by and of itself.  The concept has been extended across a local cluster of channel types, but at 

some risk, as the charge densities vary dynamically around each channel opening and therefore are not uniform over 

an area large enough to include several channels.  Further complexity arises from the membrane charge times, which 

in conjunction with slow conduction velocities result in lag conditions between actors.  

There is reason to challenge the validity of the Nernst EQ in true vivo conditions without man-made instrumentation 

hooked up to it.  The basis of challenge concerns the behavior of electron flow through artificial instrumentation vs 

the behavior of ion flux circuits in the living cell in the absence of that instrumentation.  Any electrical instrument 

involving a voltage pumps electrons into a living system that otherwise would not have such free electrons added 

and removed.  Electrons travel extremely fast through saline, compared to ions, and therefore yield results that are 
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unrealistic to the natural cell.  Measurements of electron flow suggests that the extracellular saline short circuits all 

extracellular entities.  And yet voltage sensitive dyes reveal that the extracellular saline is not isotonic.  Why the 

discrepancy?  Because ions do not flow as fast as electrons.  In an ionic system, the mass and size of the electrons 

slow the action down such that a tortuous topology of voltages are found over the membrane, all acting in a complex 

of dynamic waves, analogous to the ocean's surface.  

The Nernst EQ calculation of partial voltages remains as a reliable indicator of selective conductance through a 

single unit channel, as it represents the chemical interaction of ions with pore charges so as to effect transport.  In 

those situations where the conduction of an ion type is dependent upon chemical processes (bindings and 

dissociations, electron transfers, etc.), then electrochemistry applies, as a function of temperature, charge, and the 

log of ratios  between reactants.

Meanwhile, the voltage across the membrane is strictly a matter of charge density on either side, and that charge 

density is necessarily within an exponential envelope wrt distance from the centerline of the membrane.   

;
*
*

0 A
qthkVmemb ε

=
 where q/A = surface charge density (coulombs/m^2),  thk = effective thickness of membrane 

(meters)

At the point where the quantity of unbalanced charges is large enough to start forming a second layer, then that 

equation becomes a summation of the layers:

∑= iimemb qthk
A

V *
*
1

0ε   where the ith layer is calculated separately, and then all layers are summed. 

When thermal noise is present, these layers do not achieve orderly stacks, but their equivalents can be surmised by 

beginning with absolute zero and increasing temperature while noting the resultant voltage reduction due to scatter. 

This voltage is not temperature dependent, nor ion species dependent, and so the reconciliation between the Nernst 

voltage and the Coulomb voltage is not trivial. 

For a final word on voltage we call upon the Coulomb's law, which is one of the most rigorously verified equations 

in physics, as it serves as the basis for Maxwell's EQs and Einstein's relativity.  
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In a particle system, Coulomb's law is the most reliable and accurate calculation of the voltage field, especially 

regarding membrane capacitance.  It serves not only to calculate the voltage, but also to drive the acceleration of 

each individual charged particle with a composite EM force.   It first calculates the net force on each particle.  Then, 

as superposition is valid for Coulomb's law, all the forces of the particles on one side of the membrane can be 

summed, and all the forces on the particles of the other side of the membrane summed, which their net opposition 

force equal to the force against the membrane.  

It is concluded that the model particle system should be driven by Coulomb's law, and  the channel fluxes calculated 

using the Nernst EQ.  The distinction is due to filters.  The raw voltage at large (all along the membrane) is 

Coulombic; while the voltage pressure within the pore of a specific channel type is highly filtered by the 

phenomenon called selectivity.   The Nernst EQ is derived from first order chemical kinetics, implying an interaction 

rate, not a force.

In man-made systems, voltage is often regards as the sole information content of the system.  Following this habit, 

many studies of the neuron also hold o presume that voltage is the single significant measure of information.  This is 

especially tempting given the successful studies and models of the action potential.  However, neurons are not single 

charge species systems.  They certainly employ Na, K, Cl, Ca, Mg and other ion types.  Those ions present in lower 

concentration, e.g. Ca++ and Mg++ are known to serve as messenger molecules in minute quantities, about 6 orders 

of magnitude smaller than the recorded action potential formed by the sum effects of the Na partial voltage and the 

K partial voltage and Chloride partial voltage.  They have masses at least 42000 times greater than that of the 

electron.  Such mass and size makes the movement of ions a much slower process. than that of electrons.  If the 

charge movement around a neuron could be electronic, then all conduction velocities would be at the speed of 

electricity, rendering each cell essentially isotonic, and all cells sharing continuity via extracellular fluid isotonic. 

But we do not see such phenomena at all.  Conduction velocities are always measured much lower, and this fact 

rules out electronic conduction.

It is therefore prudent to consider what information is being carried that is not showing up distinctly on the 

electrician's volt meter.  Indeed every messenger molecule, of which there are many types, is not represented in the 
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voltage reading.  Certainly, neutral particles are silent in the voltage readings.   Is this analogous to taking a readout 

from the computer by putting an amp meter on its power cord, completely missing all the nuances of those little 

bits?  Well, its not that bad, but certainly misses the nuances of the many signals being generated. 

Voltage is merely an emergent property of two charge concentrations somehow held apart.  It is analogous to the 

force between two magnets as they are allowed to come closer together.   Therefore, the mathematical construct of 

partial voltages does not exist in actuality, except that some selectivity filters may approximate a partial voltage 

effect.

Strictly, voltage represents a loss of information, as the concentrations of the dominant ions are summed via their 

charges into voltage.   Which contains more information,   [ 2 4 1 9 ] or [16]  ?  Any time several data are merged 

there is loss of information unless there is an obvious way to reverse the process back into the constituent parts. 

Therefore it makes sense that the output of the neuron is not voltage, but Ca++ driven chemical releases.   A single 

Ca++ contains more information than a singular voltage spike, and a vesicle release contains much more 

information than a Ca++ ion.  Voltage is a crude measure of information being processed in a neuron, for it is blind 

to the many species of ion acting independently of each other, and is blind to the many non-charged messenger 

molecules.

The primary role of voltage is to serve just as gravity does, as a ubiquitous force.  As gravity makes surface waves 

possible on the ocean, so does voltage make surface wave possible on the membrane.  The information is in the 

waves, and the height of these waves we happen to call voltage.  But this leads to a bit of confusion between the 

force and the results of the force.  Consider that we do not confuse the height of the ocean waves with gravity.   We 

may consider any ocean wave height as being defiant of gravity.  A horizontal force (wind) acts upon lose mass in a 

force field to yield potential  “pile ups”  of P.E. embodied as wave crests.   But we must consider that gravity is 

essential to the phenomena of waves, though it runs perpendicular to the motion of waves.  This analogy holds with 

the membrane phenomenon: opposite charge attraction provides the “gravity”, the ions have sufficient mass to “pile 

up” into wave crests whenever there is a disturbance (channel pulses).

A further point is worth mentioning.  For the most part, voltage readings on living cells are taken with a glass probe. 

This is a single sampling point in an immensely complex grid of dynamic fluctuations.  Such a probe is analogous to 

sampling a TV screen by watching only one color dot, or the ocean by the bobbing height of a single buoy.   Yes, it 
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may give some insights as to how the system works, but it certainly does not convey the content of the visual scene 

and how it is transformed.  More recent voltage sensitive dyes are breaking out of this limitation, and allow the 

visualization of the surface the dye is sprayed onto.   Even more detailed Ca+ sensitive dyes support the 

visualization of just one ion type (and an important messenger at that).  MRI technologies are moving towards the 

specific visualization by atom types (Na, K, Cl,Ca) .  However the resolution is limited and not likely ever to be fine 

enough to study nano-scale events.  It remains to be calculated what would be a minimal quantity of wave height 

sensors to determine the where and when of distant disturbances.  

8.5 PATCH MODEL  

Patch models consist of a small number of voxels with a maximum of one actor per voxel. Distortions arise from a 

simplification of ions into quantal “groups” of a million ions each, and scaling the conductivities of ion channels up 

1 million times to accommodate these, a recalibration of membrane capacitance, receptor bindings, and pump 

function.  

8.5.1 DIFFUSION IN 3-D PARTICLE SYSTEM  

Particle systems for fluids are easily implemented within cubical containers, as reflections are simply a matter of 

changing sign on velocities.  Positions can be initialized randomly, with uniform distribution.  Velocities are 

FIGURE 98: PATCH MODEL WITH PRE-SYNAPSE AND POST-SYNAPSE COMPARTMENTS
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randomized spherically, with magnitudes determined by the Boltzmann distribution as a function of temperature and 

mass.  Particles can be attributed (scaled) radii and masses, and accurate valence values.  Any number of species of 

particle can be mixed in.  Diffusion will achieve steady state in the absence of active processes.  However, irregular 

shapes quickly increase the computational load.

EM force is implemented with the inverse square law of attraction/repulsion (optionally any exponent).  This 

requires an NxN matrix size to measure the inter-particle distances each dt.   For moderate quantities of particles 

(say 1E6),  numerical methods for minimizing computational load are necessary for both forces and collisions.  

Point forces, line forces and plate forces are all similar, by merely reducing the dimensionality of the force. 

Compared to point forces, line forces are 2/3 the computation and plate force is 1/3.

Generally, the motion EQs are.     
Anew = sum(force/mass);
Vnew = Vold + Anew;
Pnew = Pold + Vnew;
where  A = acceleration,  V = velocity,  and  P = position

8.5.1.1 Positions  

Initial positions of particles need not  be distributed evenly in their respective compartments.   They may be 

deposited as a bullion, and allowed time to dissolve in the water.  All that is necessary is that the bullion is placed 

firmly within the correct  compartment.  Ligands are often initialized as bound and then released later.  Bound 

particles are assigned to their positions and their velocities effectively set to zero, and tagged as to which element 

they are bound to.  Generally, any bound particle may remember its former velocity, as the tag indicating it is bound 

causes a multiplication of any velocity by zero, until unbound.  An unbound particle may have a remembered 

velocity direction that when released drives it right back into the binding site or membrane.  Its compartment tag 

identifies it as trying to escape out of its assigned compartment and causes a reflection.

8.5.1.2 Velocities   

Physics models prefer working with momentum rather than explicit velocity.  When particles are aggregated and the 

system is required to conserve momentum, this makes sense.  But when position is information, ad each particle is 

instantiated for its positions every dt, then staying in the momentum equations is not an option.   
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Velocities can be modeled easily with the aid of the Boltzmann Cumulative Distribution Functions (CDFs), and 

spherical instantiations.  The result is satisfactory in that it maintains its velocity profile characteristic over any 

number of iterations.  However, one must use spherical coordinates for all velocity re-directions ( collisions, 

reflections, and bound releases), else a cuboidal distortion of velocity values results.

Each mass has its own velocity probability curve for a given temperature.

Shown are the velocity probabilities for protons, Na, Cl K, Ca, Protein with M.W = 500.

Boltzmann distributions are used to initialize particles, and to create random collisions with water molecules.

8.5.1.3 Accelerations  

Initial accelerations are set to zero.  All charged particles exert force on one another.  This is the N-body problem. 

The sum total of all attractive forces minus all repulsive forces determine the net force upon a particle.  That force 

divided by its mass determines its acceleration.

8.5.1.3.1Particle-Actor Forces
EM Repulsion applies Coulomb's law to each particle, and sums all impinging forces on each.  EM 

Attraction is simply repulsive force with a negative sign. 

8.5.1.4 Solvents  

Charged particles in a container with a point or line force produce orbiting particles.  As this is not at all realistic to 

bio-cells, the presence of water is essential.  Water as a solvent produces a collision about every 10 angstroms. 

More accurately, each mass at a given temperature has a mean free path.  This implies that within each dt, a random 

portion k of the particles will have collided with water.  When they do they will emerge with an aggregate 

conservation of momentum, temperature and Boltzmann distribution of velocities.  

8.5.1.5 Particle-Membrane Forces  

EM Charge-Imbalance across membrane

Of all of these, the Concentration Gradient is an emergent phenomenon from collisions, and needs no further 

analysis.  It is calibrated to reality via the mean free path and mechanical mobility.
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All of the EM forces require computational evaluation. The general scaling factor for this force must be calibrated to 

reality as a ratio to electrical mobility.

8.5.1.6 Membrane Lipid Molecules  

The neuronal membrane consists of self organizing molecules, but interestingly, there are many dozens of types of 

such molecules present in any membrane, some of which alter the thickness and the capacitance of the membrane. 

They are not stationary, but apparently adaptive changes are made in response to temperature, hydration, pH and 

other factors.   The dielectric strength of the polar heads of the membranal lipids alter the electrical capacitance. 

There may be “rafts” of inhomogeneities floating around in the lipids.  The membrane also provides various forms 

of tethering for the proteins active in NIP. 

As with water, the quantities of molecules in a neuronal membrane are too great to model individually.  Treating the 

membrane lipids in aggregate is justified in that neither their movement nor their state changes have been reported 

significant to the generation of an action potential.  Specifically, they have not been reported to contain, process, nor 

pass information.    

Verification of the proposed model of reduced quantities shall be accomplished by modeling membrane patches 

small enough that the number of particles is tractable to current technologies.  These patches may then be 

extrapolated in size and complexity, in stages, such that verification work for each stage can be performed by 

comparing the performance of the reduced quantity model to the performance of the full quantity model.

The roles of the membrane from a NIP perspective is to define compartment shape, to reflect particles that collide 

with it, to provide positional “addresses” for each membranal protein, to define the sidedness of the compartment 

(e.g. inside vs outside) so as to orient pumps and receptor sites, and to act as a capacitor for any charge imbalance 

across the membrane.  Implied by any closed surface is the volume which it contains.  To fulfill all of these roles 

requires a surface location system, an equivalent membrane thickness that determines capacitance, and the ability to 

divvy up the surface into small areas suitable for finite element methods nodes.  It also must allow penetration by the 

various protein actors embedded in it.  The inhomogeneities of constituent molecule types can still be represented by 

pixel-wise variations in thickness and capacitance.
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8.5.1.7 Membrane capacitance  

The mere fact of a barrier impenetrable to ions within a charged field will result in ions accumulating at or near the 

membrane to the extent of any charge imbalance between the two sides of the membrane.  Charges are pumped 

across the membrane, relatively slowly, with the effect of “building up” a  charge imbalance that acts as a potential 

energy source.  The pumps usually do not pump more than 15% beyond what would have been the Donnan's 

equilibrium anyway, and often only 5 to 10%.  This suggests that pumps merely restore what was already there, 

rather than pump the natural state up to some unnatural pressure.   The presence of negatively charged large protein 

molecules in the intracellular compartment biases the membranal system to keep chloride outside.  With chloride 

outside, then so must a cation remain outside to charge balance.  Which cation will balance the chloride is 

statistically a function of what's available;  in seawater, Na is the dominant cation.  The cation will match the 

concentrations of seawater, all to maintain charge balance with the chloride, and the concentration ratios.  That 

leaves room for several cations to move inward to balance the protein anions.   Next to Na, the most available in 

seawater is Potassium, then Magnesium and Calcium. Potassium influx is enforced by the selective permeability of 

the membrane to it.  The so called leak current is really partially open potassium channels.   It is this steady influx of 

potassium that allows it to dominate the mix in determining the rest potential.   Furthermore, in many cell types the 

chloride may move passively across the membrane and in so doing maintains charge balance.  Allowing chloride to 

move freely means the pumps will not need to do much work to move ions, as they will no be pumping up an charge 

imbalance.   Even without pumps there will be such asymmetries of ion distributions across the membrane that 

contains large anion molecules within.  However, charge imbalance is a method of storing up potential energy, and 

so the chloride passive flux is usually restricted somewhat, so as to allow a certain amount of  charge build up 

(resulting in (0.100..0.500) V at steady  state.   Such passive leak currents can be regulated so as to effect some 

homeostasis, or be modulated in response to changing environmental conditions. 

To serve as a capacitor, the membrane need only be intact as a closed surface and have the ability to withstand (not 

arc through) at any of the physiologic voltage values.   It is not yet known how charges move alone the membrane 

after  being ejected out of an ion channel.   Because of the inverse square law we can expect unbalanced charges to 

be tightly held  near the membrane, but the lateral movement will be some resultant of repulsive forces, impacts 

from above, inertia, collisions with neighbors, and reflections off the membrane surface.  There may also be some 

membrane lipid polar head attractions.
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There is much work to do towards understanding the behaviors of charged particles about the membrane when 

perturbed by a channel opening.  Because the goal of this project is to determine the information quality of ion 

movements, a distinction is made between the balanced charge pairs and the unbalanced charge pairs. Every charge-

balanced pair, by their neutrality, opt's out of the force field.  Such pairs are free to wander in random collisions of 

diffuse into white noise along the Gaussian gradients.  By this, they become null in their information value.    But 

the patterns of unbalanced ions around ion channels is of particular interest.   The charge-imbalance pairs remain as 

players, and do not participate in diffusion, which would dissipate their information value.     They cannot diffuse 

because the EM force over rides any such tendencies.  They slam into the membrane by the force of attraction 

coming from the other side, and are then capacitated in a thermally active zone.   Perhaps ions diffuse laterally (2-

dimensional diffusion).   Perhaps they bounce along the membrane, jumping over repulsive charges.  Perhaps they 

move in waves, as radiating rings on water after a pebble is dropped in.   Because ions are far more massive than 

electrons (20000x), and are constrained within a pool of repulsive like-charged particles, they act as mechanical 

oscillators.  This implies a second order system, which elevates the analytic descriptor from diffusion equation to the 

wave equation.  It is expected that the pulse of ion flux through a channel results in a wave radiating out from the 

channel.  If so, a great advantage is bestowed upon the cell, for a wave preserves information, while diffusion loses 

it.  Simulations shall be conducted in attempts to determine the nature of such ion movements.

8.5.2 PROCEDURE TO SIMULATE AN ACTION POTENTIAL  

By action potential is meant one trip across the neuronal membrane with an informationally significant cascade 

of ionic and proteomic events.  The classic Hodgkin Huxley action potential is but one example of this, and certain 

types of neurons only traverse with a graded response.  For lack of a better term, action potential generation is used 

to connote all such sorties.

1. ion tonicities initialized to steady state concs in each compartment (tonicity profile)

2. ion diffusion and drift in water, in each compartment – with charge, acceleration and collisions

3. ligands concs initialized to steady-state concs in each compartment, especially those bound to actors

4. ligand particles are released into synaptic clefts per input signals from pre-synaptic cells (SigGen)

5. ligands diffuse in water, in each compartment (3-d diffusion)

6. actor affinity profiles activated (for modulation and transport)
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7. local voltage readings modulate all voltage-gated proteins

8. ligands bind to receptors via forward/backward rates 

9. actor Q-matrix page selection based upon modulator combo, switching Q-modes, which in turn alter state 
paths

10. instantiate actor state changes, per dt, acting upon a Qdt matrix (which is Q adjusted to dt probabilities)

11. read actor phenostate = gating function, transport function, messenger release, vesicle release 

12. ligand unbindings from actors as a func of kinetics and concs

13. ligand “reuptake” pumps restore ligands to original positions, kinetically, per concs

14. receptors release second messengers in response to ligand bindings (1:5 ... 1:20 leverage ratio)

15. second messengers migrate along membrane (2-d diffusion or 1-d shuttles)

16. second messengers bind to cyclases kinetically, as a func of concs

17. cyclases enzymatically produce phosphates ( rate = hundreds /msec)

18. phosphates diffuse in water (3-d diffusion)

19. phosphates may bind to ion channels (phosphorylation) as func of kinetics and concs

20. modulation combos (including voltage) map to Q-matrix page change in Ion Channels

21. channel Qdt is instantiated  as state change, every dt, although statistically may remain in same state

22. map state to phenostate, to determine impact on environment

23. when chan phenostate is open, read conductivity profile of chan type:  Flux = phenostate* G*F 

24. F = (dV -Nernst potential) + concentration potential drive flux:   F = (Vmemb - Nernst(iontype) +k*dC)

25. ligand affinities to ion channels vary with gating function

26. ions are transported through chan, reassigned to new compartments, released with conservation of 
momentum

27. transports alter local charge density and ion concs 

28. ions spew out of ion channels and encounter a strong EM force.  Many go to the membrane per I = C*dV/dt

29. change in concs results in change in Nernst voltages

30. change in concs results in change in Vm, as Coulomb's Law, F = k0*q1*q2/r^2

31. change in quantity of charges across the membrane results in change in voltage and capacitance charge

32. new voltages and charges result in altered drive through the membrane leak channels  

33. changes in saline tonicity changes electrical resistances between voxels, which changes ion currents:  
I12 = (V2-V1)*(1/R12)

34. horz flux also shifts Nernst voltages and capacitance charges at a velocity of ionic drift
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35. vesicles bind Ca++ as a modulator, a a func of kinetics and conc

36. vesicles change state per their Qdt as a func of mod combo

37. vesicles release ligands kinetically into synaptic cleft (contents and frac_discharge may vary about the 
mean)

38. vesicles and receptors restore their contents via kinetic sequence and pumps (recycling sequence)

39. pump cycle kinetically to load1 via affinity profile for side 1

40. pump completes bind1 staging, kinetically

41. pump bind1 state alters Q-mode,  also mods and concs may alter Q-mode

42. pump state change kinetically, may transport across membrane (forward) or unbind (backward)

43. pump offload at side2 after transport

44. pump load side 2 via affinity profile for side 2 

45. pump completes bind2 staging, kinetically

46. pump bind2 state alters Q-mode, also mods and concs may alter Q-mode

47. pump state change kinetically, may transport across membrane (forward) or unbind (backward)

48. pump offloads side2 after transport

Several of the above steps involved more detailed processes.  Specifically, ions move due to thermal and 

electromagnetic forces.  These must be calculated as a whole system effect each dt.  Then container walls must 

reflect all particles that collide with them.  All actors are represented as the point processes of stochastic Markov 

chains.  These state transitions require multi-dimensional arrays that capture both the internal state transition 

probabilities and the external binding event combinations.  These are instantiated each dt.



9 ALGORITHMS

To design and implement a software application of this size requires an organized break down into linked modules. 

Each module may consist of objects and/or actions.  As each object (element) and each action (process) is typically 

called thousands of times per simulated time slice (dt), coordinated use of arrays is advised.  In pursuit of such an 

organization, the following steps were followed.

1. Enablement maps each element and process to available resources as necessary to give each a place to live. 

2.  Primitives are defined as the mutually consistent building blocks for the construction of elements 

3. Algorithms define the potential actions and limits of action for each element.  

4. Feeders insure the algorithm receives all that it required as input and context, in qualified formats and units. 

5. Usage checks insure that elements do not corrupt the data nor attempt to do physically impossible tasks.  

6. Behaviors are broken down into specific functions and sub-functions, as objects for efficient re-use.  

7. Data structures support all function inputs, states, outputs, and transition rules.  (see following chapter)

8. Data structure integrity functions (data base management) constrains operations to insure a sane database.  

9. Command structure calls the functions in a realistic series (quasi causality).  

10. Harvesting of useful data and metrics from all that is generated; and archiving it in an orderly fashion.

11. Organizing gleaned information into human friendly reports, visual graphics, comparables, and reusables.  

9.1 ENABLEMENT  

Unless otherwise noted, enablement is now handled by the operating system.  

9.2 PRIMITIVES  

In many software projects the primitives are previously defined for general use and made available generally.   In 

this case, the open source available primitives were found to be not compatible with the requirement of a 

homogenous membrane and particle system dynamics.  Matters as simple as an integer or a sphere needed to be re-

written to insure interoperability in the massive arrays to be implemented for the dynamic equations.
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9.2.1 MATH  

9.2.1.1 Geometry  

Geometric techniques are necessary for computer modeling of particle systems, because in a genuine neuron shape 

intractable  amounts of computing power would be consumed in shape-related particle reflections.  Topology 

manifolds establish the basis for shape simplification by demonstrating (and proving) that a tortuous surface can be 

represented as a plane or a set of planes, so long as the representative planes where sufficiently small.  This is quite 

convenient for neuron modeling, because a lot of the valuable data comes from electrode patch clamp studies.  The 

patch is the physical embodiment of the abstract manifold plane.  

As the long axis of the neuron provides the major direction of information traffic flows, models absolutely require at 

least one dimension (not merely a point process) to represent the whole cell.  Early experiments with 1-dimensional 

models resulted  in:  a) little or no propagation, due to missing collateral sympathy in wave generation; and b) 

unrealistic diffusion, in that ions could not get by each other and behave in patterns characteristic of a 3-d world. 

Admittedly, 2-d models provide qualitative improvement over 1-d performance, as they capture many of the salient 

features of 3-d representations.  However what they gain in Cartesian simplicity they lose in incurring artefactual 

boundary conditions problems, the absence of circumferential movement, loss of wave fronts, and an improper 

relationship between surface and volume.  Although circumferential information flows are rarely discussed in the 

literature, and are certainly less likely to be crucial than axial information flows, 3-d models do solve the problems 

of accurate representation of propagation and diffusion.  In addition 3-d models exemplify more realistic membrane 

behavior in that they permit the study of capacitation and support for actor rafts (local structural dimensioning 

between actor types). 

Tessellated surfaces are popular within the CG community, but computationally heavy for reflecting particles.   They 

necessarily impose cuts and edges where there are none in biological cells, and these create significant 

differentiation errors which require compensating algorithms.  I have chosen to put that effort, instead, into a 3-d 

model response to the needs of texture, in search for whatever effects and behaviors might emerge therefrom.  After 

various trials, shape simplification finally settled around contours of revolution.  The load of particle instantiation, 

reflection, drift, diffusion and bindings is such that a 3-d model is justified.  However, the tortuosity of dendritic 

arbors is not yet tractable on small computers.  
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  All contours of revolution in digital representations can be further simplified into primitives of cones, cylinders, 

spheres and tori.  The use of primitives greatly reduces shape-related calculations. They easily interact as 

intersections and/or unions.  In any case, the surfaces of all employed shapes must be amenable to a homogenous set 

of addressable nodes.  It is at the loci of these nodes that various actors are placed.   While the static features of 

shape need only be calculated once, the dynamics of ion motion between nearest neighbors and the capacitated ions 

along the membrane must be calculated each dt.  

In particle systems, the simplifications of compartment shape (e.g. whole cell shape) may be justified by the 

equivalence of reflection angle distributions.  However, the computational loads of particle motions, collisions, and 

bindings are still computationally complicated.  Compartment shape simplification need not be reduced to much less 

than this unavoidable particle load, as beyond that, much may be lost with little gained.  

The model build process begins with defining membranes.  It is useful to consider compartmental membranes (C) as 

warped 2-d structures.  The Actors (A) are positioned only as embedded in those membranes, so also require 2-d 

positioning.  The actors are assigned to addressable nodes on those membranes.  The volumes for the B particles 

exist between membranes.  Only the particles (B) fill 3-d volumes.  By convention, each volume shall be named 

according to the membrane that is its ceiling.  The core volume is that which is under the core membrane.  The 

intracellular volume is that which is above the core membrane and under the plasma lemma.  The extracellular 

volume is that which is under the extracellular membrane but above the plasma lemma.  The plugs are a special 

case, because they represent all three of the above volumes.   A plug is defined as a stack of 3 cylindrical 

compartments.  The core is the largest of these and is merely a storage compartment for sequestered messenger 

particles.  The middle active volume contains the staged particles ready for release.  And the extracellular volume is 

the synaptic cleft.  The synaptic cleft may be defined separate from the general extracellular fluid, or may be defined 

as a separate compartment.  

9.2.1.2 Geometric Primitives  

The following conventions have been adopted.  It is rare to deal with singular instances of any type of entity in this 

program. Each type is therefore defined in the plural to facilitate the matrix handling of groups.
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9.2.1.2.1 Points ::: [x y z], n x 3

9.2.1.2.2 Line segments ::: [x y z  x y z], n x 6 ( 2 points)

9.2.1.2.3 Vectors ::: [dx dy dz], n x 3, magnitude = |r| 

9.2.1.2.4 Lines ::: [x y z  dx dy dz], n x 6, typically expressed as: [x y z]+t*[dx dy dz], -inf<t<inf

9.2.1.2.5 Rays ::: [ x y z  dx dy dz], n x 6, typically expressed as: [x y z]+t*[dx dy dz], 0<t<inf

9.2.1.2.6 Planes ::: [x y z  nx ny nz], n x 6, [ point normal form ]

9.2.1.2.7 ContourSurface ::: [x r], n x 2, [axial location radius ] 

9.2.1.2.8 ConicSurface :::  [x0 y0 r0 ] = swing point & arm, for spheres and tori

9.2.1.2.9 TesselSurface ::: [ p1 p2 p3] = T = triangles of nearest neighbors on a surface

9.2.1.2.10 Disks ::: [x y z nx ny nz r], n x 7, centroid, normal, extents

9.2.1.2.11 Polygons (planar shape) ::: [x y z], n x 3 (checked for coplanar points)

9.2.1.2.12 Cube ::: [x y z  nx ny nz  x y z] , centroid, normal,  extents

9.2.1.2.13 Cylinder ::: [x y z  nx ny nz  x y z] , centroid, normal,  extents

9.2.1.2.14 Cone ::: [x y z  nx ny nz  x y z] , vortex, normal, extents

9.2.1.2.15 Sphere ::: [x y z  x y z  nx ny nz  x y z] , centroid, normal,  extents

9.2.1.2.16 Torus ::: [x y z  x y z  nx ny nz],  extents, centroid, normal

9.2.1.2.17 Intersection of Shapes :::  (algorithm)

9.2.1.2.18 Union of Shapes :::  (algorithm)

9.2.1.2.19 Subtraction of Shapes :::  (algorithm)

9.2.1.2.20 Perforations ::: disk subtracted from a larger surface (algorithm)

9.2.1.2.21 Transform ::: homogeneous 4 x 4,  h=[ sizx 0 0 1; 0 sizy 0 1; 0 0 sizz 1; movx movy movz 
1]

n ::: quantity of a type in any grouping

9.3 GENERAL REQUIREMENTS  

Having established a 3 layer model, a sandwich of perhaps 20 nm, 8 nm, 20 nm, (representing extracell, membrane, 

intracell, respectively), the model suggests a planar approach, using a topology that projects 3-d shapes onto 2-d 

surfaces.  The essence of information processing is connectivity.   Any projections which disrupt the nearest 

neighbor relationship will have broken that connectivity.  Many forms of analysis for 3-d surfaces involve cut lines 
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or other forms of discontinuities.   For purposes of tracking information processing, it is advisable to avoid such 

techniques.  

The compromise is to construct a genuine 3-d model which, in every way practicable, simplifies the dynamic 

equations to the equivalent of 2-d math.  By employing a contour of revolution, the distance to the surface is always 

a radius, and the conversion to polar coordinates essentially converts a 3-d problem to 2 dimensions.

9.3.1.1 Shape creation  

1. Choose primitives for concatenation, scale to mate end rings.  Then add end seals if needed.

2. Repeat for each membrane in system

3. position for connectivity

4. generate floor/ceiling EQs for each compartment wrt x-axis

5. smooth each contour so as to be differentiable

6. Rings are seeded as evenly spaced points along the contour

7. Nodes are generated as evenly spaced along each ring

8. Nearest Neighbors are sought out after the population of some nodes with actors

9.3.1.2 Particle population  

1. Identify safe locations within each volume to inject boli without violating membranes

2. Calculate volumes of each compartment

3. Calculate particle quantities necessary to attain desired concentrations in each compartment

4. Create and position mixed type boli with random positions within an ellipsoid, assigned Boltzmann 
velocities

5. Init particles that are bound to actor binding sites, stochastically

9.3.1.3 Run Particles  

1. Calculate ABC distances

2. Detect collisions on trajectories

3. Choose earliest collision on path

4. If BB collision, resolve with 3-d elastic momentum transfer

5. If BC collision, resolve with reflection



559

6. If BA collision, resolve with instantiation of binding and dissociation events at each allosteric binding site.

9.3.1.4 Actor Population  

14. Get actor distribution functions by A type, per cell type to be modeled

15. Map distribution onto model cell shape, interpolating across zones

16. Instantiate actor placements onto homogeneous grid of surface nodes

17. Initialize each actor according to rest state probabilities

9.3.1.5 Modulus of the model  

At the smaller scale is the matter of voxels.  A uniform voxel size would create a monstrous bookkeeping load as 

particles crossed the voxel boundaries.  An uneven voxel size (b-tree divisions, with the smallest in the most critical 

regions) improves on this problem, but does not accommodate the various shapes of neurons.  That is, the voxels 

will intersect the angles of the membrane in random ways, requiring additional computation to address the mismatch 

between the voxel grid and the membrane shape.  This problem can be averted via tetrahedral shaped voxels, 

following the finite element method.  This supports adapting the voxel shapes so as to align to membrane surfaces, 

and around actors in useful ways.  Unfortunately, it implies every voxel has unique coordinates, unique surface 

areas, and unique volumes.  It is computationally the worst of the considered options.   A superior solution would be 

to create the volumes according to the “grain” of model details, or only as needed, and shaped specific to that need. 

Free ranging particles can easily be modeled without voxels until they happen near to an actor.  Within a certain 

distance of actors, chemical affinities dictate that certain interaction types may occur: bindings, transport, 

unbindings.  A useful shape, therefore, is the hemisphere.  Placing 1 hemisphere above the membrane and 1 below 

the membrane,  at each actor, both with a radius set equal to the chemical affinity radius, provides a terse voxel list, 

exactly 2 times the quantity of actors.  Any particles within the hemisphere contribute to local concentrations, partial 

pressures, and voltage impinging on the actor.  However, as the membrane is not flat,  the geometric definition of a 

flat bottom hemisphere will not quite do.  Some allowance is made for the membrane curvature by defining a 

hemisphere as all particles belonging to 1 compartment within distance r6 of a given actor pole.  At the smallest 

diameter shapes, e.g. near dendritic boutons, the volume of the outer “hemisphere” will be considerably larger than 

the volume of the inner “hemisphere”.  When calculating concentrations, a correct factor is indicated for this 

distortion.   The algorithm is:
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Get all actors.
Get the pole locations for each actor  
Get the compartment assignment for each pole
Get all particles in each compartment
Note that all bound particles are subtracted from compartment assignment lists
Get all poles in each compartment
Find distance between all particles and poles in each compartment  
Get all particles with distance less than r6.  (creates hemisphere)
Count all found particles by type within each hemisphere.
Calculate volume of hemisphere if membrane shape is sufficiently non-planar
Get charge valance of each particle type
Sum positive charges.  Sum negative charges.  Subtract for net charge.
Align matching hemispheres on opposite sides of the membrane at each actor
Calculate Coulombic transmembrane voltage between hemispheres.
Calculate Nernst partial voltages at each actor 
Calculate partial concentrations for each particle type, for each hemisphere
Calculate the concentration gradients across the membrane for each particle type

This yields the concentrations and partial voltages impinging upon each actor, within local hemispheres above and 

below.  Note that r6 is defined as the draw radius (affinity), and r5 as the bind radius.  Depending on how tightly 

these are set, and if the ion densities are high, perhaps r5 can be used for the hemispheres that determine 

concentrations.  The particle counts must be high enough to yield useful ratios, yet local enough to represent the 

conditions at the actor poles, not far away.  

As the EM force decays with the square of the distance, the effects of increasing the radius adds linearly.  That is, 

the outer shell with its much large area, carries equal weight  in the concentration calculation to an inner shell with 

far less area.  It is practical to write an algorithm that weighs distant particle with reduced EM effects inversely 

proportionate to distance.  Charge of the pole times charge of each particle, divided by dX, where dX = positions of 

particles within actor hemisphere minus position of the actor pole at the center of that hemisphere.

F = sum(z(Apole)*z(Bi) / (pos(A) -pos(Bi)));    % non-coulombic distance increases the effect of distant e-
% this can be trialed experimentally to access the effects upon binding rates within the hemispheres

9.3.1.6 Algebra  

9.3.1.6.1Basis changes:
Required for 3-d momentum-conserving collision resolution,  are basis changes, one each per colliding-particle-pair. 

This is  computationally very costly.  As such intense computation is likely to only be crucial very near the 

membrane, if the model must be reduced due to machine limitations, one approach might be to reduce the thickness 

of water modeled on each side of the membrane.  As one gets into the charged area, these two water layers must be 

identical in thickness, else severe EM force distortions will occur.  It is prudent to model water thicknesses as thicker 
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than the layer of unbalanced charge.  The thickness of the charged layer is temperature dependent, so the modeling 

thickness may be determined after the max temperature to be modeled is known.  It is also prudent to model equal or 

near equal thicknesses of water above and below the membrane.   At 293 kelv the charge layer thickness is about 3 

nm on each side.   Setting the model thickness of saline on each side of the membrane to twice this charge layer 

thickness is deemed adequate for modeling information flow along membranes, as this leaves a generous reserve of 

neutral particle  pairs available for ionization in response to voltage changes.  The increase in veracity, if any, when 

using thicker layers of saline is not yet tested.  However, the computational load increases linearly, with diminishing 

returns.

9.3.1.6.2Linear Systems
Properly designed matrix representations of dynamical systems will appear as tightly interfacing dimensions and 

units between matrices.   State to state transitions will require an (s x s) matrix.  With the new state determined, that 

state may “express” upon its environment, in particular, upon the particles.  Therefore an (s x o) matrix is executed 

next, where o represents the phenostate.  This is followed by an (o x b) matrix which determines the effect of the 

phenostate upon the particles (as conductivity or transport ratios).  This matrix may need to be multiplied by a 

driving force, e.g. voltage or concentration.  Then a (b x b) matrix to determines the effects of the particles upon 

particles (diffusion, drift and collisions).  These 3 effects are tranched for separate mathematical treatment. 

Meanwhile,  the new molecular state s also alters the binding characteristics of the molecule's binding sites.  This 

requires an (s x d) matrix.  The binding sites d must release bound particles via a (d x b) matrix.  And finally, the free 

particles may come to bind with available binding sites via a (b x d) matrix.  The (bxd) represents the forward 

reactions, and the (d x b) the backward reactions.   The treatments of these 2 are distinct because the forward 

reactions are proportional to B concentrations, whereas dissociation is not.  

9.3.1.6.3Eigenvalues: 
Eigenvalues are typically used to find the steady state conditions, and natural resonances of the sytem.  In a particle 

model, they serve as metrics for determining the early model simulations, as to how long it takes to achieve a steady 

state in the warm up.  In realistic simulation, there really is not such a thing as resonance modes (as one would often 

find in mechanical systems).  Biologics are of higher orders, producing not sinusoids, but rather complex modalities 

expressing limit cycles.  As a result the eigenvalues yield far less information than the simulations themselves, and 

are limited to use as “sanity checks” at various “quiet periods” where there is no dynamic input.  The more 
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stochastic and nonlinear is the system, the less eigenvalues can capture the behavior of that system.  With 

increasingly complex behavior patterns (higher order), composite frequencies become less useful in evaluating those 

behavior patterns.  How much would telling you which notes will be struck during the course of a musical piece help 

you to grasp the experience of listening to that piece?   Very little indeed.  

Matrix inversions: solve first order differential equations.  The model is intended to populate as few and as large of 

matrices as is practicable.  That is, better to invert one large sparse matrix than many small ones.  This is counter-

intuitive because large matrices are well known to be very tedious to invert.  In this project, each matrix is 

constructed from a variety of sources, often involving disk calls.  Furthermore, the matrices are sparse and and only 

portions of them active in any given dt.  As the largest of the matrices are stochastic, the applicable probabilities of 

the matrix are selected out according to conditions of state and chemistry, and this greatly culls the quantity of 

elements involved.  The setting up of the matrix for processing takes 1E1..1E3 times as long (because of disk calls) 

than the execution of the code.  Therefore, it is prudent to size model matrices so as to bring in a full RAM's worth 

of processing with each matrix. 

9.3.1.6.4Determinants:  
Used to check for stability of numerical methods, and for feeding shortcuts to the next chosen operation.  Use the 

standard linear algebra technique.

9.3.1.6.5Conditioning the Q and R matrices
The published data is usually in units of frequency, i.e. events per second (eps).  This is sometimes converted to the 

instantaneous frequency.  The model minimizes computational load by performing all possible calculations prior to 

the RUN; that is pulling all constants out of the interative EQs.  This entails multiplying eps algorithm is:

Normalize all transition probabilities to eps (events per second)
Qdt = Q*dt;
set the diagonal = 0
ptest = sum the rows of Qdt;
if all row sums < 1, then  diag = 1 - rowsum;   % diag = the hold state probability
if rowsum > 1, send warning:  'Need smaller dt value to avoid missed events';
Qcdf = cumsum(Qdt,1);    % convert PDF into CDF via integration

Normalize all binding and dissociation rates to eps
Rdt = R*dt;
Rcdf = cumsum(Rdt,1);   % convert CDF into CDF via integration
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The dt must be set sufficiently small so as to not distort the probabilities into significant aliasing error.  Typically, the 

dt must be set to less than 1/8th of the highest frequency event in the transition matrix, although up to ½ the highest 

frequency is tolerable for crude work.

9.3.1.6.6Instantiation of actor states:  
The modulation conditions and current conformation determine which transition probabilities will determine the 

next state.  The R matrix yields the current binding combination, which determines the applicable Q matrix page; the 

page which contains a complete set of transition probabilities for the molecule's current modulation conditions.  Of 

course, the Q diagonal  provides the probability of remaining in the same state.   The current state determines which 

row in the state transition matrix shall apply.  The algorithm is:

Get all actors.  Each actor type has a unique R matrix for binding rates, and Q matrix, for state transitions
Get each actor's current state number s
Get each actor's current particle B occupancies on its binding sites d
For each actor, map d into a modulation combo number dc19

use the modulation combo number as a pointer to a page number in Qcdf
on that page get the row number equal to the current state number s.
that row is the CDF for instantiating the next state
generate random number Aran, of uniform distribution, 0..1.
map Aran onto CDF to get new state s for the following dt

9.3.1.6.7Instantiation of actor bindings:  
There are 2 R matrices, for the forward and backward (Rf and Rb) rates for particle bindings.  Rf contains the 

binding affinities, and Rb contains the dissociation rates, for each binding site d on actor A.  Rf is multiplied by the 

local B concentrations; and Rb is not.  The new state s serves as a pointer, to determine the page in each R that 

applies during the current dt.   The algorithm is:

Get all actors.  Each actor returns its 2 pole locations; each pole returns its compartment assignment.
Get each actor's current B bindings across all binding sites d.  All vacant d = 0.
For each compartment, get the actor poles in that compartment
For each compartment, get dX the distances of all particles B to each actor pole in that compartment
Identify all particles within distance r6 of each pole.
Count particles B of each type within r6. 
Divide by the volume of the hemisphere created by r6 to determine the partial concentrations concBA.
Sort all bind sites d into 2 groups: d_vacant and d_occupied.
d0(new) = instantiate(d_vacant*Rf(:,:,s)*concBA, rand);
d1(new) = instantiate(d_occupied*Rb(:,:,s), rand);
d(new) = union(d0,d1);
19 In its pure mathematical form, each degree of freedom requires a dimension in R and in Q.  In such an 

arrangement there would be no need for the intermediate mapping of RQ that lists the possible binding 
combinations.   However, this often leads to excessively large quantities of Q and R elements.  Reasonable 
compression is accomplished via mapping similar pages into a merged form via the RQ lookup table.
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9.3.2 PHYSICS  

It was the initial impetus and intent that all operations shall be consistent with the known applicable laws of physics 

regarding: mass, radius, charge, momenta, thermal movement, EM force, acceleration, collisions, surface reflections, 

absorption, binding/unbinding, and water/lipid partition coefficients.  Omitted was angular momentum, quantum 

effects, magnetism, light and thermodynamics of chemistry.  The conservation of mass shall be observed, and the 

conservation of energy shall be conserved in limited ways.  Mass is conserved in that particles are fixed in number 

for the simulation run, although they may be sequestered so as to add and remove them from the region of interest as 

appropriate to biological processes.  Similarly, particles may bind together into new mass configurations, such as 

with hydration shells or anabolism of ATP to yield ADP + Pi..   The thermodynamics of chemical binding and 

dissociation are not accounted for, and indeed the model is consciously built so as to minimize the need for 

thermodynamic calculations.  Some of the thermodynamic consequences are implied by the state transition 

probabilities, which themselves are abstractions of the Gibbs energy in general, and of the bond energies in 

specifics. Energy may be explicitly injected into the system if appropriate to biological processes, e.g. temperature 

changes or bond denaturing.  Energy may be removed as waste heat (dissipated).  

Early particle system experiments revealed that the effects of magnetism were 1E-11 to 1E-14 the size of the 

electrical effects.  This justified abandonment of all magnetism, cutting the EM calculations in half.  Thereby, 

particle dynamics can be accurately calculated with only electrostatic equations.  

The limitations of current machines for simulation will not support a full physics model of anything much larger 

than a membranal patch.  There are 2 software engines of great computational load.  The particle system and the 

actor stochastics.  Only1 channel, in full molecular dynamic representation, consumes the resources of a super 

computer.  Similarly, the quantity of water molecules above and below a patch is of sufficient size to require a super 

computer.  Therefore only the smallest of patches can be modeled in full rigor.   Arguing from the point of view of 

massive particle redundancy, the quantities of particles can be scaled down to make much larger patches tractable. 

Arguing from the point of view of the published kinetics schemes of actors, reasonable abstractions of the dynamic 

models of molecules are justified.  Therefore, the quantities of states and state transitions can be scaled down, 

perhaps to the point of making even whole cell models tractable and of predictive value.  
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Much is written on scaling throughout this paper, but it is appropriate here to confess the ways in which such scaling 

sacrifices strict adherence to principles of physics.   The prime expediencies of this model is to base all motion on 

Coulomb's law for the EM force and upon Boltzmann's velocities for thermal energy.  The minimum quantities that 

can still represent the behaviors of ion motion in saline are then determined empirically.  Similarly, the minimum 

number of states per actor are determined so as to effect robust information processing by actors.  Both may be 

adjusted to meet required levels of confidence.

To this end, the relevant physical traits will be discussed.

9.3.2.1.1Mass
The mass of a particle type is introduced as its trait, and used consistently throughout.  A library of particle traits for 

possible use in simulations is accumulated. Because particles may assemble water shells of varying quantities of 

water molecules, particle dynamics must take into account this varying mass and viscosity.  A statistically varying 

sum of the solvation shell water masses, and an equivalent radius of the outer shell, are calculated regularly.  The 

hydrated ion constitutes a “new” particle type, persistent until one or more water molecules are added or removed 

from this ensemble.  What effects the changing masses of hydrated ions has upon the neuron's information 

processing potential is yet to be determined.  The effects of the hydrophobic and hydrophilic forces upon 

information transfers are yet to be determined.  Though the radial distributions of solvation have been measured, the 

temporal aspects of shearing off water molecules wrt to the acceleration of drift forces has not been reported.  Drift 

force can bring about an autocatalysis in the following manner.  As an ion accelerates it tends to shear off the 

outermost of its solvation molecules.  Doing so reduces the effective mass of the ion.  A lowered mass results in 

greater velocity, according to  a = f/m.  The greater velocity results in increased shear force to remove further water 

molecule from the shell.   Knowing the mass of the solvated ion wrt velocity through its medium would be of great 

value in predicting the communication of ionic waves between actors.

Mass is used in velocity determinations, and momentum transfers are factors during collisions.  For reference, the 

mass of a proton = 1836.15 times that of an electron, and the mass of a neutron = 1838.68 times that of an electron.  

9.3.2.1.2Radius
There are at least five measurements and calculation of the  radii of monatomic ions.  It has not been determined 

which, if any, is the best for use in particle system models.  It is hoped that, due to the limited impact of radii in 
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digital models, that this is an insensitive parameter.  The scalability of the model will support varying the radii used, 

for sensitivity analyses.   

Polyatomic particles are assigned an equivalent radius based upon the quantity of atoms and how they might fill a 

sphere.  Although a sphere is not representative of carbon chains, the equivalent radius can be adjusted so that the 

diffusion rate matches that of the real molecule in water.   Larger radii also collide more frequently, and thus 

experience apparently greater viscosity.   Radius is used in collision detection and in collision resolution.  It is also 

available for ion pore selectivity equations, but is not necessary, as channel selectivity data is taken directly from the 

literature to determine flux through channels.  That is, transport is empirical, not simulated as a physical process. 

In addition the the physicists many measures of atomic radii, there are several modeling considerations that evokes 

several more radii to carry as particle traits.  

r1 = radius of the naked particle in collision
r2 = dipole distance between charges in a mobile particle
r3 = radius of minimum solvated particle
r4 = radius of maximum solvated particle
r5 = affinity binding radius
r6 = affinity draw radius
r7 = raft size
r8 = maximum nearest neighbor
r9 = maximum shuttle radius

In the case of solvated ions, the radius is a direct function of mass (quantity of water molecules attached).    There 

are relevant traits of water that affect model performance.  Water is not at all spherical in shape.  It does not pack 

densely (equilibrium of binding forces produced a certain degree of sparsity).  The effect of solvation is to “smear 

the ion's charge over a greater volume.  Over these concerns, the model awaits empirical data as to the radial 

distribution function of solvation for a given ion type wrt its velocity due to drift.

9.3.2.1.3Charge
The valance of a particle type is introduced as its trait, and used consistently throughout.  The value may be any real 

number.  The valance is changed only by exchanging one particle type for another particle type, e.g. Fe+2 for Fe+3; 

or through binding events, which may nullify the particle's charge.  All charges in the system are employed in the 

unified EM field calculation each dt.   That produces/implies charge gradients   Charge is used in EM force, particle 

acceleration, capacitance and membrane voltage calculations.  Particles may have zero charge, and therefore are not 
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driven by a drift force.  However, the affinity function may treat an uncharged particle as though it was being 

attracted by an EM force.  This is artefactual, used only to compensate for an under represented collision rate.

9.3.2.1.4Momentum
Linear momentum is conserved via:  

18. Velocity information passed to each successive dt calculation.  

19. EM force generates Acceleration on every charged particle, but this acceleration is muted by viscosity

20. Particle-particle collisions are calculated so as to transfer momentum along the collision axis.

21. Reflections with surfaces are elastic.  This is necessary to maintain temperature.

22. Binding events reduce the velocity to zero.  For modeling purposes the arrival velocity is remembered, such that 
at the unbinding event, that velocity is resumed, either as reflected (if released  ipsilateral to membrane) or 
continued at it was (if released contra-lateral to membrane).  This is to conserve energy.

The static elements, including membrane and actors, are not considered in momenta calculations.  

Angular momentum of particles will not be considered unless it is reported in the literature that spin is a carrier of 
information.  

9.3.2.2 EM force  

This model's particle system consists of a maximum of 1024 types of charged particles and  uncharged particles, 

supporting a great span of masses and radii.  The membrane is embedded with stationary actors, which may have 

fixed charges that serve to bind and unbind certain particle types.   The membrane thickness is such as would 

achieve the equivalent dielectric strength and capacitance.  

The EM force is calculated each dt for the complete set of charges in the system, as a single group.  Though the 

distal effects be miniscule, this N-body problem cannot be divided into sub-regions without losing the charge flux 

and partitioning effects near the membranes, especially achieving the correct amount of capacitance.   Situations of 

charge imbalances are quite sensitive to missing particles in the calculation.  Errors in the charge imbalance will 

then strongly effect the calculations of flux through open ion channels.

F = 1/(4*pi*e0) * (q1*q2/(pos1-pos2)2) ;    
F is  in Newtons, q in Coulombs, 
(pos1-pos2-r), r in meters  
e0 = 8.85E-12 F/m. 

EX   Find the force of 1 Na+ and 1 Cl- held apart by a membrane of thickness 9.714 nm.  Dielectric = 3. 
Radius of Na = 0.186 nm,  radius of Cl = 0.100 nm.  
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m(Na+) = 23 / 6.02E23 grams = 23/6.02E26 kg
m(Cl-) = 35.45 /  6.02E23 grams = 35.45/6.02E26 kg
a = F/m.        m is in kilograms, a is in m/s^2.
dX = Center to center distance = 10 nm = 1e-8 m.  
q = 1.6E-19 Coulombs.     
F = 7.25E-12 N * 3  =  2.175E-11 N

The packing density of capacitated ions near the membrane is limited by the thickness of the membrane.  The center 

to center distance of ipsilateral like charges must be greater than the contralateral distance between unlike charges. 

Al though it is the barrier effect of the membrane that enables capacitance, the thickness of the membrane creates 

geometric limitations on the packing density of like charges.

9.3.2.3 Acceleration  

The initial source of energy for a particle system is thermal.  The Boltzmann velocity distribution equation predicts 

the PDF of velocity for each particle type, as a function of mass and temperature.  Inevitable collisions between the 

particles, as elastic spheres, are interpreted as the phenomenon of viscosity at the macro scale.  However, 

acceleration is induced by EM charge field.  A =F/M;  yields accelerating motion, which is interrupted at each 

collision.   

A = E/mass, where E = k0*q1*q2/r^2 for the set of all charged particle pairs;  
      k0 = 1/(4*pi*e0*eW) ;   eW = relative permittivity of water

For a substance to be incompressible, there must be fixed geometric relationships between adjacent molecules, 

atoms and ions, such that the average distance between them is constant.   Therefore the movement of water 

molecules and dissolved ions must be rather serpentine, weaving between neighbors while maintaining fixed 

distances apart until a substitution of neighbors is made.  These substitution events are roughly the liquid equivalent 

of gaseous collisions.  The important consideration for the model is that the resulting diffusion patterns of the model 

ions correspond to those of ions in water.  It is argued that because the statistical positions of particles after 

diffusion, whether in liquid and gas, are mathematically equivalent, then the gaseous model of free path and 

collisions is a reasonable, simpler representation of the serpentine travel of ions in liquid state.  Due to Van der 

Waals, charge distribution, and hydrogen bonds, viscosity is more than mere elastic collisions.  However, because 

these effects are homogenous relative to the net distance traveled, they are considered as implied within the velocity 

distribution curves.  In any event, they are found to not contribute information to the system, so their effects will 
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cancel out to zero.  Regardless of the multiple factors of viscosity, the net effect is to convert an accelerating force 

into a terminal net velocity through the medium, randomizing its direction, and distributing its velocity according to 

the Boltzmann velocity distribution.  This is accomplished by adding a friction term, which subtracts a drag 

proportional to the velocity.  The particle can then only increase in speed when the EM force is greater than the drag 

force.  

Unlike in man-made systems, in biological systems the drift forces are almost always local (electric eel excepted). 

Collisions reflect and dissipate drift due to EM.    Given all possible reflected directions, the net effect of drift forces 

across the system must average to zero, as half will slow down what the others speed up.   None-the-less drift is a 

significant, even critical, force creating capacitance and driving flux through the ion channels.

The collision rate in liquids is so high that all acceleration is subverted into terminal velocities.  Therefore, unlike 

mechanical systems, accelerations are not cumulative.  While the standard EQ pair for motion is:

V2 = V1 + A2;
X2 = X1 + V2; |

In a viscous system this becomes :

X2 = X1+V1 + mobm*A2;

9.3.2.4 Collisions  

Momentum must be conserved, least there accumulate temperature anomalies.  Such errors effect the diffusion rates 

of the ions and messengers, which can cost a loss of phase phenomena.  Therefore, collisions are calculated as 3-d 

momentum transfers.   

9.3.2.5 Particle - Compartment  Surface reflections  

Membranes are the containment surfaces which must reflect elastically to avoid cooling of the particles.  Although 

considered to be “soft matter”, for purposes of particle reflection membranes may be treated as hard surfaces.  The 

modeling of soft matter is more complex, but the net result must still be a conservation of energy.  To date, no 

significant effects of soft matter are noted that would alter the processing and transmission of information. 

Therefore simple reflection is deemed sufficient.  Because many of the surfaces are curved, the normals to the 
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surface are maintained or calculated to assure a proper reflection.  This is necessary to avoid a cumulative 

directional bias amongst the particle velocity vectors.  The algorithm for particle reflections is:

Get particle positions and velocities
Calculate velocity normals and magnitudes
Get compartment surfaces, as nodes and surface normals
Measure distances of particles to surfaces
Where distance is less than velocity, calculate collision points
find node closest to collision point
calculate reflection angle from velocity normal and collision node normal
calculate time of collision
subtract remaining time in dt
calculate final position at end of dt from remaining time * new velocity vector

9.3.2.6 Chemistry  

In saline, particle drift comprises is the analog aspect of the system.  Particle collisions comprise the digital aspect. 

The interior of the membranal proteins have a similar dualism: Each molecule is held together by a flexible 

hydrocarbon backbone, but each amino acid has a radical with a polar termini.  These frequent charge foci along the 

outer surface of the molecule give it a tendency to “click” from configuration to configuration.  This bestows upon 

the molecule a digital nature.  Each configuration is a state, and each state may transition to other states by 

probabilities that vary with various external conditions.  

The genius of the Hodgkin Huxley's work on the axon  is that they conceived of the large protein molecules as 

reacting chemically with themselves to produce conformational changes.  This justified use of already established 

reaction kinetics, especially of first order reactions, which see exponential approaches to equilibrium.  Hodgkin and 

Huxley were then able to use exponential curve fitting approach to  derive the ion channel subunit opening and 

closing kinetics.  

Binding and unbinding not only follow standard chemical laws and equations, but serve as modulators on actor 

function.

Upon binding of B to A, record velocity of particle.
check for chemistry at this A bind site d.  This is catalytic potential, as “erg” values in actor type traits
If erg is non-zero, then get concentrations of implicated B types within r6
CDF = int(PDF);
prob = CDF*concs;
instance = rand(prob);
d(new) = instantiate(CDF,rand);
Follow up bookkeeping: Replace current reactants with products on replacement table in erg.
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9.3.2.7 Particle - Particle collisions  

Three-dimensional collisions between unlike radii and unlike mass requires detection algorithms, and then a unique 

basis change and reversion per collision pair.  The detection algorithm picks up all scheduled collisions along the 

particle path within 1 dt.  But only the earliest in time of these actually occurs.   Therefore, a culling must take place 

after the first path intersection algorithm reports.  The collision resolve algorithm is:

sum radii of all particle pairs
get all particles for each compartment
measure distances between all particle pairs within a compartment
find all such distances less than the sum of the radii  % this indicates that  a collision must have occurred.
calculate time of hit for these collision pairs
cull out all but earliest hit for each particle.  This must be done chronologically to avoid non-causal results.
calculate axis of collision
calculate new basis based upon axis of collision
calculate transfer of momentum
revert back to global basis
calculate new velocity and final position at end of dt
check for surface violations
if surface violation, send to surface collision routine.

9.3.2.8 Particle - Actor  Binding/Unbinding  

Binding and unbinding events are considered for each particle collision within a designated binding site.  Binding 

sites are typically on actors, but may also be on particles and membranes.  Only actors can change state as a result of 

a binding event.  Binding is supported for water shells around ions.  Binding is supported for particles that modulate 

actors.  Binding is supported for purposes of transport and for messenger release.  

Although the conformational kinetics of actors are well represented in the literature as “kinetic schemes”, these are 

often commingled with some of the kinetics of binding modulator particles.  Without a proper function of 

concentration of the particle in the local volume, these can be valid only as steady state equilibrium calculations. 

For the dynamic case, critical to this model, the internal conformational kinetics must be treated separately from the 

external binding kinetics. The matrix that captures the transition probabilities of particle-actor bindings is:

d = binding sites of 1 instantiated actor.  There are 2 sets of d, 1 set at each of the actor's 2 poles.
d contains aff(BT) values  % where d is the list of binding sites on a particular actor type, instantiated
aff(BT) = profile of affinities, for a given binding site in a given actor state, across all particle types BT, 
within the binding radius r6 of each of the poles, defining hemispheres of saline; 
conc finds densities of each B type within the hemispheres
d0(new) = instantiate(Rf(s)*conc(pos,BT))  % where pos = the position of the actor pole
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d1(new) = instantiate(Rb(s), d1(old))  % Unbinding does not require the multiplication by conc.
d(new) = union(d0,d1);  % vacancies were treated separately from occupancies
s = state of the actor hosting d

In their complete forms, binding is a function of actor#, actor bindsites, compartment#s, pole#s, actor position, 

particle assignments, particle#s, particle traits, particle positions, actor traits, actor state, actor bindings, particle 

concentrations, and dt size.  Optionally, there may be other modulators, e.g. voltage, pH, that factor into the 

determination of which binding rates in R apply.

9.3.2.8.1Particle - Water  Collisions
Ions are variously hydrated at 0 to 45 water molecules, via a PDF of quantity H2O:1 ion.   The quantity of attached 

water molecules is determined by instantiation.  The quantity of solvation molecules translates to a radial 

distribution, also to a mass distribution, and also to an equivalent radius of the shell.  The latter is useful for collision 

detection and viscosity effects.  The mass is needed for acceleration determination.  Algorithm is:

get all ions
subtract bound ions
qW = instantiate(B,CDF(PDF_hydration),velocity(B));
mass.ion_solvated = mass.ion+18*qW;
radius.ion_solvated = cubedroot (sum(radius.B(water))) * packingfactor;  

Water collisions determine the equivalent mean free path.  In the liquid state, there are no free paths, but there is an 

equivalent phenomenon.  Ions move in serpentine fashion between the water molecules until a change of trajectory 

takes place, presumably because of a blocked path.  This is calculated to occur about once every nm.    Abiding by 

this would place a computational burden far greater than any other process.  Therefore, a compromise must be made 

that greatly reduces the quantity of water collisions.  One form of justification is diffusion equivalence.  If a liquid 

requires a million collisions to result in a diffusion pattern that a gas takes only a thousand collisions to effect, then 

can we substitute the mathematics of a gas to represent water?   If the net distributions of particle positions are the 

same, then the answer is yes.  

Water also provides viscosity, resistance, and charge dissipation.   These factors are ideally received from wet lab 

studies.  In their absence, modeling efforts must proceed empirically, adjusting downward the water calculations 

until further reduction causes unacceptable error rates.

sfw = scaling factor for particle-water collision rate.
qB = total quantity of particles in system
qBD = total quantity of particle bound to an actor;
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qBF = qB-qBD;   % free particles engaged in thermal motion.
randomly choose sfw*qBF particles
reassign their velocities from the randBoltz PDF.
% this causes the water temperature to temper the ion temperature

Note that the above algorithm is not strictly momentum conserving, as it assigns random new velocities to particles. 

However, this is what would occur in nature as the particle collided with water.  Statistically, the velocities are 

correct, and over time they average to yield momentum conservation.   To hold the velocity magnitude constant 

would conserve momentum, but would not be true to the natural process, and might lead to misleading velocity 

patterns (biases) concerning the transmission of information coded as velocity.

9.4 SOFTWARE FEATURES  

9.4.1.1 Shape  (compartment algorithms) features  

1. morphometric data is converted  to canonical shape parameters

2. shape parameters include: membrane working points, curvature, node spacing, relative positions

3. special shapes:  plugs, vanes, extracellular envelope 

4. contour generation via a parameter driven CAD routine

5. contours are revolved into closed surfaces

6. closed surfaces proscribe volumes within

7. surface areas are calculated

8. compartment volumes are calculated

9. node positions and orientations are assigned to actors according to PDFs

10. piecemeal equation set along x-axis provides reflection angles for surfaces

11. plugs are created and positioned (as input and output ports)

9.4.1.2 Particle features  

1. convert molarity to quantities of each particle type

2. create boli, for injecting particles into volumes

3. initialize particle velocities via Boltzmann's velocity distribution

4. diffusion is emulated via particle velocities, particle accelerations and particle collisions
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5. particle forces are calculated as drift according to Coulomb's law

6. particle acceleration convert forces according to Newton's law

7. particle-particle collisions are detected

8. particle-particle collisions are resolved

9. particle-container reflection angles are calculated and momentum is preserved

10. particle-actor collisions stochastically result in bindings and dissociations

11. particle-actor affinities give preference to which B types will bind

12. particle-actor affinities are variable, as a function of actor state

13. particle-actor binding is a function of affinity times concentration times dt

14. particle-actor binding accounting requires A#, B#, pole#, pole position, C#, velocity memory

15. particle-actor dissociations 

16. particle transport accounting requires A#, B#, pole#s, pole positions, C#s, velocity memory

17. particle partition coefficients support penetration of the lipids per water/lipid transition stochastics

18. execute move particles

19. every particle that is released must have a reuptake mechanism:  special high affinity pumps

9.4.1.3 Actor features  

1. Actor density data converted to positional PDFs          (Actor placements)

2. PDF_Aposition are instantiated and each actor type mapped to available nodes      

3. PDF_Ainitstates  used to set Actor Initial states in a realistic manner

4. Actor links set by type:  recep, chan, shuttles, vesicles, pumps

5. init shuttles  (Actor states)

6. init actor state, load messenger particles

7. define R kinetics to instantiation of bindings/dissociation

8. Actor modulation management  (R matrix processes)

9. dissociations per R PDFs

10. get shuttle messenger positions

11. index shuttle messenger positions

12. execute bindings per the PDFs from Rf, times the B concs



575

13. execute the dissociations per the PDFs from Rb

14. define Q matrix as a function of all possible modulation conditions

15. read d (actor modulation bind combinations) into Q page

16. read actor voltage modulation into Q page

17. instantiate conformational state changes via Q(s,:,mod)

18. read phenostate table to get o from s

19. if phenostate calls for it, read conductivity of actor type

20. calculate actor vicinity Nernst voltages driving each B type through the conductivity profile

21. calculate total voltage impinging on actor internal charges via Coulomb's law

22. When phenostate calls for transport, execute reassignment of B to opposite pole position and opposite C#

9.4.1.4 SigGen  

1. Release/Uptake of Ligand according to an acoustic signal

2. Readout of axonal plugs

3. After each signal burst, the reuptake pumps for the released Ligand types must be sufficiently quick to 
avoid lingering messengers, echos, or blockage of receptors.  Such pumps must be sufficiently local to the 
release sights that messenger travel does not trigger unwanted reactions along the paths.

9.4.2  CONTOURS OF REVOLUTION  

The working points are typically downloaded from a spreadsheet. 
[ s0                      ] = Design_Core(L1,r18);    % inner compartment roughly representing nucleus+ 
reticulum
[ s1 s2 s3 s4 Zone_header ] = Design_Main(L1,L2,r1,r3,r4,r5,r6,r7,r8);    % plasma lemma
[ s5 s6 s7 s8             ] = Design_Extra(s1,s2,r28,thk1,thk5,thk6,thk8);      % boundary for extracellular fluid
[ s9          Plug_header ] = Design_Plug(g1,g2,gr);                                    % input and output synapses
% in these 4 EQs, s is a list of working points, zone assigns each point to a zone#
%%  contours to be rotated to form of the five membranes

load DistComp          %  contains point spacing, and plug placement data
% plugs may be cloned and placed anywhere, not overlapping, on any platen
% there are at least 2 types of plugs, input and output, though a plug may have both recep and ves

% extract the geometric shapes from the working points
% it is better to begin with shape definitions, concatenate them, and derive working points from the 
composite
SH = WP2SH([s0;s1;s2;s3;s4;s5;s6;s7;s8;s9],sf);
 
% generate the x and r values for each contour point, then count quantity
[pxr0 slice0] = ContourPoints(s0,dx0,0);   % (X,R, NumPts) = core(params)
[pxr1 slice1] = ContourPoints(s1,dx1,0);   % upper main
[pxr2 slice2] = ContourPoints(s2,dx1,0);   % lower main
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[pxr3 slice3] = ContourPoints(s3,dx2,0);   % dend syn
[pxr4 slice4] = ContourPoints(s4,dx2,0);   % axon syn
[pxr5 slice5] = ContourPoints(s5,dx5,0);   % upper extra
[pxr6 slice6] = ContourPoints(s6,dx6,0);   % lower extra
[pxr7 slice7] = ContourPoints(s7,dx7,0);   % dend syn
[pxr8 slice8] = ContourPoints(s8,dx8,0);   % axon syn
[pxr9 slice9] = ContourPoints(s9,dx9,0);   % plugs
% pxr gives equally spaced points along a contour, tracking which zone each point belongs to
% each contour point is given a ring#, because it will be revolved into a ring

% clone and position plugs
pxr10(:,1) = L1+L2+0.2 - pxr9(:,1);  % places a plug contour at axonal end
pxr10(:,2) = pxr9(:,2); % this algorithm not consistent with XX4,YY4,ZZ4, which contains all
pxr9 (:,1) = pxr9(:,1) - 0.2;  % temporary gap between parts to display inter-surfaces
pxr = merge_pxr(pxr0,pxr1,pxr2,pxr3,pxr4,pxr5,pxr6,pxr7,pxr8,pxr9,pxr10);

%%  Organize into Rlims slice by slice 
% note that the ceiling point is unlikely to have the same x value as the floor point, therefore interpolate 
twice
%%  Convert segs into homogeneous surface points

[C0 zone0] = RotateContour(pxr0,dc0); % core
[C1 zone1] = RotateContour(pxr1,dc1); % main neuron
[C2 zone2] = RotateContour(pxr2,dc2); % main lower
[C3 zone3] = RotateContour(pxr3,dc3); % dend synapses
[C4 zone4] = RotateContour(pxr4,dc4); % axon synapse
[C5 zone5] = RotateContour(pxr5,dc5); % extracell mains
[C6 zone6] = RotateContour(pxr6,dc6); % extracell lower
[C7 zone7] = RotateContour(pxr7,dc7); % dend endcaps
[C8 zone8] = RotateContour(pxr8,dc8); % axon endcaps
[C9 zone9] = RotateContour(pxr9,dc9); % axonal plug (not plotted in this pos)
[C10      ]    = positionPlug(C9,r1,A4,L1,L2);  % dendrite plugs

Vanes create bifurcation trees in dendritic and/or axonal cones.

Statistical parameters for vane generation  = 
[segstart segstop xstart xstop rstart rstop Lvar Wvar Lsec2 Lsec4 Lsec8 Lsec16 Lsec32 Lsec64 Lsec128]

where
segstart = left zone #;  segstop = right zone #;  xstart = left x-axis limit;   xstop = right x-axis limit; 
rstart = lower radius limit;  rstop = upper radius limit;  Lvar = length variance;  Wvar = width variance;  
Lsec2 = average length of vanes near 180 and 360 degrees;  
Lsec4 = average length of vanes near  90 and 270 degrees; 
Lsec8 = average length of vanes near 45, 135, 225 and 315 degrees; 
etc.

Plugs may be created at each of the platen, in varying numbers and sizes.  It is tedious to install a plug (synapse) 

onto a non planar surface, maintain a synaptic cleft distance, and control diffusion at the margins.  For 

computational efficiency, the whole cell models provide two or more planar surfaces near where synapses would 

normally be found on the cell.

plug_statparam = ...
[  sh platen funcflip gap xpos ypos zpos Apos rpos qR diam Dmax Dmin Rmax Rmin auto ];
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% where
sh = plug type;  platen = location of plug along x-axis;  funct = function #;  flip = orientation;  
gap = synaptic cleft;   [xpos ypos zpos] = Cartesian coordinates;  [Apos rpos] = cylindrical coordinates;
qR = quantity of plugs;  diam = avg diameter; Dmax = maximum diameter;  Dmin = minimum diameter;  
Rmax = outer boundary of platen;  Rmin = inner boundary of platen;  auto = 0 manual, 1= automatic;
Plugs : col 1:9 =defined positions for individual plug: suitable for low quantities and test conditions
Plugs: col 10:15 =statistic placement of plugs: suitable for large quantities and bio-realistic arrangements
% if xpos and ypos are given, auto = 0;
% if Apos and Rpos are given, auto = 1;
% if Rmax and Rmin are given, auto = 2

 All the above features are supported by source libraries, state data structures, and report matrices.

9.5 SOFTWARE SEQUENCE  

It is not trivial to say that the purpose of the Design is to realize the Build, The purpose of the Build is to realize the 

Run; and The purpose of the Run is to generate the Report.  Thus, the Design does not concern itself with the Run 

nor Report.  Neither does the report look back any earlier than the Run.  The Run should be an emergent property of 

the Build.  All of this is to say that the software should avoid links that skip over a step.  Each phase should present a 

complete package to the next step, as necessary and sufficient to complete its task.  

9.5.1.1 Surface Action  

1. read membrane capacitance

2. read local tonicities

3. compute local partial Nernst voltages

4. read local Coulombic transmembrane voltage at each actor node

9.5.1.2 Transport metrics  

1. Chan flux accounting = vertical motion through the membrane (1-d constrained)

2. Sol flux accounting = horizontal motions parallel to the membrane (2.5-d unconstrained)

The value of 2.5 indicates that particles are free to move in 2 dimensions and partially free to move in the third 

dimension.  Charged particles may only move away from the membrane if they form a neutral pair. 

9.5.1.3 Recycling of particles  

In addition to the reuptake pumps described above,



578

1. reset receptors via completion of state path to rest state

2. reset shuttles via rapid reversal of messenger paths

3. reset vesicles via recycling of particles and reassemblies with contents

9.6 MODELING INFORMATION FLOW  

Model entities include: Elements, States, Forces, Inputs, Functions, and Outputs.  These are dynamic, implying they 

are driven through time.  Mobile elements are also driven through space.  Stationary elements are driven through 

configurations, called state space, a sort of internal space.  The problem is, there is no continuous time, nor 

continuous space, within the software of a digital computer.

The modeling process is meta to the model per se.  This is the work done by the human experimentalist.  In the 

process of constructing a model, one passes through phases:  Library, Experimental Design, Build, Run, Report, 

Feedback.  That is, beginning with archived sources and prior experiments, one defines the experiment to be 

simulated, generally by setting parametric values.  These values then drive the construction rules for the model, to 

the point of instantiating all the elements in a static initial form.  Then the dynamic processes are launched and 

iterated some number of steps until the simulation run is complete.  The run generates copious amounts of data, and 

a selection is made as to which is to be captured for future viewing and analysis.  Of the essence are particle 

positions and actor states, from which most other measures can be generated.  This data is formed into reports, 

which may be data arrays, plots or animations.  A key feature of the modeling process, is that it is not intended for 

single runs, but rather repeatedly with improvements in each run.  Therefore thoughtful analysis of the results are 

required so as to determine ways to improve the quality of the simulation.  These conclusions can be added to the 

library as an experimental design, so they are readily available for the next run.  Modeling itself is an organic, 

evolving process.

As already discussed, the information flow through a neuron has been determined to involve a membrane bathed in 

saline, with receptors, channels, vesicles and pumps embedded in that membrane at rather specific locations.  The 

processes of diffusion, drift, and kinetic state changes are the processes by which these elements are brought into 

dynamic performance.
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This chapter attempts to advance the design elements and design processes to specific instructions for digital 

computers.  The continuities of time and space must somehow be represented as discrete values.  Although simple in 

concept, this conversion is fraught with error generation.  A mechanism must be provided for measuring the values 

of such errors and provision made for parametric adjustment of dt and dx so as to reduce such error to within 

acceptable limits.    

1. compartments determine nearest neighbors, and thereby the implied coupling/connectivity between them

2. particle radius determine collision rate, 

3. particle mass determines momentum transfers

4. particle charge determines capacitance, voltage pressure, and modulation of actors

5. position determines concentrations and proximity

6. velocity determines impact force, impact rate, and temperature

7. net force impinging determines bonding rate

8. bonding determines modulation

9. actor atomic complexity determines state paths

10. modulation determines state path to be taken

11. state path determines modalities of the actor

12. modalities determine information processing of signal

13. nearest neighbors determine the passing of the signal, which are to be the next stage of signal processing

14. the sequence of processing steps is the essence of the function of the cell

To facilitate all of this , certain supporting operations are necessary, including the means to:

1. detect particle collisions, with actors, surfaces and other particles

2. change assignment of particles: to compartment or actor pole

3. to dissociate after bindings: particle release dynamics

4. to adjust affinities: especially so as to compensate for quantity reductions,

5. to effect bind kinetics, and dissociation kinetics, dynamically as a function of actor state

6. to effect actor conformational kinetics, 

7. to distribute actors stochastically to addressable positions and orientations, 

8. to maintain membrane thickness, water thickness, and dielectric constants of membrane, 
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9. to effect particle conversions, chemistry reactions

At a deeper level of detail, each actor type requires specific traits and functions that enable it to participate in NIP in 

a realistic fashion.

9.6.1.1 Every receptor needs:

1. load profile

2. variable binding quantities and mixes on the output side (treated kinetically as one)

3. catalysis chemistry PDF

4. shuttle maps to nearest neighbor targets

5. shuttle kinetics

6. shuttle move

9.6.1.2 Every channel needs:

8. binding site list, with affinities as a function of state

9. transition probabilities, as a function of binding site occupancies

10. phenostates (reads state to indicate channel openings)

11. conductivity profiles

12. transport equation

9.6.1.3 Every vesicle needs:

1. load profile  (average contents)

2. binding site list, with affinities

3. variable exocytosis dynamics and reliability

4. cooperation with pumps to effect reloads

9.6.1.4 Every pump needs:

1. duty cycle implied within Q matrix

2. means of directing the state flow (irreversibility)

3. bind/unbind probabilities as a function of state

4. state as a function of bind site occupancies
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5. transport phenostates

6. reassignment of particles to new compartments

7. chemistry PDF for energy consumed, (ATP particles, down gradient exchanges, etc)

9.6.2 PROCESSES OF A NEURON SIMULATION  

The necessary and sufficient processes for conveying a neural action across the cell.

1. Diffusion, as water collisions

2. Drift, as the N-body Coulomb's Equation (whole system, not portioned)

3. Particle-particle Collisions

4. Particle-Compartment Collisions

5. Particle- Actor Collisions

6. Actor-Particle affinities

7. Binding/dissociation kinetics per state + current bindings + voltage

8. Binding/Unbinding and implied assignments

9. Actor combo modulation (select page in Q-matrix)

10. Conformational kinetics

11. Active transport  (pump phenostates)

12. Passive transport  (channel conductivity* pressures* concs)

13. Second messenger 2-d diffusion (or shuttle transport)

14. Enzymatic production of third messengers, triggered by second messengers 

15. Messenger / target pairings

16. Nernst partial voltages, local to each actor

17. Voltage composites from partial voltages impinging upon each actor

18. Voltage effects upon membrane lipids

19. Voltage effects upon membrane proteins

20. calculate Voltage gradient force

21. calculate Concentration gradient force

22. move particles by diffusion 

23. calculate N-body charge forces  



582

24. move particles by drift (force> acceleration> viscosity)

25. membrane dielectric coefficient > capacitance on the polar heads of fatty acids

26. membrane stiction of the closest layer of ions

27. record charging curves in electrolytic solutions (time an space constants must be realistic)

28. Saline resistance to electrical and ionic activity (ionic flux resistance)

29. Ion channel conductivity flutter

30. Ion channel conductivity profile consequences

31. Wave fronts, free in direction, and free in shape of the front

32. Inactivation fronts, the spatial effect of fields of channels going into refraction

33. Escapements release energy conditionally (Wave front + Inactivation front)

34. Propagation (Chain reaction of Escapements)

35. Exocytosis of vesicles

36. Vesicle release of  ligands

37. Re-uptake of ligands and particles

38. Returning of ligands to initial positions  (recycling of particles for next action potential)

Where ever the operation of division is performed, there is the danger of dividing by zero and generating an infinity 

as a result.  This will carry through all subsequent steps rendering all down stream values mute. This is in fact a 

common occurrence in Nernst Voltage calculations where the ratio of concentration outside over inside the 

membrane is taken millions of times in a single run.  If there happens to be no ions of a certain type within the local 

vicinity, an infinite voltage results.  This is admitted by the chemists to be an incorrect result, as the equation fails at 

extremely low concentrations.  Such equations must be conditionalized so as to catch extreme values and limit them 

to what the model can withstand.  Where available, corrective equations from the literature should be incorporated.  

9.6.2.1 Dimensionality of Processes  

As concerns digital computation, the mathematical dimensionality of a function is a heavy indicator as to how much 

CPU resource it will consume.   Regardless of the physical dimensionality of the problem , it is the informational 

dimensionality, as expressed in the mathematical resolution, that is most relevant.   A zero-dimensional physical 

process can turn out to be a very high-dimensional information process.
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Information interactions have a rather curious relationship to physicality.  In the greater volume of XYZ, interactions 

decrease as the distance apart grows.  Given an object of size radius = 1, then informational exchanges are maximal 

very near that radius of 1.  Below that, they are in fact inside the object.  Proceeding above 1, they are leaving and 

fading away.  Thus we may speak of external events (>1) and internal events. (<1) as possessing a kind of symmetry. 

The interior acts in reciprocal fashion to the exterior, tending towards zero rather than infinity, with distance and 

therefore with diminished interaction.  Thus we may conceptualize that internal events may transpire deep in the 

interior (near zero) or be near the surface (near 1) where they may impact the outside world .  Typically the actions 

of greatest interest are the ones that cross the line r=1, indicating a transaction between exterior and interior events. 

In one view of information processing, a maximum information value is located at this threshold, while information 

diminishes either above or below 1.  The log scale possesses some of these qualities, and indeed information is 

measured as the log2 of the possibility space.  However, creating a new scale by leaving the values below 1 

untouched, and inverting the above 1 values comes closer to this metric of information value.    

iv = (r/R)^2, when r<R;  iv =  (R/r)^2, when r>R;

This is similar to the attractive force from opposite the membrane. This force determines the maximum repulsive 

force amongst the like-kind ions pulled into close proximity by the attractive force.  The repulsive force determines 

maximum velocities, and any change in this force determines the driving force of horizontal waves.   The maximum 

velocity determines both the speed of the wave and the impact force of collisions, both valuable in the transmission 

of information.

FIGURE 99: Methods of weighting interactions near the membrane
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9.6.2.2 0-dimensional processes  

The concept of a point process is useful in that it allows action where no outwardly observable physical motion is 

observed.  The process may be located as a stationary point in an otherwise dynamic setting.   However, the 

complexity of the “process” being executed “inside” is indicative of dimensions and distances of that internal space 

described above, and these may be large.   Although physically a process is often represented as merely a point, it is 

recommended that the point process be conceptualized as the internal space, the reciprocal of external space. 

Whereas external events take place in Cartesian space, internal events take place in state space.  Each has its own 

dimensionality per its degrees of freedom.  A nominally zero-dimensional physical process may be a high-

dimensional informational process.

Point processes are fictions that occur due to the graininess of the model. Events taking place smaller than the 

resolution of the observer are said to appear as mere points.  But with sufficient magnification, of course, there is a 

lot of subatomic action.  Molecular intra-kinetics are analogous to external motion except that the chemical bonds 

act a leases and so constrain the movement.  And various charges set up strong attractors which result in snap actions 

rather than ballistic ones.  Internal motions usually do not register outside the molecule, but when they do, we call 

those phenostates (e.g. a channel pore opening).   Point processes in this model include:

1. Molecular conformational changes.  Point processes in this model include Markov chains.  State 
changes are instantiated as random processes, calculated without visible motion.  

2. Chemical binding.  Deemed to occur on one of the actor poles without dimension nor orientation.

3. Point charges.  Particles are given a radius for purposes of collision detection but such radii do not 
factor into the Coulombs force equations.  For that all charges are treated as points.

4. 2-point charge neutralization.  When a charged particle binds to an oppositely charged actor site, then 
these two charges neutralize .  In actuality they might form a dipole, but in the model they are 
reassigned charges of zero, so no dipole is represented.  When they unbind, their original charges are 
reassigned back to them.  Also when a charged particle binds to an oppositely charged  particle, then 
these two charges neutralize.  They may separate at any time by a sufficient force of random 
collisions.

 What may be named as a point process in Cartesian space may be of arbitrarily high dimensionality in information-

space.  The kinetic schemes of actors are point processes of significant information dimensionality, corresponding to 

the molecule's internal degrees of freedom.  In particular, the R and Q matrices and the stochastic instantiation of 

states from them are point processes.
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9.6.2.3 1-dimensional processes  

All 1-dimensional processes require a directional vector called a normal.  A magnitude is usually calculated and this 

is multiplied by the normal to result in directional motion or force.  One dimensional processes in this model 

include:

1. point-charge to point-charge  force vector.  Every possible combination between pairs of charge particles 
creates a Coulombic force between them.

2. velocity vectors.  Every particle in motion has a position and a velocity vector, and optionally an 
acceleration vector.  The acceleration may be zero (for ballistic motion) and the velocity may be zero (for 
bindings)

3. accelerating force.  F = m* a;  therefore A = F/m;  In this model F is usually the EM force: F = 
k0*q1*q2/r^2;

4. voltage across a barrier.  The body of charges on one side of the membrane is attracted to an equal quantity 
of  opposite charges on the other side.  The net direction of force is perpendicular to the membrane.

5. molecular shuttles: as an expedient for second messenger mechanisms, links between a receptor and a set of 
target channels may be defined by their normals.  Velocities can then be set from a velocity distribution. 
The lengths of each link must be known so as to detect the arrivals at targets.

6. energy barriers through channels:  out of scope for this model in its early releases, but it is feasible for those 
experiments that are investigating the effects of energy barriers over varying environmental conditions. 
The axis through the channel is perpendicular to the membrane surface.  The energy profile is a contour 
over the length of the axis of the pore.  It may be positive (repulsive) or negative (attractive) at any points 
along its length.  Its shape has interesting effects upon selecting certain velocity and mass particles for 
transport.

7. pumping across membranes (transport):   Although the molecular pumping arms may sweep a curvacious 
path, for purposes of this model, ions are pumped by moving straight across the membrane along the actor 
axis.

8. net current:   the turbulence and colors of current may be collapsed into a net average change in position of 
charged particles.

9.6.2.4 2-dimensional processes  

Two-dimensional processes are surface effects.  The 2-dimensional processes in this model include:

1. Membrane capacitance.  Nominally 2-dimensional, but in actuality and in the model, capacitated charge has 
some thickness, due to like particle repulsion.  The thickness of the charge layer is about 5 times as thick as 
the membrane.

2. Membrane associated diffusion.  charged particles still are driven to diffusion by the thermal energy, but 
they are constrained by the EN force to very near the membrane.  As a result they diffuse 2-dimensionally 
along the membrane.

3. Containment barriers:  the edge of every volume is a surface.  The differential of the compartment is its 
surfaces.
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4. Nearest neighbors on a surface  Nearest neighbors between actors  (NN) may be found by sweeping an 
increasing radius from the center node until the desired number of neighbors are found.  If this search is 
performed 3-dimensionally it will yield false results whenever two membrane come close or touch, or a 
single membrane folds back on itself. 

9.6.2.5 3-dimensional processes  

Spatial interactions in this model include:

1. Diffusion:  diffusion is the consequence of thermal energy in a fluid.  It also is the process of creating white 
noise, and therefore destroying information.

2. EM fields:  calculated by applying Coulomb's law to a particle system.

3. Flux:  in a system of free ranging particles, flux is a fluid dynamics problem

4. Particle-particle collisions:  linear momentum must be conserved 3-dimensionally to keep the system sane

5. Particle-surface collisions:  reflections are about the surface normals, complete elasticity preserves 
temperature

6. Adjacent voxels:  Tetrahedral tessellation allows a systematic subdivision of a volume of any shape.  Easy 
to visualize, but of large computational load to implement and maintain.

9.7 DESIGN  

9.7.1 PHYSICAL CONSTANTS  

TYPE:

physics:     mass, radius, charge, temperature, viscosity, collisions, capacitance, resistance, conductivity

chemistry:  conformations, kinetics, bindings, states, phenostates, modulators

biology:  signaling, sequestering, re-uptake, second messengers, shape, nearest neighbors

9.7.2 COMPARTMENTS  

1. Shape of each surface shall be a contour of rotation  about a single axis, 

2. Shape shall be a closed surface, with no edge boundary conditions.
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9.7.2.1 Type      

1. thickness

2. capacitance

3. shape primitives

9.7.2.2 Dist       

1. shape concatenations

2. membrane closed surfaces

3. multi-membrane juxtapositions

9.7.2.3 Neuron Compartments  

1. Shape shall be oblong, such that one end can be designated as "input" 

2. The opposite end shall be designated as the "output" end .

3. Platens shall be provided in the areas where synapses are to be connected

4. Bifurcations into arbors shall be accomplished via vanes of varying lengths and radial positions

5. An inner core compartment shall block the center volume of the soma in a manner realistic to ion paths

6. The extracellular saline shall be bounded by a membrane that establishes the thickness of the extracellular 
space

7. The synaptic clefts may be contiguous with the extracellular saline, or else may be treated as separate 
compartments.

9.7.2.4 Extracellular space and the membrane that defines it  

1. There shall be an outer membrane similar to, but larger than, the Neuron shape, establishing fluid thickness.

2. The outer membrane shall not touch the neuron nor cross the neuron at any point.

3. Shall conform to biological data so as to tend to reasonable  tonicities of extracellular space around the 
neuron.

4. The outer membrane may have actors and zones to bind and release particles.

5. May have a specialized area or additional compartments at the input and/or output ends of the neuron.

6. The outer membrane may not support a voltage as there are no particle on the far side of this membrane.

7. There may be receptors, vesicles, and bind/release sites, but no pumps and no channels.
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9.7.2.5 Membrane  

The boundary between two fluid volumes shall be designated as membrane.   Membrane shall be mathematically 

defined such that coordinated or random locations on this surface shall have addresses so as to locate the actors in 

their correct zones according to PDFs.  It shall be mathematically defined such that interactors that might collide 

with the membrane can  easily be detected as having an eminent collision and can be reflected from this surface 

within a tolerance of the interactor's radius, via the surface normals.   Interactors shall not "leak out" of the 

membrane unless specifically directed to do so by an actor, or absorptivity kinetic.

The basic design for the membrane is a 1-D arbitrary cell shape profile line rotated cylindrically.  Ideally the model 

would include 1:10 dendrites.  It is acceptable that  the dendrites arrange in a double-planar configuration.  (think of 

2 pieces of fabric sewn together to make a glove), for easy of splitting into front and back panels.  The front and 

back panels will organize the R grids into 2-d matrices.  The Design must be careful to avoid boundary value 

problems when mapping the closed surface of the membrane into a matrix.  Any number of compartments is 

possible.  

If channels are to commute interactors between two compartments then those two compartments must share a 

common membrane and such actors placed within this common membrane.  Each actor has 2 poles, 1 in each 

compartment.  A pole is a binding site for ligands, ions, transport.  The poles also define an central axis for the actor, 

assisting in its orientation perpendicular to the membrane.

9.7.2.6 Lipid Capacitance  

Capacitance permeability (betas).  While charged particle systems exhibit capacitance as an emergent phenomenon 

where ever there is a barrier and and a charge imbalance, the amount of capacitance must be calibrated to dielectric 

strength of the membrane.

A specific capacitance value per unit area shall be settable within physiological range for the thickness of the 

membrane.

Although in vivo membranes are not homogeneous, mathematically modeling rafts is out of scope at this time.  As 

lipids have polar heads which induce charge distortions into a portion of the membrane thickness, there is an 
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equivalent thickness that brings the ions closer together to effect the increased capacitance that results.  A dielectric 

factor of 3 implies a reduction in the thickness of 1/3, as the attraction increases with the square of the distance.  

C = diel*e0*area/thk;     % where C is in Coulombs, area in square meters, thk in meters.

9.7.3 PARTICLE TYPES  

9.7.3.1 ions  

TYPE = [ K Na CL Ca H An ]     where An is a bogus filler ion for charge balancing purposes.
TRAITS = { name   mass  size  charge  }
N  total number of each ion species in the system
DistIon    =  initial velocity distribution of the ions per Boltzmann and temperature

9.7.3.2 ligands  

TYPE = { GLU Ach 5HT ATP GABA GLY NE  G1  G2  G3 }
TRAITS = { name   mass  charge size  hydration  mobility  }

DistLigand  records found distributions of ligand release points and recovery points in the neuron

Libraries of ligands and their traits are kept for modeling convenience.  All ligands are are numbered by their 

molecular weight + 100.  This is to allow them sharing the same list with the monatomic ions.  Because several of 

the ligands and polyatomic ions share the same molecular weight, some numbering  “stretch” is needed;   it is 

important to at least preserve the molecular weight, as this will determine the diffusion speed and electrophoresis 

speed, compared to other species.  Which species arrives first in an electric field could be significant is some bio-

processes.

The relevant traits are: concentration, binding and unbinding kinetics to leave the receptor, delay to reach ion 

channels, which types of chan, fan-out leverage to number of ion channels, binding and unbinding kinetics at the ion 

channel,

Typical effects include: 
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Ligand Receptor Ion G's

GLU AMPA, NMDA Na K Ca

Ach nicotinic Na K Ca

5HT 5ht3 Na K

ATP purineP1 Na K

GABA AMPA, NMDA Cl

GLY Gly Cl

NE Beta, Alpha2 G-protein

PIP2 Kg chan K

G-
protein1 chans K down Ca up

G-
protein2 chans Ca down

G-
protein3 chans K up

TABLE 21: RECEPTOR LIGANDS

9.7.4 PARTICLE ACTIONS  

tag = { comp#  bound2A#P# }
if in a comp state, then particle will diffuse
if in a bound state then  particle is under control of a specific actor, subject to its operators.

Diffusion is of major importance in the model.   All Interactors diffuse, except while bound.  At  the Design and 

Built stages,  bindings are recorded as Tags on the position and velocity.  Because interactors may move between 

compartments, tagging them is an efficient means to know which compartment they are assigned to and therefore 

which rules apply.  

To maintain mass balance, ions are not created nor destroyed at any time during a Run.  Re-uptake of ligands needs 

to be handled by special self-regulating pumps if they are to be recycled in a sustainable manner.  All pumps must be 

self-regulating if a steady resting state is to be possible.  

Diffusion requires considerable verification work to ascertain the proper space and time scales that mimic biologic 

phenomena.

The randomization of velocity cannot be Cartesian, as in [dx dy dz] = k*rand(3,1), because that results in cuboidal 

diffusion patterns.
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FIGURE 100: CARTESIAN DIFFUSION VS SPHERICAL DIFFUSION

The black particles are the immediate effect of using rand(N,3) to generate velocities.  The positional effects tend to 

cancel out over time, but the velocity effects remain.  The diagonals are  3^0.5  hotter than the face centers.   If one 

randomizes the x-component, y-component and z-component partials of a velocity independently, then ion 

movement potential fills a cube-shaped volume each dt:   p(x2,y2,z2) = p(x1,y1,z1) + (dx,dy,dz);   This allows a 

maximal translation distance of 1 unit straight up, but a maximal diagonal distance of 1.732 units.  This is a digital 

distortion that in the intensely iterative simulations necessary, produce huge cumulative error, which can quickly 

render all particles only moving up and down the diagonals, perhaps only due to round off error.    Therefore, motion 

must be generated in spherical coordinates, which adds two basis changes per dt.   Ballistic motion takes place in a 

single Cartesian world, but  collisions occur in a set of small spherical worlds.  The full equation set for 3-d 

collisions between varying masses, radii and charge require spherical coordinates.
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FIGURE 101: POINT SOURCE SPHERICAL DIFFUSION VIA BOLTZMANN'S EQ   

The spherical diffusion above is generated by a Boltzmann velocity distribution driving the magnitude of random 

angles in spherical coordinates.  

                                                                                     % mag2vels in spherical coordinates
    r = rand(qB(i),3);                                                       % r = [ a1 a2 r ];
    A1 = 2*pi*r(:,1) - pi;                                                   % A1 = scale for spherical angle phi
    A2 = 2*pi*r(:,2) - pi;                                                   % A2 = scale for spherical angle theta
                                                                                      % r(:,3) is not used as the radius, but rather as 
                                                                                      % the random selector along PDF of possible radii.
    for j = 1:qB(i);  ix(j) = find(CDF(i,:)'>=r(j,3),1);  end   % mag for each particle via readings of CDF
                                                                                      % Vaar(:,3) = 1E6/(1E4*1E3)* vrange(P);                 
                                                                                      % micron/meter, vel water/vacuum, sec/msec
    mag = sfV*vrange(ix);                                               % sfV = scales velocity, vacuum to water viscosity
    [vx vy vz] = sph2cart(A1,A2,mag);                            % convert from spherical coordinates
                                                                                      %   Vxyz = [dx dy dz];   wrt time      % Cartesian vel
                                                                                      %   Vaar = [angle1 angle2 radius];   % Spherical vel

Most simulation techniques in digital computers require some form of compromise.  For example, the Boltzmann 

velocity distribution has a tail that proceeds to infinity.  Extremely fast particles as outliers cause many problems, 

including forcing the dt down to infinitesimally small steps, making collision detection very tedious (missing many 

legitimate collisions is the more common outcome), bestowing energy levels that would damage the things it hits, 

like making a hole in the membrane, and numerous “escapees” from compartments.  As a result, the practical 

solution is to filter them out or clip the velocity at high limit.  Too many particles clustered at the high velocity limit 

creates a Boltzmann anomaly and can distort other aspects of model performance.    But clipping the tail (of high 
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runners) is also a distortion that will tend to cool the system temperature.    The particle-water collisions may be 

simulated by  assigning new velocities from that particle's Boltzmann velocity distribution; which will restore the 

temperature.  For accurate temperature studies, a small amount of extra heat  (higher Boltzmann temperature) must 

be steadily injected to compensate for high velocity particle clipping.   

The Boltzmann velocity distribution is calculated as a function of statistical spread of velocities after a large number 

of collisions.  

pdf = 4*pi*v^2 *(m/(2*pi*boltz*kelv)).^(3/2)*e^(-m*v^2/(2*boltz*kelv));  % where boltz = 1.381E-23;
m = the mass of the particle in kg = mass in amu / avogadro's number. 

9.7.4.1 diffusion in water  

Water is modeled as random collisions similar to the mean free path of ions in water.  Spherical angles are randomly 

chosen, and a random velocity chosen from the Boltzmann CDF for that particle species mass and temperature.

9.7.4.2 diffusion through a pore  

Although it is a straightforward geometry task to create a pore through a barrier and allow particles to diffuse 

through it, biological systems do not work this way for any of the ions.  The movement of each species of ion is 

independently controlled via specific types of transporter, both channels and pumps.  The finesse of pore selectivity 

is complex and still under investigation.  The models of just one pore in isolation are immense undertakings. 

Therefore this model will only address the resultant conductivity profiles.  These may be dynamic as a function of 

actor parameters, especially state.

9.7.4.3 Drift  

A charged particle is accelerated by the net EM force impinging on it, as a function of density of the particles in the 

immediate vicinity, solvation, and hydrogen bonding.  These 3 factors determine the viscosity of the medium.  As 

the EM force is the strongest force in the system, it can dominate in determining the direction of ion motion, 

resulting in currents and distinctive flux patterns.  
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9.7.4.4 passive transport  

Channels provide the passive transport through the membrane.  Each type of channel has a conduction profile across 

all ion species present in the model system.

9.7.4.5 active transport  

Pumps provide the active transport of ions across a membrane.  Each type of pump binds a specific number of ions 

of specific types.  This is referred to as the bind1 profile on the intracellular side and bind2 on the other side 

(extracellular or core).  Pumps transport at least one species of ion against their concentration gradient, and therefore 

require an energy source.  This source may either be another ion gradient (often Na) or chemical potential energy 

(usually ATP binding, then splitting into ADP + Pi).  Whenever the effort to transport an ion or ions across the 

membrane is greater than the available energy then the pump will do one of the following: run backwards, stop 

working, or become chaotic in its actions (leaky, inefficient and mis-binding the wrong species of particle).

9.7.4.6 Affinity  

Affinity is accomplished by identifying the closest particle(s) of interest.  This would usually be done by measuring 

the Pythagorean distance over a hemisphere volume.  However, such calculations involve both squares and square 

roots.  Several opportunities to reduce the computational load present themselves.   Using only the square of the 

distance, rather than the square root of the sums - saves a step, with no loss in accuracy.  Using  city block distance 

saves 2 steps but is less accurate.

dX = sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2);
dX1 = abs(x2-x1) + abs(y2-y1) + abs(z2-z1);
dX2 = (x2-x1)^2+(y2-y1)^2+(z2-z1)^2;

Using the square of the distance (sparing the square root step in computation) preserves the rank order of who is 

closest to furthest, so is fully justified.  Using the city block distance makes the diagonals appear further than they 

really are and can accumulated distortions in the distributions of particles.  If the city block calculations are less 

frequent than the water collision calculations by 2 orders of magnitude, then city block effects are quickly washed 

out of the system.  City-block distances do not preserve the nearest to farthest rank positions so may not be justified 

unless the need for computational load reduction overcomes the reduction in confidence in the particle system 

modeled behavior.  A benefit of using the city block distance is that it favors those particles closer to the axis of the 
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actor.  That is likely to be an effect shared by natural systems which are more likely to accept a straight shot rather 

than an oblique shot to the pore.

9.7.4.7 Binding_to / unbinding_from actor allosteric bind sites  

Each actor has a binding profile for each of its states.  Generally only a few states accept modulator or ion bindings. 

Each binding has a probability of success between 0 and 1.  There may also be a probability of mis-binding of the 

“wrong” ion or ligand.  Therefore, the frequencies of binding are multiplied by the dt to yield the probability of 

binding per dt.

The unbindings after transport may not be a significant factor in actor performance, but because most actors are 

reversible, the symmetry of binding and unbinding is maintained.  

9.7.4.8 Capacitation  

Ions often become charge-bound along the membrane surface in numbers precisely equal to the charge imbalance 

across that membrane.  Such charges do not diffuse 3-dimensionally into the saline solutions, but rather “bounce” 

along the membrane in a 2-d diffusion.  This greatly increases their “local” concentrations and directs them towards 

neighboring actors.  It is also these particles which comprise the voltage across the membrane.   

Capacitance is an emergent property of an unbalanced charge among ions with a barrier to stop their neutralizing 

that unbalance.  No functions are required to bring this about.  However, all static notions of capacitance as a 

uniform voltage over a surface are in error.  Like the surface of the ocean, all is in flux at all times.

9.7.4.9 Sequestration  

Messenger particles must be tightly controlled in their locations, concentrations, and removal rates.  This may be 

accomplished by sequestration pumps that move particles to the core compartment.  This is especially employed for 

maintenance of Ca++ concentrations, and second messengers.  It may also be employed as a place to store the 

contents that will later be installed within vesicles.  
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9.7.5 ACTORS = { RECEP PUMP CHAN VES }  

Biological systems of molecular interactions and regulations within the cytoplasm are beyond the scope of this 

model.  To the extent that they are significant in the neural signaling, they must be modeled elsewhere and the 

results injected into this model as to release time/place, and reuptake time/place.

Many of the actors consist of protein subunits.  Subunits may be cataloged as such and “assembled” to comprise 

specific types of actor.  Each subunit in a channel may determine a gating characteristic, and in a pump may 

determine the ion binding distributions.    Therefore subunit behaviors are key to the overall actor performance.  The 

model library provides a list of subunits and their characteristics, which actor types they are found is.  A table of 

ensemble performance is also provided.  However, the chemistry of conversion and recombination of these subunits 

is beyond the scope of this model.  If such events are relevant to the experiment, then the systems biology will need 

to be worked elsewhere and injected into this model with Q-matrix, R-matrix and O-table representation of each.

In general, actor types are defined intrinsically by 10 characteristics:

R matrix = affinities across all B types modulate them:  modulator response profile vector
Q = state transition probabilities table
RQ = mapping from R instantiated to d bindings into which page in Q applied to that combo
O = phenostate expression of internal state s upon the actor's environment
G = conductivity profile across all B types, for channels and catalysts 

aff = pseudo force to draw B particles in the vicinity close enough to bind.
erg = transformations of certain B types after binding, usually ATP converted to ADP + Pi
eff = directed release of B particles towards target receptors, usually per G-protein mechanisms

TYPE = class#.type#
ID = instantiation #
% These are the 10 traits of the A TYPE  trait data

In addition, actors require the tracking of several transient traits:

s = the current state, the molecular conformation as affects bindings and transports
d = bindings, which B are bound to each binding site of an instantiated actor

And finally, there are several external traits of the immediate environment:

Vm = the Coulombic voltage across the membrane as surrounds an actor
Vn = the Ernst partial voltages for each B type, between the poles of an actor
U = concentration gradients of each B type within the affinity radius of an actor
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9.7.6 ACTOR POSITIONING  

Individual Actors are positioned as follows.   The biological distributions are converted to CDFs.

Individual positions are "read" randomly chosen from this distribution.

9.7.6.1 Recep1   

Recep1  is a modulator binding site on an individual ion channel.  It shall bind its received modulator particle 

according to alpha and beta rate kinetics.  During the time of binding, the Recep shall cause its associated ion 

channel to switch Q matrices to the “modulated” set of transition probabilities as indicated by a linkage table.

Recep and Ligands must be matched, else rendered useless.

Recep1  connects directly to a specific and singular  Chan.  Thus a ligand modulates the chan Q matrix directly.

TYPE  = { AMPA  NMDA  nicotinic  5HT3  PurineP1  GABA-A  GLY-R NEbeta }
DIST       locations define the input region of the cell, via shape function indices
MODs
STATES
Qindex

EX
given that Interactors = { ions ligands } 
= { k na cl ca h an   GLU Ach 5HT ATP GABA GLY NE  G1  G2  G3 }
Then a GABA receptor :  
IN  = [ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ] * conc
U =  0.5 + 0.5*tanh(IN-1);     % where 1 is a threshold concentration of modulator  
a= U;  b=1-U;  
R provides the kinetic probabilities of binding and unbinding = [ 1-a  a;  b  1-b] ;
Qindex associates the bound state to an alternate Q matrix for the associated ion channel. There may be 
more than one bound states, and therefore more than 2 Q matrices.
P(t+1) = P(t) +P(t)*Q;
Y = P*(phenotype);    phenotype interprets states for effect upon the external world
messenger = OUT =  e.g.  7 molecules of messenger released

9.7.6.2 Recep2    

Recep2 receives a modulator particle which causes it to release a second messenger particle.  The second messenger 

is an interactor and must diffuse, 2-d, to its target ion channel(s) in the near vicinity.

TYPE
DIST
MODs
STATES
Q
s
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s(t+1) = P(t) +P(t)*Q;
Y = P*(phenotype);    phenotype interprets states for effect upon the external world
messenger = OUT =  e.g.  7 molecules of messenger released

Otherwise similar to Recep1 above.

9.7.6.3 Chan  

TYPE  =  {  chan01  chan02 chan03 chan04 chan05 chan06 chan 07 chan08 }
Note Chans are not named by their ion conducted because they often conduct many ion types

DIST   =   distribution of Chan will determine the information processing characteristics,
including decay, graded response, delays, gain, action potential, propagation (or not),
summation, subtraction, lateral inhibition, temporal and/or spatial integration or differentiation, and many 
filtering possibilities.  DIST is of the essence!

EX
given that Interactors = { ions ligands } 
= { k na cl ca h an   GLU Ach 5HT ATP GABA GLY NE  G1  G2  G3 }
Then a Na type Chan :
IN  = [ .03 4 0 .3 0 0 0 0 0 0 1 0 0 0 0 0 ] * sum(F), where
F =     GRADconc (ion)  +   z*GRADvolt  + Attractor(x,y,z)
U =  0.5 + 0.5*tanh(IN-1);     % where 1 is a threshold concentration of modulator  
a= U;  b=1-U;  
Q = bind/unbind rates = [ 1-a  a;  b  1-b] ; 
P(t+1) = P(t) +P(t)*Q;
Y = P*(phenotype);    phenotype interprets states for effect upon the external world
messenger = OUT =  e.g.  7 molecules of messenger released

NOTE that the Y function is the Hodgkin Huxley EQs, and the P function is the Kolmogorov EQ.  They have been 

merged by allowing for the possible coupling between internal states of the ion channel proteins.  The alphas and 

betas need to be generalized into Q matrices.

Each channel type consists 3 to 10 subunits.  Each subunit has at least one kinetic scheme, and multiple schemes if 

modulated.  The modulators determine which Q applies, each dt. The Q's are instantiated to a single state and that 

state is “expressed” via a gate function, which contains AND and OR logic to determine channel openings.

EX 
Q_CaV(-90)  = [    -2.8201      2.8201       0
                            423.6046 -425.0146       1.4101
                                0            847.2091 -847.2091];
Q_CaV(0)     = [  -248.8200  248.8200         0
                                  0.7705 -125.1805  124.4100
                                  0                1.5410    -1.5410];

where state 3 is open, and states 1 and 2 are closed.
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9.7.6.4 Ves   

Vesicles are stimulated by Ca, which causes them to be drawn toward the membrane and puncture the membrane, 

releasing neurotransmitter into the synaptic cleft.  A vesicle usually has only one type of neurotransmitter inside, but 

may also contain a peptide and ATP.  The vesicle shall be represented by a small circular compartment containing 

ligand particles inside.   The vesicle shall have a Ca binding site and attractor.

TYPE    =   Interactors = { ions ligands } 
= { k na cl ca h an   GLU Ach 5HT ATP GABA GLY NE  G1  G2  G3 }
actually only a small number of these will be found in vesicles, but it is generic to use this vector

DIST   locate vesicles at random points near the "output end" of the neuron.

Re-uptake need also be considered on all but the shortest of RUNS.  This is accomplished by designing a pump for 

the purpose.   Although, it would also be possible to use a simple attractor to "vacuum up the area", this is not 

recommended, as it distorts the mass balance of the system.  As vesicles communicate to antecedent neurons, 

compartments must be constructed to mimic synaptic clefts for diffusion across to the antecedent receptors.

EX
given that Interactors = { ions ligands } 
= { k na cl ca h an   GLU Ach 5HT ATP GABA GLY NE  G1  G2  G3 }
Then a GABA Vesicle responding to Ca :
IN  = [ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ] * conc
U = G/V curve for Ca chan       
a= U;  b=1-U;  for Ca binding rates
Q = bind/unbind rates = [ 1-a  a;  b  1-b] ; 
P(t+1) = P(t) +P(t)*Q;
Y = P*(phenotype);    phenotype interprets states for # of vesicles released
OUT =  vesicles released e.g.  2 vesicles of GABA released
Note:  once a vesicle has released  a quantity of ligand into a compartment, it will diffuse and "pollute" the 
entire compartment unless there is a re-uptake mechanism.

9.7.6.5 Pump1  

Pumps a single ion species against the gradient. Self regulating to pre-set conc ratios
TYPE   = {   ATP/Ca   ATP/Na   ATP/K   ATP/Cl }  
DIST        positioning of the pumps will set up ion flux over distances along the membrane
These flux, in turn, will result in ion gradients along the processes.
Such gradients can have profound effects upon the information processing of the neuron.

9.7.6.6 Pump2  

Pumps 2 species of interactor, with or against the gradient, with or without energy consumption,
TYPE   = { K/Na  Na/Ca  Na/Cl  K/Cl }  



600

DIST        positioning of the pumps will set up ion flux over distances along the membrane
These flux, in turn, will result in ion gradients along the processes.
Such gradients can have profound effects upon the information processing of the neuron.

Pumps are quite important in the modeling of diffusion, because everything that is created must be 
removed, to maintain a steady state.  This is especially true for neurotransmitters and Ca.

EX
given that Interactors = { ions ligands } 
= { k na cl ca h an   GLU Ach 5HT ATP GABA GLY NE  G1  G2  G3 }
Then a 2K/3Na pump :
IN  = [ 2 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] * conc
U =  0.5 + 0.5*tanh(IN-1);     % where 1 is a threshold concentration to start pumping  
a= U;  b=1-U;  
Q = bind/unbind rates = [ 1-a1  a1  0;  b1  1-a2-b1   a2;  0  b2   1-b2] ; 
P(t+1) = P(t) +P(t)*Q;     % determine pumping rates as a function of multiple concs
Y = P*(phenotype);    phenotype interprets states for effect upon the external world
OUT =  [ 2 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]    molecules pumped this dt  (success)

Note conventions:  positive number indicates inward pumping, negative number = outward

9.7.6.7 Pump3  

TYPE   = { 2K/3Na  3Na/1Ca  ATP/Ca  Na,HCO3/Cl  Na,K/2Cl }  
DIST        positioning of the pumps will set up ion flux over distances along the membrane
These flux, in turn, will result in ion gradients along the processes.
Such gradients can have profound effects upon the information processing of the neuron.
Pumps3 contains realistic pumps, but the ratios make it somewhat difficult to set up so as to mimic reality.

9.7.7 IMPLEMENTATION CONSTRAINTS  

  An experimental design consists of a combination of newly defined entities (if any), library choices (Design), Input 

signals, and choice of Output variables to be recorded.  In modeling an entity with the complexity of a neuron, many 

simplifications must be made.

Virtual Time time is represented arbitrarily as dt, which computationally is not linked to any 
real time process, and thus may vary considerably.  However real time 
computing hardware is ideal for neural simulations, because the many 
safeguards built into them work very well to protect the model runs from 
interruptions and crashes.  They also have good parallel processing 
administration.  The model run is not displayed as a video.  This is to allow 
more efficient processing of data.  That data is collected into a matrix which 
can be played as a movie AFTER the run is completed.   This "batch" mode 
was found to greatly speed up the computational time, and supported more 
complex models to run.

Real Time This is not a real time program.  As it is a simulation, it can benefit from many 
of the real time processor features.  As it is computationally quite demanding, 
it can benefit from the parallel processing clusters often employed in real time 
problems.

Time scale Although there are significant events within the neuron that occur over time 
scales from 1E-9 seconds (molecular state changes) to 1E9 seconds (long term 
potentiation), we are only interested in he timeframe of the action potential; 
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and so strive to account for all processes of time constants 1E-4 to 1E-1 
seconds;  those that impact the shape of action potentials and graded responses.

Space space is arbitrarily scaled to present nicely on computer screens.  As a typical 
neuron might be 10 to 100 microns long, we could scale 1 micron to be 1 cm 
on the screen

Dimensionality We can model in 2-D or 3-D.   As the number of assumptions and conversions 
necessary in collapsing 3-d to 2-d is high, it is often best to model in 3-d.   A 
noteworthy exception is the membrane itself, which is inherently planar. 
Thus, we "peel" the neuron of its membrane and attempt to lay it "flat" into a 
2-d matrix, or matrices.   This is justified by the fact that it yields more 
accurate results than leaving it in 3-d.  (Which is prone to numerous errors in 
knowledge of which side of the membrane a protein or ion is actually on.)

Concentration As the number of atoms in a neuron of volume 100 cu microns = 1e16, we 
must model concentration at a reduction of about 1e-13 to get less than 1000 
particles.  

Water The medium of all compartments not membrane is assumed to be water.  As a 
liquid f=m*a is muted to f=m*v, and the velocities are about 1e-5 of what they 
would be in a vacuum, or as a gas.

Proteins Most proteins are completely ignored, even though they play many crucial 
roles for the cell.  

Ligands We do very little with non-proteins, except for those which are active 
messengers in the information processing of the neuron.  Phosphorylation, 
gylcosylation, neurotransmitters, peptides can be handled as modulators to the 
actors.

Number of channels, 
pumps,  receptors, 

and vesicles

as there are about 1e6 ion channels per cell, these quantities are scaled down 
about 1E-5.  As there are repeating patterns of channel combinations and 
mixes,  or there are gentle gradients of ion chan distributions from end to end, 
the behavior of the cell type can often be surmised and duplicated even though 
the representative sample size is many orders of magnitude smaller.

Turn over Real neurons experience continual protein turnover (and other constituents as 
well)  Protein may be floating in the lipid membrane or be tethered to some 
stable structure.  None of this is being accounted for in the model.  The reason 
is:  anything happening on a time constant of greater than 1 second is too slow 
to appear in the generation of an action potential.  Such long time constant 
processes must be modeled by doing repetitive runs at useful sample points in 
time reflecting the changing constellation of proteins.

Particle collisions Water molecules are not taken into account when detecting particle collisions. 
So long as the collisions result in random new directions, and conserve 
momentum, the energy profiles will remain true to natural conditions.  So the 
addition of water collisions is superfluous, and a major computational burden, 
without benefit.

Membrane collisions Interactors may collide with membranes.  Usually this results in a reflection 
according to the orthonormal.  However, if beta values are present, then there 
is a probability that an interactor may penetrate into the lipid.  If such an event 
occurs, a tag is set to mark the interactor as in lipid, and different mobility 
applies.  A similar process occurs if an interactor collides with the aqueous face 
of that lipid.

Actor collisions Interactors may collide with Actors.  In such an event binding kinetics apply. 
If a binding occurs a tag is set to mark the interactor as bound and its velocity 
is set to zero.
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9.7.7.1 Space Digitization  

Organizing the membrane into addressable nodes can be accomplished via several different algorithms.  The 

Delaunay algorithm will generate nodes on convex shapes, but fails on typical neuron shapes due to concavities. 

Once node locations are established,  a certain area must be allocated to each node for purposes of calculating 

capacitance.  The Voronoi algorithm can be used for this purpose.[197]   The compartmentalization of the cell create 

artifacts when crossing their boundaries, so it is ideal to avoid sectioning of the naturally contiguous volumes.   One 

challenge is the dendritic spines, which are indeed semi-compartmentalized from their host stem.   The presence of 

spines forces the loss of simple cylindrical coordinates for particle collisions with membrane and actors.[198] 

Many workers strive to degrade the fine structure of the dendrite so as to minimize computational load, although 

doing so always sacrifices some information content.[199][200]

Quenet surveyed the consequences of modeling in higher dimensionality. He added multidimensional synapses and 

multistate neurons so as to generate the spatiotemporal patterns that reproduce the experimental recordings by 

reverse engineering.[201]   He continued to use Hodgkin Huxley EQs to represent the ion channels, however.

9.7.7.2 Time Digitization  

The response time of pyramidal cells is often less than 1 msec.  But to generate these responses in simulation 

requires some very nonlinear differential EQs.[202]   Once the dt is down around 1E-5 s then the dynamic EQ 

become quite accurate.  But when dt > 2.5E-5 s, then the strong nonlinearities of channel openings begin to pick up 

significant error.  [198]  This presents a serious challenge for modeling.  While the computational load is tractable 

when the dt = 1e-3 s, getting to 1e-5 requires 100 times larger computer.  

The very nature of the nonlinear sensitivities suggests that information could easily be coded in phase timing. 

Buonomano in 2000 found instances of such.[203]   Phase sensitivities can operate at far smaller time slices than 

1E-3 s.  Two action potentials that require 1E-2 s to execute can be 1E-4 s out of phase - and that difference can be 

quite significant.  This is the case in detection of sound localization.

The discretization of continuous space into digital particle systems also has its challenges.  Trajectories are no longer 

differentiable, and that makes boundary crossing detection problematic.  Digitization of fast events subjects them to 

extreme artifacts in sampling phase, thus necessitating very fine dt's.    Furthermore, biological events are 



603

asynchronous, vs. the silicon-based computer synchronous clock-driven events.  Thus, there will always be aliasing 

error. It cannot be tuned out.   There are well established strategies for mapping asynchronous events into a digital 

world, but they are only effective for few particles on long trajectories (ballistic) with occasional collisions.  In 

saline solution, ions are hugely numerous (1e7), mean free paths are very short, because collisions occur about 

1e12 /sec/particle.  This makes for impossible utilization of event-driven algorithms.  See also[204][205] for an 

attempt at this by Destexhe.  In 1997, Schaff attempted 27000 elements (particles plus actors), with only 3 nonlinear 

EQs each, no electrostatics.  Two seconds of sim time required a run of 2 days.[206]  

9.7.8 LOAD FUNCTION    

LOAD shall be provided which moves all .mat files created  per the above, into a standardized structured work space 

as necessary for an automatic BUILD.

9.8 BUILD  

The essence of the BUILD is to place all design data into a Matlab ™.mat file in such a standardized form that it can 

be automatically read within the model.  The challenge is to be formal enough that there are no ambiguities in data 

matrix formats, but yet flexible via open-ended lists to allow for a great variety of Experimental Designs.

9.8.1 COMPARTMENTS  

1. Each compartment C type is instantiated via SH, a  shape generator

2. Shapes consist of any number of functionally significant Zones

3. for example C.Main.zones = { dendrite soma axon bouton }

4. each Zone consists of any number of line Segments which determine their shape

5. each Segment consists of a number of Rings (slices), quantity determined by node spacing

6. each Ring consists of a prescribed number of Nodes, so as to maintain homogeneous spacing

7. each Node may be vacant or occupied by any instantiated Actor

8. In addition to providing Nodes, a compartment also provides a surface capable of particle reflection and 
holding an electrical charge (capacitance).
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9.8.1.1 Membrane  

DIST     the perimeter should be fully populated with points in a 3-D matrix, for speed of detecting a reflection or 

absorption.

There shall be 2 positioning functions:  posB  and posA.    

posB positions or repositions interactors within a compartment  (including the treatment of the membrane as a 

compartment).  This function uses collision detectors and orthonormals to define the point of collision and calculate 

a response.

posA positions actors as stationary objects embedded in the membrane, and protruding through it.  This function 

uses the compartment definitional nodes, per their indices.

9.8.1.2 Lipids  

capacitance:   is calculated on a nodal basis as the charge concentration within a designated radius of an actor.  The 

choice of radius is critically time dependent.  The opening of a channel allows a pulse of particles to pass. These fall 

back to the membrane and spread radially at a propagation speed dependent upon charge concentration, charge 

gradient, and viscosity.   A meaningful radius will be drawn at the leading edge of this wave, each dt, over the period 

of interest.  The result does not have much validity if it knows nothing about where the wave front is at the time. 

Capacitated charge is an extremely dynamic phenomenon in neurons, and therefore meaningful mensuration 

requiring this kind of tracking.

It is possible to incorporate  inhomogeneous lipids in the membrane on a per node basis , at the time of membrane 

design.  Merely calculate the equivalent thickness for its effects upon capacitance for that nodal-region.  Using 

membrane thickness to limit the closest distance ions are allowed will cause them automatically to redistribute, 

lowering capacitance for thicker membranes., increasing capacitance for thinner ones.

9.8.2 PARTICLES  

1. Each B type (interactor) is instantiated from a Molar Concentration per compartment via a Boltzmann 
velocity Distribution.
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9.8.2.1 Synapse   

There is no synapse function, per se, as synapses are constructed from constituent parts: compartment, membrane, 

actors, vesicles, ligands, diffusion, and pumps.     

There may be some advantage to formalizing those structural combinations which are used repeatedly.  When 

modeling advances to multicell communication, there are often large numbers of very similar or identical parts. 

Provision shall be made to support such assemblies as callable functions.  Thus, several canonical synapses could be 

made available by a function call.

9.8.2.2 RC Grid  

Use Euclidean Magnitude calculate the distance of each node to its nearest neighbors. 

Calculate nodal specific resistance to nearest neighbors as a function of concs and thickness of extracellular space. 

Calculate the resistance of each of the edges using the Euclidean magnitude multiplied by specific resistance. 

Output the resistance vector ordered by Di Sort for the resistance grid matrix by Nei.

Delaunay function produces 2 R matrices
Voronoi function produces   1 C matrix

9.8.2.3 Charge  

Nodal capacitance is calculated as follows:

1. Given the location of each node on the membrane, call Voronoi to determine a polygon around the node.

2. Call poly-area to determine the area of that polygon

3. Calculate the nodal capacitance by multiplying the area times the specific capacitance from TYPEC 

4. The net charge imbalance is sufficient to calculate the unbalanced charge on the membrane, but the 
distribution of that charge requires a FEM approach.

9.8.3 ACTORS  

1. Each A type  is instantiated via a Spatial Distribution on C and a State Initializer.

2. Spatial Distributions are PDFs specific to a neuron type, neuron zone and specific to an A type.



606

3. Actors are stochastically-driven finite state machines that probabilistically receive inputs and modifiers via 
AR, probabilistically change states via infinitesimal probability matrices AQ, which map to effect some 
external condition via AE.

4. For example, Acetylcholine may bind to an ion channel receptor according to the AR matrix for that 
channel type, which causes the instantiated channel AQ values to change, which begins a probabilistic drift 
in molecular states over time, which eventually changes the ion channel from closed to open, according to 
AE.

5. Actors and capacitors may act as force generators (affinities and EM force fields, respectively).

6. Actors shall be able to call  Attractor, whenever they cycle from the Vacant to the Staged state.

7. ACTORS_IC   Because Actors have transitional states, they must have ICs.  Those ICs are best determined 
by their natural steady state values.  Each Kolmogorov Q matrix has a P of steady state values.  This Pss 
should be calculated as a first step in a RUN, to insure that Actors are not arbitrarily in some awkward, 
non-biologic state, which will produce artefactual behavior.  This is especially critical for the highly non-
linear behavior of ion channels.

ATTRACTOR:  Each actor shall have the capacity to attract particles for binding

1. Attractor represents a force which incrementally adds to the velocities of interactors.  Attractors may be 
defined as located virtually in the Actor inlet, or may be twinned (more realistically)  on either side of an 
inlet. 

2. Attractor calls DistMat which determines the distance to every particle, and operates only on particles in its 
vicinity, as determined by AttractRadius.

3. ATTRACT_RADIUS   a constant which sets the max distance between Attractor and a specified Interactor 
species, that Attractor can add to their velocity vectors.

4. ATTRACT_SPECIES  a constant which specifies which species of Interactor the Attractor is to operate on. 

MODULATORS:  Each particle binding onto an actor shall have the capacity to modulate that actor.  

MODS = { B_bindings  force_variables }        Actors can be modulated by any particle or force that impinges on it. 

Therefore, the possibilities are concatenated as a Mod vector, such that voltage, pH, temperature, and Na conc are all 

available as possible modulators.   The challenge is to make all of these LOCAL via Finite Element Methods.  Any 

modulation event is mapped into the RQ matrix, which inputs binding site combinations and indicates which page in 

Q shall apply.

9.8.4 PUMP LIMITATIONS  

PUMPMODULATORS = vector  { interactors   variables}    concatenation
PUMPINTERACTORS = vector of all interactors. positive value indicates pumping inward
PUMPMAXRATE  constants for each ion species to be pumped
PUMPSATURATIONCONC  constants for each ion species to be pumped
PUMPSTARVECONC  constants for each ion species to be pumped
PUMPQ    kinetics matrix
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PUMP0   steady state initial conditions
PUMPSTATE  { 1  2 3 4 …}      see state transition diagrams
MICHAELIS-MENTEN_EQ  =  Rate = conc.s1*conc.s2*RateMax / ( Half + conc.s1*conc.s2)
      where Half = the solute conc at which Rate = 0.5*RateMax.

9.8.5 CHAN LIMITATIONS  

CHANMODULATORS = vector of all modulators
CHANMAXG  constants for each ion species conducted
CHANSATURATIONCONC  constants for each ion species conducted
CHANSTARVECONC  constants for each ion species conducted
CHANP0   steady state initial conditions
STATE  = rand(P)      see state transition diagrams

9.8.6 VES LIMITATIONS  

HOWMANYVESICLES = rand(P)
HOWMUCHNT = rand(DIST_NE)
state = { 1  2 3 4 …}      see state transition diagrams
attract = on or off, dependent upon state.  Attract params separate 

9.8.6.1 Staging  

1. Set point for target quantity of vesicles ready to fire

2. production rate of vesicles, dependent upon availability of B types

3. recycling programs

9.8.6.2 Transport   

Prior to transport, particles must become bound to the actor stochastically, per the R matrix.  The transport event is 

determined stochastically by the actor Q matrix and its phenostate O table.

Each particle, upon transport to a new compartment , must be re-assigned to that compartment.  This is necessary for 

the reflection and leak algorithms

9.8.7 MARKOV PROCESSES  

Two state Markov models  can  only represent a firing rate and a variance.  They cannot do patterns nor modal shifts. 

[207]   In 1989, arguments were proffered on the merits of discrete vs continuous quantities for states of the kinetic 

schemes of the ion channels.[208]   Ball, in 1994 provided theory for a semi-Markov framework for channel kinetic 

schemes.[209][210])   By 2001, Wagner reviewed a list of Markov chain models of ion channels.[211]  Biological 
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noise is philosophically different from silicon circuit noise.  Commercial artificial chips are designed to minimize 

noise as far as possible.  In biological systems noise is the energy source for fluidics and state changes.  It is 

harnessed exquisitely, and the neuron could not work at all without it.  Therefore, design objectives must be 

rewritten for liquid state processors.  Noise continues to weaken the signals of man's instrumentation, however.[212]

[213][214][215][216][217]  

9.8.7.1 Kolmogorov molecular stochastics  

Bind R is a B x d x S matrix that determines forward and backward probabilities of allosteric bindings and 
unbindings.  Each binding combination in turn affected the R and Q values.

State Q is a S x S x R matrix that determines forward and backward state changes determining molecular 
conformations.  Each conformation in turn affected the R and Q values. 

Release Receptors and Vesicles may release batches of particles.  The direction, velocity and timing of those 
releases, following the time of triggering, are determined be their capture velocity.  Alternatively, 
velocity is mapped from the Boltzmann velocity dist.
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9.8.8 ASSEMBLY OF PARTS,  MINIMAL MODEL  

FIGURE 102:  A MINIMAL INSTANTIATION OF A NEURON

      Instantiation model consisting of the available actors as defined herein 

1. A precedent neuron may release a neurotransmitter, say NE into the extracellular space.  

2. It will diffuse rapidly (0.5 msec) across the fluid towards the receptor for NE.  

3. At the receptor it binds, causing a Na chan to open via Kolmogorov state transitions. 

4. Na fluxes into the intracellular space causing a voltage disturbance across the membrane.  

5. This triggers the K chan to begin opening which allows K flux outward.  

6. These two disturbances set forth a "wave" of propagation to other Na and K channels. 

7. The second  to last chan at the right is a Ca channel.  

8. It releases Ca into the intracellular compartment very near to a vesicle.  

9. The last element is a vesicle, which releases GABA into the extracellular space.

10. This diffuses to the antecedent neuron's receptors.  

11. Sequestration maintains the low levels of Ca in the intracellular compartment.
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9.9 SIGNALING  

1. Modulators,  including Ligands and Neurotransmitters

2. Synapses, via specialized small compartments, called plugs

3. SigGen, a signal generator may be used to drive the neurotransmitter release patterns

4. Output Reports, as graphs, movies and raw data on particle positions and actor states wrt time

As with most models, there are signal input ports, environmental fluctuations, internal state monitor points (read as 

signals), and the formal output ports.  Signals are deemed present in this model as follows:

1. Input Signal Generators and output signal capture devices:  plugs are designed as excised, intelligent 
boutons

2. Information throughput metrics:  mutual information is honest only when the complete set of messages are 
known.

3. Information processing metrics:  The system has a quantity of states, each with a quantity of possible 
values.  These set the upper limit on processing capacity.  The patterns recognized and patterns generated 
determine the processing operators.

9.9.1 SIGNAL GENERATOR    

Input signals shall be provided to represent the output of the precedent neuron, so as to drive the neuron model.

It shall provide Pulses, Steps, sawtooth waves, ramps, sine waves,  Additive combinations. and Multiplicative 

combinations.

It shall be "clonable" so as to provide  as many channels as there are receptors.  These clones may be coupled via a 

root signal, variable wrt amplitude, inversion, phasing, and noise levels.  The root channel may be any signal 

reasonable to neural networks: visual, auditory, touch, smell, chemical, proprioception, temperature, pain, or 

memory recall.

Additionally, standard engineering signals, and arbitrary signal streams shall be possible over as many channels as 

there are receptors. These include step, pulses, ramps, sigmoids, sines, sawtooth, and trig functions e.g. parabolas 

and hyperbolas; Gaussian envelopes, white noise, pink noise, and additions from among these.  Additionally, effort 

shall be made to mimic natural signals to the neuron, in time and place.   An A2D converter will sample analog 

signals at 10 kHz and decide whether to fire an action potential or not.  The action potential will have a canonical 

shape, and may have varying amplitude. 
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 These signals shall be available in virtual time (not necessarily real time).

9.10 RUN  
A run is an iterative process by which particles move, and the finite state machines call relevant functions to effect 

collisions, bindings, transport, capacitance, voltage and current.  Data is collected raw.  The RUN portion of the 

program execution consumes, by wide margin, the most computational load.  It is therefore the most demanding of 

attention to numerical methods.  

INTEGRATION methods considered include:  

1. explicit euler

2. implicit euler

3. midpoint leapfrog

4. crank-nicholson

5. runge-kutta

6. adams-bashforth

7. adams-moulton

All of the variable-length dt methods would require some synchrony across the elements, or else some very fast 

switching between the calculations of elements.  CPU time tests often found that the overhead of managing variable 

strategies was effective when the elements were few and complex.  However, in this model, the elements are 

numerous and only moderately varying in form.  In such large scale models, CPU time is best arranged to handle the 

greatest number of particles at a time.  Doing so requires a fixed dt and fixed matrix sizes for the kinetics. 

Standardization of the form leads to greater computational efficiency than does heuristics.

There is some possibility of “skip step” techniques whereby uneventful trajectories are skipped over on the fine dt 

but calculated on the large dt setting.  This only realizes a gain to the extent of the total list of particles exceeding the 

CPU capacity for a single clock cycle.    Reducing the load within a clock cycle offers no benefit and costs extra 

steps to identify and mark the “skips”.
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A converse strategy, “back time”,  employs large dt steps until some violation of space occurs, then time is backed 

up by a small dt to resolve the details. Although theoretically effective, the cost to detect them and then calculate 

such events separately quickly eats up the gain.  It only works within narrows windows of ratios of events to the 

whole.  The exact ration depends upon the number of calculations per particle per dt in the back time algorithm.  

Although a straight dt is cumbersome, it offers straightforward debugging and collecting of metrics.  It also frees up 

time that would need to be spent of numerical methods, for higher priorities concerning the functions of the model. 

Therefore, in early releases of this model, straight dt calculations will be made, adjusting the value of dt increasingly 

larger until an unacceptable error rate is incurred.

9.10.1.1 Causality  

Causality in a digital machines is established by chonological order, and by the output of one or more causal 

functions feeding the input of another function.  Causality is weakened by stochastic processes which inject some 

degree of randomness into the system.

The run, because it is digitized, processes a sequence of events as separate and serialized, even though in the analog 

world they are parallel and concurrent.  Functions which do not receive temporally sensitive information (i.e. do not 

receive inputs from a causal group), may be regarded as parallel processes, and therefore insensitive to the order of 

execution.   These will be placed so as to optimize numerical methods.   To the extent practical, order of execution is 

chosen for causality, but also for the convenience of the conditional EQs, so as to minimize redundant calls.  It can 

easily be tested that altering the sequence has little effect upon the results.  

In a digital universe, things might pass right through each other without a collision.  There is a strobe light effect 

when sampling each dt.  This is a type of error, of discontinuity.   Perhaps some percentage of particle collisions may 

be missed without altering the experimental result.  But collisions with the membrane are far more significant.  A 

missed membrane collision become a leak.  In digital software, the collisions with the membrane containers are 

performed last, because this minimizes the need to detect leaks more than once per dt.  

The set of EQs represent physical and chemical phenomena of 1 molecule type.  The physics of actor proteins is 

sufficiently complex that the state space is usually collapsed into a simplification called a “kinetic scheme”.    
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The major mathematical processes of the run are mapped below.

9.10.1.2 Mathematics Flow  

FIGURE 103: Mathematics Flow
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Implied in the Diffusion block are limits to diffusion, namely reflections.  Note also that the distinction between 

ionics and electronics is fuzzy.  It will later be found that these two are best merged into a charge system, with the 

“electronics” of interest emergent to the particle system.

9.10.2 DIFFUSION  

Diffusion applies to all neutral, unbound particles.  It is accomplished by simply adding its current velocity to its 

position.; and then detecting any collisions and resolving them with 3-d momentum conservation.  Diffusion into 

barriers results in reflection or absorption, statistically determined.  Velocity distributions are periodically checked 

against the Boltzmann velocity distribution curves.  Variance from these curves indicates a failure to conserve linear 

momentum. 

Bindings must remember their former velocity while setting current velocity to zero while bound.  Upon dissociation 

the velocity must be “reflected” in a reasonable manner, and the old velocity resumed.

Frequent water collisions reset velocities from the Boltzmann distribution.

boltz = 1.381E-23;
e= exp(1);
avogadro = 6.022E23;                                                 % avogadro's number
m = 0.001*mass(:) / avogadro; m=m(:);                       % required by Boltzmann's formula
v2=repmat((vrange(:)').^2,[Lm,1]);
vel = 4*pi*v^2 *((1/pi) * m /(2*boltz*kelv)).^(3/2)*e^(-v^2 * m /(2*boltz*kelv))                  % Boltzmann's EQ

9.10.3 DRIFT  

Drift applies to all charged, unbound particles.  This must be calculated as a whole system, not divided into one 

compartment at a time.  The N-body net EM force of each particle is added to its Boltzmann velocity,  the sum of 

which is added to its position.  Any collisions are detected and resolved with 3-d momentum conservation.  Drift 

into barriers results in reflection, absorption or capacitation.  

Drift is a force of acceleration.  A = F/mass;   F = k0*q1* sum(q2*normV(p1-pi)/ |p1-pi|^2);      % where i = 1:qB
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9.10.4 CONC  

ConcNodal A hemispherical volume above and below each node, and the particles of each type counted within 
those nodal volumes, divided by the volume.

9.10.5 CHARGE  

dVnode voltage across the membrane at each node, drives current in and out of the nodal capacitance

IcNodal current in and out of a nodal capacitance; counts net change in charge per dt

9.10.6 NERNST  

Vions function to calculate nodal Nernst potentials for each ion type. = k*log2(conc2)/log2(conc1) 

9.10.7 FLUX   

The volume of each compartment is divided into voxels defined parametrically at BUILD.  The number of each type 

of interactor may be counted in each voxel, each dt.  This allows an accurate monitoring of flux as the change in 

concentrations from voxel to voxel.   Each ion has a serial number, which points to much data about that individual, 

both Type and Dist info.   Ion position tracking can serve to track nano currents and even radio tracer equivalents. 

Gradients are continuously available as differentials in density. The distance between nearest neighbors in the 

inverse of density.  

Divergence is always relative to a chosen point position.  Points chosen are usually the actor poles.  Divergence is 

done on a Btype basis.  The divergence function is also applied to charge fields.

Curl is always relative to a chosen point position.  Points chosen are along a suspected ion flux circuit.  Curl is 

applied to  Btypes and the charge field.
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9.10.8 CURRENT  

CurrentEval dimensional charge net charge movement

9.10.9 RC GRID  

The RC Grid is a major component of the RUN.  It calculates, via modified nodal analysis, the electrical 

relationships between all nodes.  It inputs the nodal capacitance, the nearest neighbor resistances, and the nodal dV.  

Propagation Voltage variations at one node translate into differential voltages between neighboring nodes. 
These differentials translate to horizontal currents between the nodes.  These horizontal currents 
translate to modulators of the neighboring actors.

9.11 FEEDBACK  

Model error metrics must be set up so as to improve the model with each run.   In high-dimensionality spaces, it is 

useful to plot topological hill climbing towards desired performance, with the terrain being filled in as it is explored. 

This can help alert the user to opportunities to change direction towards more fruitful results, and conversely to 

discontinue paths that are not yielding improvements in performance.  

The thorough user will ponder the output error gaps and hypothesize their cause.  These can be tested via adjusted 

parameter sets, serving as subsequent experimental designs.

Design Build Run Report

1 physical 
constants

2 surfaces TypeC DistC reflectB

3 lipids TypeC DistC capacitance

4 ions TypeB DistB Coulombs law position x time

5 receptors TypeA DistA bind/unbind bind,state x time

6 channels TypeA DistA modcombo bind,state x time

7 shuttles TypeA DistA indexShuttles

8 vesicles TypeA DistA bind/unbind bind,state x time
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Design Build Run Report

9 ligands TypeB DistB ligand setup position x time

10 pumps TypeA DistA instantiateState bind,state x time

11 diffusion watercollisions

12 drift Bacc

13 nernst calcNernst

14 affinities TypeA DistA calcAff

15 bind/dissociate TypeA init A getbind kinetics

16 configuration 
state

TypeA init A instantiateState

17 phenostate TypeA dophenostate

18 conductivity TypeA calcflux

19 transport TypeA transC, transP

20 voltage calcV voltage x time

TABLE 22: SOFTWARE DESIGN

9.11.1 ARCHIVAL PROCESS  

Each experiment is defined a a set of values for :
Compartment Types
Particle Types
Actor Types
Physical Constants and Scaling Factor
Compartment Distributions (arrangements of shapes)
Particle Distributions (concentrations per compartment and binding site)
Actor Distributions
Assemblies of the above (structures)
Connectivity relationships (for signals in and signals out)

The longer is the RUN time, the more valued are the results.   Simulations that require weeks to complete are not 
often repeated.  Thus, a proper and thorough capture of results is prudent.

9.12 SOFTWARE ENGINES  

This MODEL has Three ENGINES

1. Diffusion and Drift
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2. Kinetics and Bindings

3. Electrical Grid, capacitance and resistance

             ... deemed to be the necessary and sufficient processes for capturing the behavior of neurons with respect to 

their information processing function

9.12.1.1 Model Aspects  

1. Topographic problems of sectioning, transitioning, movement in non-convex shapes

Solution:  Employ only point to point distances and point to surface distances, sort by distance threshold 

2. Tessellation of arbitrary shapes (whole cell neurons)

Solution:  organize by rings and nodes.  Tessellate actor to actor, not arbitrarily

3. Handling of physics: force resolution, resistivity in solutes

Solution:  Forces are all N-body problems, solved simultaneously.  acc = k/(m*(r2-r1)^b); m=mass; b=2; k= 

force coefficient to units

4. Numeric methods  to reduce computational load on particle collisions

Solution: only recalculate those processes at high risk of change.  But the detection algorithms are worse 

than the ballistics.

5. Impulse-based simulation of particle systems

Solution:  abandoned due to overhead load

6. Dynamics = motion with mass and forces

Solution:  charge systems respond to all forces simultaneously

7. Fluid phenomena

Solution:  viscosity at macro scale is collision rate at nano scale
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8. Patch I/O:

Solution:  Cloning and stitching patches together in an information theoretic manner.  Each patch is 

collapsed to a lookup table.  Table values are interpolated between key nodes.

9. Converting morphometric data into model parameters

Solution:   Create PDF for each actor, stretched to zone delineations

10. Collision detection:  

If hyperbolic orbits are not used, then interference center to center distances detect collisions

11. Collision resolution:  

Hyperbolic orbits: result in asymptotic trajectories to the elastic spheres, but require a much finer dt to 

negotiate.  

Elastic spheres:  calculate exact time of collision; calculate axis of collision; create basis, calculate 

momentum transfer, return to original basis.   

dx = distanceBB(Bpos,BC);  calculates  ||p1-p2||
rr = r1+r2;
if dx < rr,  then collision occurred

12. The directrix

   Hyperbolas can be used to avoid collision detection algorithms, and thus provide continuity rather than 

discrete events.  However they require much smaller dt steps and therefore consume far more computer resource.  It 

is found that collision detection, though itself computationally costly, is still several orders of magnitude faster than 

running hyperbolas.

13. Electrical circuit  - 5-layer 2-D grid:  saline imbalanced membrane imbalanced saline

Solution:  found to be unnecessary

14. Random matrix theory: initial velocity, state transitions, temporal releases of particles 
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Stochastic processes are extensively applied.  Each random process is instantiated via a PDF integrated into 

a CDF, and then a uniform random number selected across the CDF.  In most cases, multidimensional probability 

matrices will be pared down each dt to current conditions, yielding a single row vector to use as the PDF.  

9.12.2 ENGINE  ONE:  INTERACTOR DIFFUSION  

9.12.2.1 Diffusion is embodied via a 3-dimensional particle system  

Particle systems for fluids are easily implemented within cubical containers, as reflections are simply a matter of 

changing sign on velocities.  Positions can be initialized randomly, with uniform distribution.  Velocities are 

randomized spherically, with magnitudes determined by the Boltzmann distribution as a function of temperature and 

mass.  Particles can be attributed (scaled) radii and masses, and accurate valence values.  Any number of species of 

particle can be mixed in.  Diffusion will achieve steady state in the absence of active processes.  However, irregular 

shapes quickly increase the computational load.

EM force is implemented with the inverse square law of attraction/repulsion (optionally any exponent).  This 

requires an NxN matrix size to measure the inter-particle distances each dt.   For moderate quantities of particles 

(say 1E6),  numerical methods for minimizing computational load are necessary for both forces and collisions.  

Point forces, line forces and plate forces are all similar, by merely reducing the dimensionality of the force. 

Compared to point forces, line forces are 2/3 the computation and plate force is 1/3.

Generally, the motion EQs are:    

Anew = sum(force/mass);
Vnew = Vold + Anew;
Pnew = Pold + Vnew;
where  A = acceleration,  V = velocity,  and  P = position

9.12.2.2 Positions  

Initial positions of particles need not  be distributed evenly in their respective compartments.   They may be 

deposited as a bullion, and allowed time to dissolve in the water.  All that is necessary is that the bullion is placed 

firmly within the correct  compartment.  Ligands are often initialized as bound and then released later.  Bound 
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particles are assigned to their positions and their velocities effectively set to zero, and tagged as to which element 

they are bound to.  Generally, any bound particle may remember its former velocity, as the tag indicating it is bound 

causes a multiplication of any velocity by zero, until unbound.  An unbound particle may have a remembered 

velocity direction that when released drives it right back into the binding site or membrane.  Its compartment tag 

identifies it as trying to escape out of its assigned compartment and causes a reflection.

9.12.2.3 Velocities   

Velocities can be modeled easily with the aid of the Boltzmann Cumulative Distribution Functions (CDFs), and 

spherical instantiations.  The result is satisfactory in that it maintains its characteristics over any number of 

iterations.

Each mass has its own velocity probability curve for a given temperature.

Shown are the velocity probabilities for protons, Na, Cl K, Ca, Protein with M.W = 500.

Boltzmann distributions are used to initialize particles, and to create random collisions with water molecules.

9.12.2.4 Accelerations  

Initial accelerations are set to zero.  All charged particles exert force on one another.  This is the N-body problem. 

The sum total of all attractive forces minus all repulsive forces determine the net force upon a particle.  That force 

divided by its mass determines its acceleration.

9.12.2.4.1 Particle-Particle Forces
1. EMF

2. Concentration Gradient

9.12.2.4.2 Particle-Actor Forces
1. EM Attraction

2. EM Repulsion

9.12.2.5 Core motion equations  

x(t+1) = x(t) + v(t)*dt
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v(t+1) = v(t) + a(t)*dt
x(t+1) = x(t);
a = F/mass
F = sum(f(P-p)) ;  distance often determines strength of a force
adhesion, friction, viscosity, cohesion, 
uni-directional force, like gravity
F = k * (m1*m2)./ dp^2 * n, where n = (p2-p1) / |p2-p1|
omni-directional force, like viscosity
F = 0.5*rho*|v|^2 * c * a * n,  where n = -v/|v|     a = area xsect  n = opposite of v
unidirectional force of repulsion or attraction   (springs)
F = -k*p*n  =  -k * (p2-p1)-length   * (p2-p1) / |p2-p1|
convertion of directed flow into random flow (friction to heat)
F = -k*v *n  =  -k * (v2*n – v1*n)  *  ( p2-p1) / |p2-p1|
force fields, such as voltage ,  there are gradients 
F = E/length * n,  where n imparts directionality of the field
collision laws, algebraic or incremental

IMPACTS
impules = j
j = int(f*dt)  = dW   (change in momentum)
v(t+1) = v(t) + (1/m) * ( f dt + j )
p(t+1) = p(t) + v(t+1)*dt
v.close = v*n.plane   or v*n.touch
j = -(1+e) * m * v.close * n
Japproach = - Jdeparture
dV = J/m
% dt  = dtb+dta;   is divided into 2 intervals (pre-collision and post-collision)
dtb = hitT;  % the portion of dt prior to the collision is hitT
dta = dt-dtb;  % the portion of dt after the collision is he remainder
the final positions at the end of dt are
P1contact + dta*V1new;
P2contact + dta*V2new;
e = coeficient of restitution = 1 for elastic collisions;  =0 for plastic collisions
j = impulse = (e+1)*dV*(m1*m2/(m1+m2);
V1new = V1old  -  j/m1;     % j is built from dV, which points from v1 to v2
V2new = V2old  + j/m2;
V1new = V1old * ((m1 – e * m2) / (m1+m2))   +   V2old * (e+1) * (m2 / (m1+m2));
V2new = V2old * ((m2 – e * m1) / (m1+m2))   +   V1old * (e+1) * (m1 / (m1+m2));
INTEGRATION
to speed things up, the double integration of velocity and position are combined
p(t+1) = p(t) + v(t)*dt + a(t)*dt^2
verlet integration: 
x(t+1) = 2*x(t) - x(t-1) + a(t)*dt^2
x(t-1) = x(t)
dot product constraints create joint limits:   (x2-x0) dot (x1-x0) < a
area of a triangle
area = 0.5* |(p3-p1) X (p3-p2)|
NORMAL
triangle has a normal
n = (p3-p1) X (p3-p2) /  |(p3-p1) X (p3-p2)|
projection of a flow onto a triangle
area.projection = area * (v dot n) / |v|
When a particle is destroyed, the last particle in the list is copied into its place 
(cost: 1 integer decrement & 1 particle copy)
Creation rules apply to ll instantiations
system momentum  = sum( m* |v| )
center of mas of the system = weighted su m = mass*position
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velocity of the center of mass, for moving bodies
angular velocity about the center of mass for rigid bodies
dw/dt = sum(F(p(i))
moments = position * momentum
torque = radius * perp(force)

9.12.2.6 Particle-Membrane Forces  

EM Charge-Imbalance across membrane

Of all of these, the Concentration Gradient is an emergent phenomenon from collisions, and needs no further 

analysis.  It is calibrated to reality via the mean free path and mechanical mobility.

All of the EM forces require computational evaluation. The general scaling factor for this force must be calibrated to 

reality as a ratio to electrical mobility.

9.12.2.7 Solvents  

Charged particles in a container with a point or line force produce orbiting particles.  As this is not at all realistic to 

bio-cells, the presence of water is essential.  Water as a solvent produces a collision about every 10 angstroms. 

More accurately, each mass at a given temperature has a mean free path.  This implies that within each dt, a random 

portion k of the particles will have collided with water.  When they do they will emerge with an aggregate 

conservation of momentum, temperature and Boltzmann distribution of velocities.  

9.12.2.8 Particle-Particle Collisions  

Given that cytosol consists of ions of many velocities, 5 different radii and masses, the computational load of 

collision detection is significant.

Analysis of a two body collision, conserving momentum.  Note that even when the exact trajectories is known, that 

doesn't tell you anything about the reflected velocity vectors after impact.  Only after the exact point of contact is 

determined can they be known.

An impulse of energy is transferred between the particles along the axis of collision.   Temperature is conserved 

when momentum is conserved.  Thus any absorption or other loss of momenta will result in model “cooling” of the 

particle system.
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9.12.2.9 Particle-Container Collisions  

Particle-Container collisions are straight-forward and of relatively low computational cost.  They occur proportional 

to surface area, rather than to volume.  And they do not require a basis creation and change, only a reflected angle 

calculation off the surface normal.

9.12.2.10 Particle-Actor Collisions  

Certain types of Particle-Actor collisions are managed by the affinity function.  This is because they must usually be 

accelerated towards the actor to simulate a realistic reaction rate.  They frequently bind to allosteric sites according 

to forward reaction rates, and unbind according to backward reaction rates.   All particle types not on the binding 

profile of the actor causes all collisions to be treated as though the actor is not there, and a mere Particle-Container 

collisions is executed.

9.12.2.11 Diffusion SubModel   

The Interactors experience movement according to the sum of impinging forces on each and thermal Brownian 

motion.  A diffusion model is inherently a spatial model, and must address hundreds or thousands of moving 

particles individually.   Critical is the arrival times of diffusing molecules (Interactors)  to the Actors' binding sites or 

channels.   Interactor impinging forces include: thermal, voltage gradients, concentration gradients, charge 

attraction, viscosity and energy barriers.  

Concentrations must be measured per voxel, as altered by ion and ligand flux.  The ion concentrations, are 

determinant of partial voltages on  a per species basis, transmembrane voltage,  and of course create concentration 

gradients that drive flux. 

DIFFUSION MODEL:  Receives its INIT inputs from the DESIGN data,  It receives its IITERATIVE inputs from 

the KOLMOGOROV Model, which processes the stochastics.  The diffusion model is a physical model that can 

easily accommodate and interpret the typical molecular events quantified in the physiologic literature.   
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   FIGURE 104: TYPICAL DIFFUSION PROCESS MODEL

9.12.3 ENGINE TWO:  ACTOR KINETICS  

Kinetics is embodied via a Kolmogorov/Chapman/Colquhoun conformation transition probabilities for actors

Actors have multiple conformational states ...  which implies they have memory.  However they have no memory 

beyond their current state, and therefore qualify as Markov processes.  

9.12.3.1 Actor Kinetic Schemes  

Each protein molecule is capable of numerous conformers.  Given its environmental parameters, each state has a 

numeric probability of occurring.  In conditions of conformer changes slow enough to detect each transition, it is 

then possible to calculate state change as a function of the current state (conditional probabilities).  In very fast 

changing conformers, the probabilities can only be calculated irrespective of the previous state.  Generally actors 

change states faster than can be measured, and thus we use memory-less probabilities (unconditional probabilities). 

This is admittedly the weaker representation.  However, large numbers of actors in aggregate average out, in both 

space and time (ergodic), to perform quite reliably and predictably, true to the natural processes they represent.

Each kinetic process requires a forward rate and a backward rate.  In complex chemical networks, the words 

“forward” and “backward” lose their meaning, so I reference them to the products themselves. Given conformers 

A,B,C, there are rate constants  AB,BA,AC,CA,BC,CB.  If X = [A B C ], then all rate constants can be captured in 

an X x X matrix, with the diagonal being the “rate” at which the product remains the same.
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9.12.3.2 Binding/Unbinding  

The kinetics of binding and unbinding are stochastic, the net result of forward and backward chemical reactions. 

The forward reaction depends upon ligand or ion availability, which is directly related to collisions. For modeling 

purposes, a  proximal ratio is necessary to determine “availability”.  This is especially necessary when one model 

particle represents some multiple of biological molecules.  A single particle representing 10,000 biologics cannot 

possibly experience a realistic collision rate.

9.12.3.3 G-Protein / Second Messengers  systems  

Second messenger systems provide leverage between a ligand binding and the number of ion channels 

opened/closed as a result.  The biological process is a two-step combination of releases for about 15 G-proteins 

along the membrane inner surface (2-dimensional diffusion) gliding along the negatively charged “heads” of the 

fatty acids until these bind with a Cyclades.  This, in turn , stimulates the  enzymatic production of phosphates which 

diffuse in 3-d until they bind to ion channels in the neighborhood (and other targets as well).   Unless the 

intermediate Cyclades step is modulatable by other means, the overall effect of this system is to leverage a single 

extracellular ligand binding into the modulation of thousands of nearby ion channels via their intracellular 

phosphorylation sites.  The effect is activated and disengaged for an amount of time quite closely following the 

amount of time that the ligand remains bound to the receptor.  However, there is a lag of about 1E-1 s.   

9.12.3.4 Pumps  

A library of Ion Pump types is maintained.  Ion pumps are indispensable in many modeling queries.  Firstly, they 

determine what the steady state is regarding tonicities.  Therefore they determine the resting potential.  One 

definition of clinical death is the cessation of ion pump activity, so critical is their contribution.

Secondly, pumps are logical devices, whenever they co-transport.  Rather than merely pump one or another ion to 

desired levels, they force ratio-based movements, more apt to preserve the ratio between species of ion than set the 

absolute concentrations.  Further complexity arises by the interplay of various types of pumps,  each with its own 

idiosyncratic ratio.  Tonicities can be shifted to different concentration profiles by re-weighting pump type activities. 

This can play a role in shifting the functional role of the cell across several “moods”, by altering tonicities along 

viable paths to modulate the Q-matrices of ion channels (and other actors).  
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Thirdly, pumps fatigue, presumably due to energy shortages.  This effect is certainly relevant to neuron behavior. 

Pump fatigue can be simulated by giving them receptors which modulate pumping rate, and may become starved for 

ligand.  Thus ligand concentration controls pump rate. If modulators alter or switch pumping curves, then ligands 

can alter the steady state conditions as well.

Fourthly, pump distribution can set up significant effects for information processing.  A cluster of ion pumps at one 

end sets up an ion current down the entire length of a process.  Such currents are instrumental in motion detection 

for example.

9.12.3.5 Stochastic Kolmogorov SubModel   
The actors are stationary but the most dynamic component of the neuron.   While the membrane is a passive stable 

lipid,  the Actors embedded in that membrane are all proteins.   The thermal noise and other forces which impinge 

on them, have the effect of changing their shape (over various conformers) in random ways (due to collisions and 

charge effects).  Each  transition between conformers can be treated as a kinetic transition, with both forward and 

backward transition rates.  It is found that these rates are not constants (as the old name "rate constant" would 

suggest).  Instead they are often modulatable.  Modulation of rate coefficients (chemical kinetics familiar as alpha 

and beta values), is best handled by Kolmogorov stochastic partial differential equations.  These can be solved as a 

single system of simultaneous EQs.  Computationally this involves the inversion of a single matrix per individual 

actor.

KOLMOGOROV model:  Receives its inputs from 2 sources: the environment, via concentrations of modulating 

ligands and ions; and from the ITERATION with the RC_GRID model provides some outputs that also are 

modulating the stochastic processes.  The STOCHASTIC processes are intrinsic to the Actors.  The DESIGN data 

contains Q matrices, which LOAD into the Kolmogorov model as state transition rate coefficients.  These serve as 

stochastic engines which respond to a variety of modulatory signals (both external and internal).  
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FIGURE 105: TYPICAL STOCHASTIC 
PROCESS

9.12.4 ENGINE THREE:   MEMBRANE  R-C ELECTRICAL GRID  

9.12.4.1 Capacitance  

Capacitance is essential to simulate an action potential in neurons.  The physics says F= q1q2/r^2 for EM force, with 

a dielectric barrier holding apart dissimilar charges, and voltage applied via ion pumps. Capacitance absorbs the 

charge imbalances resulting from selective channel transport driven by Nernst potentials.  Without such absorption, 

ions would be pushing against a very hard resistance to charge imbalance in 3-space.  In modeling, getting the 

capacitance to the right value is critical.  Fortunately, particle systems automatically “charge” membranes exactly to 

the amount of charge imbalance.  How long they take to do this is sensitive to dt, so some compensation might be 

necessary to yield results that mimic continuous charging time of bio-systems.

9.12.4.2 Saline Resistance  

Copper wire and carbon blocks are very predictable in their resistivity, but saline is does not produce a resistance 

linear with respect to distance.  As ion channels are effectively point sources and sinks, with extremely small “cross-

sectional area” of conductance, the lines of current tend to balloon out from the source point into the open liquid 

space, then shrink back to a sink point at one or more neighboring channel, resistance does not vary much with 

distance.  Most of the resistance is concentrated at the point source and point sink.  Is there empirical data on this 

curve, or a theoretically sound formula?   

Furthermore, such point-to-point conduction is quite intermittent and rare.  For most spikes, which are themselves 

brief and sparse, it is point to membrane capacitance. So most of the time it is capacitor to capacitor charge leveling, 

and ionic flux horizontal leveling.  The point to capacitive surface flows present a large planar sink with a cross-
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sectional area hundreds or thousands times larger than than the ion channel source (a cone of resistance).  The 

dominant argument to saline resistance is tonicity.  Conductance is proportional to the charge density.   Tonicity is 

merely the summation of the several ion concentrations.

Convert the above to useful EQs

Divalent ions are handled thusly: [   ] in calculating point to point resistance in a liquid.

9.12.4.3  RC Grid SubModel   
The net result of charged Interactor movements is electrical current.  Charged particles in  3-D space are not limited 

to unidirectional movement as might be the electrons in a copper wire.  Furthermore, rather than one species of 

electron, we must track many species of charge carriers, measure the net particle flux parallel to directions of 

interest and multiply particle quantities by their respective valances.   Non-parallel flux may also have effect upon 

model behavior, so we track all 3 dimensions via voxel to voxel movements. For convenience, currents through the 

membrane are referred to as “vertical” and movements parallel to the membrane are referred to as “horizontal”. 

  An RC Grid model calculates, via linear algebra, the stored charges, horizontal and vertical currents, and voltages 

across the membrane at each node of the mesh circuit.  This mesh circuit approximates a low pass RC ladder filter in 

2-D.  The mesh is derived employing the general strategies of the  Finite Element Method (FEM)  As common solid 

state electrical circuits consist of the quintessential finite elements, its worth considering what is implied by 

imposing FEM upon biologic membranes.  While the membrane is a continuous surface at any higher perspective 

than molecular, the ion channels and pumps act as nodes.  The extracellular and intracellular fluids between nodes 

serve as edges.      FEM provides a uniform strategy for divvying up the membrane into capacitive areas and 

interpreting 3-D saline into discrete resistors.

The pumps are current sources and the ion channels are variable resistors.  An additional challenge is to 

accommodate the many species of charge carriers.  The circuit is actually multiplied by the number of types of ion 

species, and each of them must be calculated each dt.  Then they are summed via the GHK voltage equation to yield 

a net voltage per node.



630

The net voltage per node will determine the number of charges to enter into membrane capacitance, and that 

capacitance, in turn has a significant impact upon the free charges remaining.  Those free charges determine partial 

voltages via the Nernst equation.

RC GRID Model:  Receives its inputs from the DIFFUSION model.  Metrics are applied to the physical behavior of 

molecules to derive electrical values.  For example all the ion fluxes can be collapsed into a net current across the 

membrane; and the various charged particles held tight to the membrane by EM fields from the other side collapse 

into a single q value.  Furthermore, the incidental locations of the actors can be used to calculate nodal capacitance 

and resistances to nearest neighbors.

  FIGURE 106: TYPICAL  ELECTRONIC PROCESS

9.12.5 SUBMODELS IN FEEDBACK LOOPS   

The electronic loop passes through membrane voltage which then modulates the Actor states.  The Kolmogorov 

states determine the conductance values for fluxes in the diffusion model.  Such fluxes translate to current, voltages, 

and capacitive charge in the RC grid.  And the RC grid generates the voltages which modify Kolmogorov protein 

states.

The mass transport loop is slower because it relies upon diffusion in the various compartments to alter 

concentrations.  Changing concentrations alter the Nernst Voltages, which in turn alter the flux through ion channels.

The two feedback loops interact with each other multiplication, via ohm's law. 

The LOOP:   Kolmogorov model generates Conductance values (G) for each of the Actors in the diffusion model. 

The DIFFUSION model generates flux values for the various ions at various locations.  These fluxes are translated 
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into currents via the nodes within the RC GRID model, and therefore for each of the nodes in the RC grid model.  As 

the kinetic states cannot change instantly, but instead exhibit characteristic time courses, they have the peculiar 

effect of giving the system a "pseudo inertia".   Such a phenomenon allows for the possibility of oscillations, which 

would not be possible in a strictly first order system.

Note that each neuron is a closed surface.  There are no ports for current or voltage inputs.  There are no current or 

voltage outputs.  There are only chemical modulator inputs (as concentration values), whose only effects are to alter 

Kolmogorov states in the actors.  These in turn alter only conductance values.  Thus each neuron is an information 

processing system that is driven by clusters of potentiometer settings! 

                          FIGURE 107: SOFTWARE ARCHITECTURE SUBMODELS

Architecture Diagram for the main three Modules, noting that the sole input to the system is via the external 

modulators arriving via diffusion, and acting so as to chemically bind to actors, and thereby modifying the 

Kolmogorov transition coefficients of those actors.
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9.12.5.1 SubModel Functions  
From Figures above, we can conclude that the software should be partitioned accordingly: 

SW org Design Build Run Report

TypePhysic

RC Grid TypeComp DistC RCgrid_engine v,i Plots

TypeMemb

Stochastics TypeRecep

TypeChan

TypeShuttle

TypeVes

TypePump

DistRecep

DistChan

DistShuttle

DistVes

DistPump

State_engine State reports

Diffusion TypeIon

TypeIon2

TypeLigand

DistB Dif_engine Movie

TABLE 23: SOFTWARE MODULES

As the project developed, it was found that particle drift attended to matters of capacitance and current without 

programming.  It was further discovered that the ions do not pass through saline resistance volumes but rather go 

immediately to the membrane capacitance and travel (make current) by pushing along the membrane.  This made the 

calculations of resistance through saline irrelevant.  The channel conductances remained as specialized functions 

driven by Nernst EQ partial voltages.  The pumps are not calculated per se, but rather run their kinetics and in the 

process transport ions via binding and unbinding.  All of these conspire to eliminate the RC Grid engine.

Meanwhile, the Kolmogorov kinetics was necessarily split into 2 separate engines, one for the internal state changes, 

and the other for the external events of bindings and unbindings.  The latter was adapted to modulate the internal 

kinetics, and was augmented to handle voltage modulation.

Follows is the second version of the Software Architect SubModels.
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The settled schematic for a NIP model serving actor kinetics and particle dynamics is:

9.13 REPORT  

Membrane shall be represented by an arbitrary axis line, the (variable) radius of a cylinder, and the scaling 
factors from neuronal proportions to computational and presentational practicalities of screen size. 
A continuous line, triangular mesh grid, or solid rendering are acceptable.

Interactors shall be represented by color coded dots which move per their velocity values.

Actors shall be represented by iconic shapes and colors that distinguish each type, with a size just large 
enough to easily distinguish. 

Concs are implied, but are also counted nodally and recorded for analysis.

Voltages and currents are represented in separate plots.  A color dot at each node would optionally help to visualize 

voltage activities.  With the prismatic color spectrum keyed as:  black brown red orange yellow green blue purple 

for min to max voltages.

RUNS shall be stored in such a way that multiple run results can be superimposed as families of curves for 

parametric sweeps or other variations in input pattern.

FIGURE 108: SOFTWARE ARCHITECTURE FOUR SUBMODELS
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9.13.1 NEURONAL EVENTS SIMULATED   

Follows is a list of the specific series of events that are instrumental in the passage of one pulse of information along 

the length of a neuron.  It is not the only possible path and sequence, but will serve as a canon for design.

1. ions concs initialized to steady state concs in each compartment (tonicity profile)

2. ion diffusion in water, in each compartment – with charge, acceleration and collisions

3. actor affinity profiles activated,  for ligands and other modulators (e.g. voltage)

4. actor state change, per dt

5. actor binding changes, per dt

6. ligands concs initialized to steady-state concs in each compartment   (modulation “rest” profile)

7. ligands are released into synaptic clefts per input signals from pre-synaptic cells  (signal)

8. ligands diffuse in water, in each compartment (3-d diffusion)

9. ligand bindings to receptors, kinetics as func of concs and Q-modes

10. actor Q-matrix modality changes mode per modulator combo

11. actor state changes, per dt

12. actor phenostate = gating function, transport function, messenger release, vesicle release 

13. ligand unbindings from actors kinetically per concs

14. ligand “reuptake” pumps restore ligands to original positions, kinetically, per concs

15. receptors release second messengers upon ligand bindings (1:5 ... 1:20 leverage ratio)

16. second messengers migrate along membrane (2-d diffusion)

17. second messengers bind to cyclases kinetically, as a func of concs

18. cyclases enzymatically produce tertiary messenger (phosphate rate = by the hundreds /msec)

19. tertiary messengers diffuse in water (3-d diffusion)

20. tertiary messengers may bind to ion channels (e.g. phosphorylation) kinetically per concs

21. modulation combos (including voltage) > Q-matrix modality change, Ion Channels

22. instantaneous conductivity of ion channel  G = channel gating function * conductivity profile 

23. Nernst potential + concentration potential drive flux:   I = (E+C)*G

24. ion affinities to ion channels vary with gating function

25. ions transported through channels per I

26. ions released and diffuse out of ion channels
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27. change in local ion concs (and by implication, change in local charge density)

28. change in Nernst voltages

29. change in Vm as weighted sum of Nernst voltages; and as Coulomb's Law

30. dV > change in capacitance charge > current in and out of capacitance  I = C*dV/dt

31. saline resistances between voxels  result in ion currents:  I12 = (V2-V1)*(1/R12)

32. horz flux changes Nernst voltages and capacitance charges laterally, radially

33. vesicles bind Ca++ as a modulator, kinetically, per conc

34. vesicles change state per mods

35. vesicles release ligands kinetically into synaptic cleft

36. vesicles reset their state (recycling sequence)

37. pump affinity1 profiles,  per mode

38. pump bind1 staging, kinetically

39. pump bind1 state alters Q-mode,  also mods and concs may alter Q-mode

40. pump state change kinetically, may transport across membrane (forward) or unbind (backward)

41. pump offload at side2 after transport

42. pump affinity2 profiles, per mode

43. pump bind2 staging, kinetically

44. pump bind2 state alters Q-mode, also mods and concs may alter Q-mode

45. pump state change kinetically, may transport across membrane (forward) or unbind (backward)

46. pump offloads side2 after transport

9.13.2 IONS  

Pos [x y z]  

Vel [dx dy dz]    velocities are necessary for carry forward inertia

Acc [ddx ddy ddz]  acceleration provides only a convenient place for force calculations, discarded each 
dt

Assign assignment to compartment or to [actor# pol#]

VelStop  {0 or 1} multiplier on velocity for { bound  free }
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From pos alone it can be known:

1. which compartment a particular particle is in.

2. concentrations, both nodal and compartmental

3. Nernst potentials

4. horizontal net flux,  and horizontal net current since last dt  

9.13.3 LIGANDS  

Pos [x y z]  

Vel [dx dy dz]    velocities are necessary for carry forward inertia

Acc [ddx ddy ddz]  acceleration provides only a convenient place for force calculations, discarded each 
dt

Assign assignment to compartment or to [actor# pol#]

VelStop  {0 or 1} multiplier on velocity for { bound  free }

(same as ions, sans charge field)

9.13.4 RECEP  

input signal is recorded on psuedo receptor, as function of messenger local concentration

bind combo modulator bindings are recorded each dt

state state instantiation is recorded each dt

release particles released are recorded each dt

Track which receptors received inputs, and which did not. (distribution).  Track delays between inputs and outputs to 

receptors.  Note std deviation.
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9.13.5 PUMP  

Pumps modify conc ratios across the membrane on a per node basis.   Only a portion of all nodes have pumps, 

depending upon PDFs.  No two pumps can occupy the same node.   Particles are released from pumps with small 

“upward” (away from membrane), random spray angle velocities.  This is adjusted to approx. match the inertial 

effects of channel efflux and pump rejection at the release points.  Optionally, particles could wait for collisions to 

dislodged them.  However the real collisions rates are so many orders of magnitude higher than the modeling rates 

that for practical purposes they are best “launched”. 

Energy spent on running pumps is expressed as kinetics.  ATP may be bound, and ADP unbound, but the actual 

energetic value is only implied by the effects such binding have upon the probabilities of state change.  There is an 

ATP cycle, consisting of ATP bound, ADP unbound, ADP pump retrieved, Adt converted to ATP for release.  The 

count of particles through this cycle is a reasonable accounting of energy consumed to drive the system.  

Setup:  Note difference between the concs with pumps off, and then running until steady state is acheived.

9.13.6 CHAN  

on flux thru chan vertical flux and vertical currents are recorded

chan activity patterns and correlates

open dwell histogram closed dwell histogram

9.13.7 VES   

output signal

How much neurotransmitter does it cost the cell to operate a communications line?

What are the patterns?  Noise? Reliability?  Repeatability?  Information carrying capacity?   
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NOTE modulators are released from Vesicles.  They do not spontaneously appear.   Good practice would be to 

define an attractor to return the ligand back to the vesicle, in an amount of time proportional to the biologic process 

of re-uptake.

9.13.8 DIFFUSION  

lateral flux Detect net lateral movement of charge, above and below membrane

grad Differential of systemic charge

div Must choose points of interest as foci

curl Must choose points of interest as foci

Vertical flux Net current across membrane per dt

  Do they affect propagation?   How to they change thresholds?  How do they filter information?

9.13.9 DWELL TIMES  

open dwell histograms Unitary chan recordings vs aggregate recordings

closed dwell histograms Compliment to open

Steady state probabilities Finds eigenvalues

9.13.10 PLOT ROUTINES  

Plots shall be 3-D whenever 3-D data is available.

2-D data shall be plotted as 3-D with all z values = 0, so that both 3-D and 2-D data can be plotted on the same 

frame.

9.13.10.1 Computer graphics considerations   

Computer graphics consideration include envelopes, collisions, reflections, adhesions, transports and state changes.

Geometry of motion:  triple coordinate systems are maintained:
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1. XYZ (Cuboidal) for ballistics

2. ARX (Cylindrical) for reflections of particles off container walls

3. AAR (Spherical) for particle distances and collisions

4. AAR (Hemi-spherical) for attractions to actor bind sites; also useful in collision detection

Contour of revolution is represented as meridians and circles of latitude (ribs ad rims, respectively)

Determinant of basis: if positive then right-handed and outside; if negative, then left-handed and inside 

(Isomorphism = orientation preserving).

The Simplices are:  point, seg, triangle, and tetrahedron.  However, the triangle and tetrahedron have largely been 

abandoned, except when working with nearest neighbors amongst the actors.  The essence of continuity is to not 

divide up the space, as the finite element method does.

9.13.11 POSTING USER SPECIFIED TRACES AND VALUES  

The plots shall provide screen locations for posting certain variables  and certain traces during a run.

Often an experimental design will be seeking to watch closely a particular variable, e.g. K current.   A menu of all 

generated variables shall be made available from which to choose up to 20 simultaneous traces, each color coded 

uniquely.

The user may set threshold levels for any variable.  If that variable crosses the set threshold any time during a RUN, 

then event markers shall be provided to clearly announce those facts, which are persistent after the run is complete.

9.13.12 RUN TIME METRICS  

The program shall incorporate a CPU-timer that measures run time in seconds, and reports such values immediately 

after each run.

Run time can be limited by assigning a value in seconds to toc_max prior to the RUN.  If CPU time exceeds this 

setting, control is returned to the keyboard.  If the execution of the program was in a for loop, then the index value 

(how many times through the loop) will be preserved.
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An abort command keyboard control key sequence shall be defined such that the user may choose to abort overly-

long runs.  Such abort kills program processes and returns control to the keyboard.

9.14 INFORMATION THEORY METRICS  

Information theory is relevant to the overall mission of modeling information flow and processing in a cell.  First, 

how much information is being received?  Second, how much of the input information is loss along the length of the 

cell?  Third, how is this information altered or transformed?  Fourth, what new information is being generated? 

Fifth, how much of this generated information is lost along the length of the cell?  Sixth, how do the received 

information and the generated information interact and merge?  Seventh, what is the mutual information between the 

input and output? Eighth, how is the output information significant to the organism?  There are also geometric issues 

of interest.  How is channel capacity affected by fan-in and fan-out architectures?  How much antidromic 

information flow is there, and under what conditions?  Are there regenerative cycles of information within certain 

cell types?  How are the multitude of inputs at the thousands of synapses merged into a single output signal?  Is such 

a merge constitute a loss of information?

FIGURE 109:  Matrices and Information Flow for Actor Processes



641

Blue = stochastic processes.   Green = particle system.

9.14.1 CONVOLUTIONAL CODES  

A convolution code converts the entire input pattern, regardless of size, into a single output “word”.  The effects of 

convolutional coding is not compression per se, but rather to transform inputs with high error rates into rather 

consistent outputs.   They correct errors by realigning to canonical patterns.  Convolutional codes are additive as 

many can be merged into one.  Markov processes are noisy but powerful in their ability to recognize and generate 

patterns.   The input data arrives as a wave of particles washing over the actors.  The actors convolve with the 

particle wave to alter that wave.  This process eventually ends up as one of the patterns which the actors are capable 

of generating, regardless of whether the input pattern matched it or not.  Thus the convolution serves to sort inputs 

into “recognizable” types.  Outputs may be  yes or no (pulse or no pulse); but also may be firing patterns or graded 

patterns.  Because of the active processes of the actors, the original input signal is transformed into a standard 

“word”.  It will take a discovery process to determine how many words a neuron is capable of.  We may think of 

these words as modalities (firing patterns like burstiness, rhythmic, or chaotic).  Variations in actor plaiding must 

result in altered “word” patterns, or at least alter the thresholds above which a pattern is transmitted.

Convolution processes are strongly implied by the physical relationship between the statically positioned  actors and 

the dynamically flowing interactors.  A wave of particles passes over and under the actors, and the actors respond by 

altering the particle flows.  An incoming wave is altered by the actors into an outgoing wave, a product of actor 

types and positions.  This is the physical embodiment of the very essence of a convolution.  In fact it is a double 

convolution, as there are 2 output streams: the particles are continuously altered; and the actor states are 

continuously altered.

It is not necessary to employ analytic techniques to resolve this effect.  The model instantiates it as an emergent 

property.

9.14.2 LOGIC  

Operators:  AND, OR, NOR, NAND, XOR, ALL, ANY, CUM, DIF, EXP, ABS, EuclidDistance, CityDistance are in 

common use within the Computational Theory community.   Alan Turing demonstrated that NAND gates could be 

wired to emulate all the others, and so they are often chosen to serve as the general processor.  Indeed, if a rigorous 
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model can perform just the first 5 of these, then the computational potential of synthetic neurons will have been 

firmly established thereby.   Such conventional logic serves as system performance tests, to determine the operators 

that the membranal system can execute.  Within the model however, the  prevalent logic concerns conditions.  IF 

certain conditions exist at this moment, THEN certain actions will follow.  This is a result of the modality of 

complex systems, and the discretization of chemical systems.  In an analog world these modalities emerge from the 

continua of space, time and nonlinear relationships between the elements.  In digital models, hyperbolic orbits are 

simplified into conditional events.  Admittedly, the analog representations are the more accurate and true to that 

which is being simulated.   Logic is therefore a rather weak substitute prone to introducing “round off” error. 

Meanwhile, continuous functions can approximate digital events like step functions via higher order polynomials, to 

arbitrary accuracy.

Logic does however, have a strong function to play in computation.  The distinguishing feature between a calculator 

and a computer, in modern parlance, is logical flow control  ... specifically, conditional switching within the program 

algorithms.  These are the IF THEN statements, the DO loops, FOR loops, WHILE loops, and SWITCH CASES. 

All are forms of flow control, and all imply switching.  There is a strong implication of this sort of functioning going 

on in the nervous system, but not yet established at the molecular level.  To receive 2 million channels of visual 

information via the pair of optic nerves, and use that information to decide what to do next, requires some form of 

switching between optional behaviors.  The common drawings in neurophysiology texts may lead the reader to think 

that most neurons have many inputs but only one output.  This suggests no switching is going on, only filtering.   If 

there were neuron types with 2 distinct axons, and these 2 did not both fire at once, but rather in either independent 

or complimentary fashion, then that arrangement would imply switching within the neuron, and implicate the ion 

channels in the execution thereof.  

However, the absence of independent multiple axons does not rule out flow control by the neuron.  There is a 

commonly encountered phenomenon in neural nets called “winner takes all”.  This has many analogies, from radio 

tuning in stations to lottery winners selected from a box of flying ping pong balls.  In neural nets it is a result of 

nonlinear inhibitory surrounds.  Overlapping competitive signals will always have some one strongest signal, which 

by virtue of the strongest inhibitory surround squelches out all lesser signals, delivering forward only the one 

strongest signal.  This is definitely a form of switching, and a particularly useful one.  It allows competing options to 

be developed, and then a decision made to go with the peak performer of these options.  That is management 
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decision-making in its essence.  The dendritic tree is appropriately structured for such kind of functioning.  The 

asynchronous refractory periods are prone to patterned responses due to channel densities and conduction velocity. 

Might branches of the arbor be competing to “win” for their pattern, thus excluding that others vying for that 

position?    If so, then how can such a pattern “feed back” antidromically to let the system know of a successful 

pattern?  Can the refractory period be read as “holes”, as is done in the solid state devices?  

The pursuit of logic within the workings of NIP must await the growth of this model through stages of justification 

and verification.  Then a build out of a library of phenomena at the molecular level of significance to NIP.  Once the 

subcellular mechanisms are established ans successfully built up into whole cell performance, then it is time to look 

for the opportunities to effect logical flow control along the course of the membrane.

It may be hypothesized that modulation may serve to control the flow of information via shutting off one actor group 

while turning on another actor group.  Another possibility is that modulating a group one way elicits one output 

pattern when stimulated, and modulating differently the same actor group may elicit a different output pattern to the 

same stimulus.   That also would constitute flow control if the difference in pattern was significant in its downstream 

effects.

Logical function may be pursued methodically running whole cell models, and upon patches large enough for 

multiple actor types to influence each other via modulation.  The reason this matter must be contemplate is that 

actors cannot be designed so as to disallow any of these potential phenomena.  That would cripple the model's 

predictive abilities from the onset.  

9.15 METHOD SIMPLIFICATION  

9.15.1 TESSELLATION  

Capacitance is distributed according to known spacing between ion transporters (channels and pumps)
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9.15.2 TIME SCALE,  FACTORS  

There are numerous time scales in play.  Pure voltage effects travel at the speed of light. Ionic collisions and protein 

conformational changes occur on about the nanosecond scale.  The events most relevant to the action potential 

transpire on about the millisecond scale.  The non stationarity of learning and adaptation occur in seconds to weeks. 

It is prudent to collapse all the nanosecond phenomena down to mean values, and to ignore the long term (>= 1 s) 

phenomena all together, within any run.  Despite these 2 simplifications, the mechanics of getting the 3 sub-models 

of diffusion, kinetics and electronics to achieve both optimization and cooperation, remains a tedious undertaking.

9.15.3 SPATIAL SAMPLING  

Regarding the larger scale phenomena, such as the bifurcation of a propagating wave, it is possible to "pre-calculate" 

the behavior of the variety of voxels along the routes. Once  calculated for a given parametric set, they can be stored 

in a lookup table, for efficient computation of large scale behavior.  Care must be taken to not "assume" across any 

gaps of uncertain nodal behavior, and it is algorithmically tractable to leave certain "uncharacterized" nodes in full 

computational mode while having most others in collapsed "lookup" mode, both types in a single run.  It is the very 

nature of manifolds that the calculation of the relationships to nearest neighbors is sufficient to fully characterize a 

node's range of response.  However, it is a challenge to the modeler to avoid over simplifying these results so as to 

thwart the emergent behavior of the membranal system that is ultimately being sought.  In similar fashion, both over 

simplification and any distortions of ill-chosen simplifications can give rise to emergent behavior that has no 

counterpart in biologic systems.  Perhaps this is junk,; perhaps it is a novel and useful pattern of behavior.  By 

"emergent" is meant any instantiation of the domain of neuronal information processing capacities.  Special interest 

goes to those not yet discovered.  And it thus behooves us to build models that do not preclude the expression of 

such - a creative challenge indeed.

9.15.4 TEMPORAL REPRESENTATIONS  

There are a number of straight forward numerical methods to adjust dt dynamically to the rates of change of the 

second, third, fourth and even fifth order of an EQ.  However, such efficiency guarantees temporal misalignment to 

other threads in any parallel processing scheme.  Thus binary time scales are enforced, such that for a necessary 
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detail to maintain accuracy, dt may be halved, quartered etc., but not float continuously.  Thus ensuring 

synchronicity when this process returns to the fold, without the need for an additional step of interpolation.

9.15.5 NORMALIZING THE BIO-DATA  

For purposes of creating a coherent and representative model, normalization of the available bio-data is critical. 

There are many factors that distort measured data from the actual in vivo performance of cellular components. 

Electron micrographs dehydrate the sample and so distort the extracellular space (to smaller than actual).  This in 

turn may cause us to mis-calculate extracellular volume and resistances.  Tissue excised for purposes of inserting 

micro-electrodes and patch clamps distort the electrical relationships between the cells and may trigger any number 

of mode changes in proteins, both outside and inside the cell. 

In non-linear systems, such distortions are not easily predicted, not easily understood, and not easily compensated 

for.  It is therefore valuable to develop multiple sources, multiple experiments and multiple analyses.  All of these 

should be allowed to form consensus, vectoring towards the likely “truth” of the matter.  Iterations help discover the 

variance and robustness of the phenomenon.  Modeling a sweep over the suspected parametric range may help to 

identify a stable “middle”, which in turn may be the bio-configuration.  

9.15.6 ABSENCE OF DEVELOPMENT AND PLASTICITY  

   The process by which a channel naturally arrives in the membrane is complex and individualized (all channels do 

not appear in the membrane at the same time and in the same state).  So to do that in a simulation is to create an 

artifact of synchrony.  Although natural development processes are not being modeled here, some of the artifact of 

false development can be avoided by taking the step to distribute the states of all actors of a type across their PDF. 

This preserves the ergodic quality of both spatial and temporal distribution.

9.15.7 THE LIMITS OF PARSIMONY  

  A system of simple elastic collisions does not require Avogadro's number of ions to accurately predicting the 

behavior of the aggregate.  Therefore the number of particles can be scaled down. Chi-square test for levels of 
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confidence with respect to degrees of freedom shall be employed to determine the limit of such down-scaling. 

Similarly, the huge complexity of protein conformations comprising a modulated ion channel can be substantially 

reduced to a small number (about 10) which predict channel openings within the set level of confidence.  Complex 

heterogeneous ion channel distribution patterns might also be simplified without loss of veracity, but the 

determination of to what degree of down scaling is permissible must be determined empirically via sensitivity runs. 

Of course, when large numbers of each type of involved ion channel are required to elicit accurate aggregate 

behavior predictions, then the computational load on simulation computers may become burdensome or even 

intractable.  

It is not the purpose of this model to prescribe what quantities of each actor and interactor type are appropriate to the 

veracity of the model, but rather to build a model capable of performing sensitivity analyses so as to determine 

optimal numbers of actors and interactors for any given predictive purpose.  

Statistics predicts that within such a model far greater reductions in the quantities of interactors may be justified than 

reductions in the quantities of actors.  

 There is a copious surplus of the simple particles, e.g. ions, while the complex ones are several orders of magnitude 

less in quantity.  The irony for modelers is that the simple ions can consume the greatest computational load in their 

collisions and reflections, yet yield very little relevant information to the model outputs.  It is for this reason that the 

quantity of ions is scaled down disproportionately to the channels.  The collider algorithm may be turned off and 

results compared to when it is turned on.

9.15.8 PARAMETRIC SCALING  

Scaling within the model is of great import.  There are several aspects that need be distinguished:

Presentational Time scaling:  because real-time speed of ion collisions and diffusion in solution cannot be modeled, 

some conversion is selected.  Typically microseconds of nano-scale events are expanded to seconds in presentations, 

and milliseconds of micron-scale events are expanded to seconds in presentations.  These are arbitrary and of little 

consequent because they do not alter the mathematical consequences.
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Presentational Space scaling: a voxel is typically 10 nanometers ^3 and this is scaled to ~ a centimeter in visual 

presentations.

Size scaling:  Of far greater impact is scaling nonlinear events to take place slower and fewer in number.  This is 

analogous to making a picture more grainy by reducing the resolution.  In a complex system of non-linear equations, 

such a “simplification” is fraught with dangers.  Each such move must be verified by comparing the  ‘pre’ to the 

‘post’, and stopping whenever the inherent nonlinearities render the simplification invalid.  100 1E-8m^2 patches of 

axon can be replaced by a single patch scaled such that the action potential retains the same shape and the 

propagation time across the length is 10 times as long.  Each particle would represent 10 ions, and each post-channel 

would have a flux of 10 times the amperage of the pre-channel.   There are implications for radius, mass, charge, and 

delay functions.   

N by 1E-6.  This would result in Nmanaged = 3.6E5, a tractable number on today’s PC’s.  We must carefully 

consider the consequences of such a reduction.  The many impacts include:

1. channel flux becomes highly quantized, and incapable of passing less than 500,000 particles in an action 
potential, or other gating phenomenon.

2. shot noise is greatly increased and distorted, in magnitude and altered frequency

3. Membrane capacitance is zero for less than 1 million particles, and

4. very "chunky" thereafter.

5. Diffusion to nearest neighbor may be altered in speed and delay.

6. The effects of water upon such chunky ions needs to be re-evaluated.

7. Thus, a lot of verification and recalibration work are needed to justify a model with its quantal nature 
rescaled 1E6 times.  

8. If the ion channels are to be scaled accordingly, what should be their relationships to the modulators?

Another approach is to assume some degree of radial symmetry.  Although not valid for the dendritic field, once a 

signal is summed in the soma, then a single wave front proceeds down the axon.  For most of the length of the 

neuron, radial  heterogeneity effects are minimal, although not zero.  
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9.15.9 COMPUTATIONAL COMPRESSION  

The incentive is to eliminate redundant calculations.  Size scaling is analogous to voice compression by clipping out 

the repeating patterns, and pasting copies of the unique patterns back in at the end to reconstitute the original signal. 

It is anticipated that the molecular pattern redundancies in the neuron are large, and thus must computational 

compression may be realized.

9.15.10 RUN DYNAMIC SIMULATIONS  

In this model, large numbers of collisions occur asynchronously.  If variable dt numerical methods were employed, 

the dt sequence would be unique to each particle pair.  The bookkeeping overhead of such an arrangement outweighs 

the benefit.  The dynamic equations are therefore executed with a fixed dt such that all particles can be processed as 

one matrix, and all actors as one matrix.

The relationship between the particles and actors is tabulated below.

Transition Map:

entities

conc 

(dist)

profile 

(filter)

affinit

y 

(force)

un(bind) 

kinetics 

(prob)

un(bind) 

instantiatio

n   (state)

bind state 

determines

transport 

process 

(force)

messengers 1 2 3 4 5 6

actors 7 8 9

ions 10 11 12 13 14 15 16

conformer 

kinetics 

(prob)

conformer 

instantiation 

(state)

phenostate 

(mapping)

TABLE 24: ACTOR PROCESS SEQUENCE
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Each of the numbered cells represents a process critical to the model.  Causality is implied by the necessity of time-

wise ordering the execution of code functions.  However, in reality, causality is much more diffuse over a network of 

coupled interactions.   The sequence chosen above is intended to maximally capture the flow of information through 

the membranal system.  Nearby particle concentrations are selected by actor profiles for affinity to allosteric binding 

sites. Once collided, bind/unbind kinetics determine the probabilities of binding.  Instantiation converts probabilities 

into actuality.  The resultant combination of modulators at binding sites determines which kinetic scheme for the 

internal conformation shall be in effect.  The determined conformer kinetic scheme is instantiated to determine the 

next conformer state.  This state is mapped, via a lookup table, to its external impact upon its surround.  for example, 

an ion channel may 12 states, e 9 of which are closed states and 3 of which are open states.    The instantiation may 

be to any state 1 to 12.  This resultant state number is looked up in the phenostate table to determine whether it is 

open or closed.  Meanwhile, the surrounding ions exist in some concentration. Based upon the actor's conductivity 

profile the actor will have affinity for certain of these ions.  Those that bind or enter the actor via the probabilities of 

bind kinetics will be staged for transport.  The state of the actor will determine if and when transport takes place. 

The actual flux through an actor may be determined by external concentration and voltage forces times the 

conductivity profile, times the phenostate (open or closed gating function).

9.15.11 ITERATIONS  

All functions within a time loop are difference equations.  The stability of iterations concerns avoiding cumulative 

error, and avoiding exponential growths.  Many physical systems, and all biological systems, saturate and thereby 

limit themselves.  The model must be designed to include such limit functions.  These are usually sigmoid in shape. 

In a system of functions, behavior may emerge which is not inherent to any one of the component functions. 

Although Lyapunov stability analysis can be performed on the obvious cases, there are such a multitude of function 

series permutations that it is easier to place limit switches into the software, set to abort when the values are clearly 

off what is physically possible.  The greater danger is those errors which produce results within physiologic ranges. 

They require verification procedures to detect.
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9.16 NUMERIC METHODS  

There are numerous and significant opportunities for producing incorrect results due to the vagaries of digitization. 

In particular, the inversion of matrices can produce wildly wrong answers when near-zero elements are processed. 

Because the near-zero values are most often the noise of the system, it is essential to filter them out and replace with 

zeros prior to inversion, least they become large dominant numbers masking all the significant elements. 

Unfortunately, this problem can present itself every step during matrix manipulations, and a single “cleaning” step is 

not enough.  Ill-formed matrices cannot be eliminated by design , but rather must be detected on the fly.  Each 

matrix may be rated by its condition index, with those out of tolerance changed to a basis resulting in less ill-formed 

elements.  This requires tracking the matrix until it can be un-transformed.  But to the extent that this matrix is 

blended with others, such a reversal may no longer be mathematically justified.

9.16.1.1 Digitization Challenges  

The many characterizations of nature at nano-scale are easily and often distorted in man's attempts at representing 

them in digital machines.  Justification is necessary at every step, every function, every assembly, and every 

aggregate to check for bias, drift, accumulative error.  Particles moving in digitized space-time may tend toward the 

45-degree lines, slow down, clump together, escape from compartments, pass through other particles, misread the 

charge forces from neighboring particles and surfaces, and many other such distortions.  Given the necessary and 

sufficient elements and processes for following information flow along the length of a neuronal membrane,  how 

might these be digitized?

9.16.1.2 Precision  

It is noteworthy that double precision is not necessary for most computations.  Due to ever present thermal noise, the 

massively parallel nature of the model, and its inherent biologic robustness, random error down at 5 or 6 decimal 

places has no effect on the outcomes.  This allows a single 64-bit processor step to actually solve 4 computational 

steps simultaneously.  This is unusual, in that most differential equation models are hypersensitive to error and 

require double precision or better.   This is not to be confused with aliasing error, which is cumulative and does 

indeed result in serious (fatal) distortions
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9.16.2 WATER  

Temperature, consists of velocity distribution across each particle type.  Temperature therefore is expressed as a 

pattern of changes in position of the particles.  Temperature of the actors is expressed as a general rate of state 

changes, but this may become quite nonlinear with temperature-caused denaturing.

Water density determines particle collision rates.  In doing so,  it breaks up mean free paths and orbits (that are 

possible in gases).  As water is felt by its collisions, there will need to be some means of collision detection.  In 

analog space this is trivial, but in digital space it is an immense problem.  There are no collisions in digital space, 

because there is no physical movement, so they must be carefully calculated. 

Water solvates ions.  Variable quantities of water molecules form solvation shells around ions.  This has the effect of 

preventing positive and negative charges forming neutral bond pairs, which they would do without the presence of 

water. This requires that ions change mass and radius from time to time, and that somehow these larger globs do not 

bind to their oppositely charged counterparts because the charge is “smeared” across so many “molecules”.   The 

cation would head towards the anion, except that the water has some of the anion's charge and the water is closer. 

These are very transient relationships.

Momentum is conserved when two particles combine and the new velocity is the sum of the two momenta. 

Momentum is conserved when particle collisions are resolved with 3-d momentum transfer equations.

9.16.3 IONS:  

Ions may be monatomic or polyatomic.  The monatomic particles have a true radius, although different mensuration 

methods yield different numbers.  Polyatomic ions are modeled as spheres of an equivalent radius chosen that model 

collision rates are very close to the in vitro collision rates.  With very small particles like ions, a timestep in digital 

space that allows an ion to move just 2 angstroms could have completely missed a collision that would have 

certainly occurred in analog space.  This makes collision detection computationally very expensive.  Not merely the 

detection algorithm, but the fact that it requires dt and dx to be finer than the smallest particle at the fastest speed. 

The collisions are more than statistical random walks.  The ions are the carriers of information between channels, 

and the collisions transfer this information from particle to particle and/or from particle to actor.   Therefore, in a 

particle system representing information processing, accurate collisions are of the essence.  



652

Because the smallest particles are indeed going the fastest, the smallest particle in the simulation constrains the 

entire model to rather tedious computations, that the larger molecules do not require.    Omitting free electrons 

avoids a 1844 fold decrease in mass and a 354861 fold decrease in radius, when compared to hydrogen.  These are 

multiplicative effects.  A model without hydrogen avoids a 22 fold decrease in mass.  These are items of dramatic 

impact upon digital computational load, though they may be trivial matters in analog space. 

Ions experience drift within charge fields, unless bound.  If they should meet a barrier across the path towards their 

attractor, then they do not stop dead, but rather churn in thermal energy so as to “spread out” along the membrane 

surface (due to like charge repulsion).  They can comprise some degree of charge thickness on either side of the 

barrier, but the charge density decays exponentially from mid-thickness of the barrier (not from the surfaces).   As 

temperature rises, this thickness increases.  Temperature also fluidizes the drift, facilitating its progress by reducing 

friction.  

Given a matrix qBxqB, its diagonal is zeroed because the EM force of a particle with itself = inf
Force.drift.i = k0*sum( (normal(pos.Bj - pos.Bi) * (charge.Bj * charge.Bi ) / (magnitude(pos.Bj - pos.Bi))) ); 
for j=1:qB;   normal(p2-p1) = (p2-p1)/magnitude(p2-p1);   magnitude(p2-p1) = (sum((p2-p1)^2))^0.5;

Volumes of saline cannot maintain charge imbalance.  This is referred to in textbooks as “space charge neutrality”. 

Any charge imbalance must move under the forces of drift to the surface that forms the barrier between the positive 

and negative charges.   Therefore, charge accumulation is a surface effect, not a volume effect.  Thus the model must 

be capable of such phenomena whenever there is drift and a barrier to that drift.  All movement must be sensitive to 

such barriers and ions reflect off them.  Drift is an acceleration factor calculated via A = F/m;  The acceleration is 

degraded to terminal velocity by the collisions rate.  In a digital framework,

F(t-1) = k0*q1*q2/r(t=1)^2;   
A(t=2) = F(t=1)/m;                         % frictionless acceleration
W(t=2)= V(t=1)+A(t=2);                 % frictionless new velocity
V (t=2) = W(t=2) - k1*V(t=2);        % subtract friction term   
V(t=2) = W(t=2) / (1+k1);              % soln to line above
P(t=2)= P(t=1)+V(t=2);

The charges are reported to accumulate within 3 nm of the membrane at room temperature, 293 K.   It is calculated 

herein that 81% of all charges are essentially flat against the membrane, and that successively sparse layers of ions 

reside at even multiples of the membrane thickness away from the membrane.  Thermal noise tends to make these 

layers fuzzy.  
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Ions may bind to actors.  This is accomplished by:

1. Identify particles within some defined attraction radius of the actor.  As each actor has two poles, one on 
each side of the membrane, there are 2 hemispherical attraction volumes per actor.

2. allow particle to collide with the actor pole, with a collision defined as entering into within some smaller 
distance from the pole.

3. consult the bind profile of the actor's binding site (probabilities of binding by type of particle)

4. create PDF from bind profile by including the probability of a vacancy, then integrate a CDF from the PDF

5. instantiate the binding (or absence thereof) via a uniform distribution random number across the CDF

6. any “winning” particles have their velocity set = 0; their assignment tag switched from the compartment 
number to the actor number with pole number; and any solvation water molecules are stripped off. If the 
actor binding site has an opposite charge, then the two will cancel out, so both charges are turned off to 
avoid participation in the drift algorithm.

Ions may unbind from actors.  This is accomplished by:

1. particle identities are known to the actor, and to which binding site and pole the particle is bound.

2. each binding site has a dissociation frequency for each particle type. That becomes the probability of 
release.

3. the dissociation probability for only the type of particle actually bound is used to calculate the probability 
of remaining bound this dt.  From these two numbers as PDF is formed; and from that a CDF.

4. instantiate the unbinding (or remaining bound) via a uniform distribution random number across the CDF

5. any released particles have their velocity set back to their original velocity at the time of binding; their 
assignment tag is switched from the actor number to the compartment number; charges are turned back on; 
and the solvation algorithm is turned back on.

Ions may be transported.  This is accomplished by:

1. reassigning a bound particle from one pole to the other pole of the actor.  

2. transport is triggered by a stochastic process that determines the conformational changes within the actor.

3. when released from this pole, the particle is reassigned to the new compartment (see unbinding above)

9.16.4 LIGANDS:  

Ligands are particles that serve as modulators, messengers and/or neurotransmitters.  They modulate actors by 

binding allosterically.  See Allosteric Binding sites below for details.  Ligands may or may not have charge.  Ligands 

and ions share many processes, especially diffusion and drift.  The radius of a ligand is of lesser utility, in that ligand 
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shape is instrumental in its binding.  However is not necessary, nor even feasible to represent ligand shape for 

purposes of modeling information flows.

The heavier mass particles, like ATP necessarily move slower, both in response to thermal energy and to drift.  

The distinction between ions and ligands is weak and not distinct.  Ions may serve as ligands when they bind merely 

to modulate.  Ligands may be transported in the process of returning them to their original locations for the purpose 

of completing duty cycles.   Use of the term ligand is more for the benefit of the user than for the modeling effort 

per se.  For strictly modeling considerations, all moving entities are particles.  They each have mass, and an 

effective radius.  They may have charge or the charge value may be zero.  The binding sites of each actor have 

various affinities for various particle types.   These affinities are determined empirically in the wet lab.   Any particle 

type might bind and unbind to an actor.  Any particle can be transported by a pump.  Any particle may be chemically 

modified into one or two other particle types (e.g. ATP  > ADP + Pi).  All particle types can undergo diffusion driven 

by concentration gradients and thermal energy.  Only charged particles participate in drift, capacitance, current and 

voltage.  The effects of diffusion and drift are additive.

Functions for Ligands:  same functions and usage as functions for ions.  Only the charge of zero nulls out EM force 

effects. 

9.16.5 MEMBRANES:  

Membranes are expressed as closed surfaces.  Membranes necessarily have thickness, else particles on ether side 

could come infinitesimally close, resulting in forces approaching infinity.  The lipid constituents are expressed only 

as thickness and dielectric constant.  Optionally, the water/lipid partition factor will vary with inhomogeneous lipid 

distributions.  

Membranes are generated as contours of revolution.  Each contour consists of a series of points, the distance apart of 

which determines the dx value.  Then each point on the contour is rotated into a ring.  Each ring is populated by as 

many nodes as result in consistent dc values. (dc = the dx value curved along the circumference)   Each ring 

therefore has a diameter and a thickness.  From these a ring volume can be calculated:

volume.i = thk.i*pi^r.i^2;  
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And the entire shape volume  is the integration of all the rings:  

volume = sum(volume.i); i = 1:qR; 
  
Membranes may be juxtaposed and/or nested.  Nesting, of course, affects volumes.  Compartments are defined 

volumetrically as the volume contained by its outer surface minus the volume contained by its inner surface.    If 

there is no inner surface, then the default volume =0; 

 By virtue of assigning each actor to a membrane node, the nearest neighbor relationships between actors are easily 

established and measured.  Nearest neighbors are identified at the time of nodal assignments because the 

construction rules relate only to adjacent rings.  If at a later time simple distance was used to identify nearest 

neighbors, then two different membranes that happen to come close to each other or touch would produce false 

“nearest neighbors”  across the two membranes.  A similar error would occur when a membrane folds back on itself. 

This would lead to spurious conductances, poles, circuits and driving forces, so is to be avoided.   

Every node in a membrane has a Cartesian  (and cylindrical) position in 3-space.  Every node also has a normal to 

the surface which serves to orient the actor poles.  Because every node has orientation and thickness, there must be 2 

points along the nodal normal where the normal meets the inner and outer surface of the membrane.  From these 

surface nodes can be constructed two separate surfaces, their distance apart of course, equaling the thickness of the 

membrane.  It is these two surfaces that reflect particles, not the center-line nodes of original construction.

The role of membranes in the dynamic simulation is primarily its capacitance.  However the membrane, per se, 

makes no calculations for this.  Capacitance is merely an emergent property of the EM force acting on the particles, 

which may or may not bounce off the obstacle of membranes.   The thickness of the membrane is passively used in 

the particle EQs.

9.16.6 PARTICLE COLLISIONS WITH MEMBRANES  

Each membrane has a thickness and each particle has a radius.  The inner and outer membrane surfaces have 

their nodes calculated at the build, and each particle collision occurs when the center point of the particle gets within 

a distance of the membrane surface equal to the particle radius.  Because the normals to the membrane surface are 

known, the distance between particle and surface is measured along the surface normal from the closer of the two 
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membrane surfaces to the center of the particle minus the particle's radius.  If this is a negative number, then a 

collision has already occurred.  The particle is then backed up in time to the point of intersection, and a reflection 

angle is calculated.  The point in time of collision is also calculated, as a fraction of the dt.  The remainder of the dt 

is then ascribed to the reflection angle and the particle is repositioned out to the end of that trajectory.  This is an 

accurate calculation for a reflection, regardless of the size of dt, and so avoids aliasing error.  It is as accurate as the 

analog, but at a cost of intense computation.  Note that this approach requires a double calculation, the first in 

pseudo time that allows the particle to penetrate the membrane.  Then a back-up in time and rerunning of the 

scenario, only this time cognizant of the surface and calculating a realistic approach, collision, and reflection.  The 

reason for two is that the first is concerned with collision detection, and the second with collision resolution.  In the 

digital realm these two are necessarily separate.

9.16.7 RECEPTORS:  

All receptors in this model are metabotropic, and include a second messenger mechanisms which shuttles messenger 

particles to a set of channels.  The model easily portrays ionotropic receptors as well, but they are covered as 

channels.   Receptors have allosteric binding sites, as described above.  For a chemical binding to serve as a signal, it 

must have several qualities:  a) it must be fast enough to serve in a timely fashion; b) it must stay bound long enough 

to effect the appropriate state transition of the receptor, but no longer.  A lingering binding will act as a blocker to 

subsequent signals, may block the rest mechanisms, and may continue sending spurious signals beyond the useful 

period.  This could flood the system with messengers, rendering communication in a congested state; and c) the 

messenger must be promptly removed , disabled, denatured, or sequestered, so as to stop its functioning as a 

stimulus for receptors.  Lose and wandering messengers can create echoes and noise the degrade the messenger 

system.  This requirement is quite severe for the ligands that arrive at receptors and for the second messengers that 

receptors release.  Therefore:

1. All messenger particle releases must be positioned for speedy delivery to the target actors. A shortage of particles 

must be such that it represents a legitimate depletion of cellular resources.
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2. When diffusion alone does not serve reliably in this capacity, mechanisms which narrow the path of messengers 

may be needed.  These are called shuttles.  Alternatively, high affinity binding sites can be created which expedite 

motion towards a binding site in a similar manner to the EM attractive force.

3. The binding kinetics must be appropriate to the communications needs.  Typically this involves a high affinity for 

a messenger particle when in the “ready” state;  a fast kinetic change upon binding that results in the release of 

second messengers (either directly or by catalysis);  

4. The kinetics of messenger release leaves vacated sites which in turn cause further kinetic changes in the receptor 

molecule.  The original trigger site must be vacated to ready for the next triggering event.  The second messenger 

mechanism must be “reset” such that a new set of second messengers are staged and made ready for the next release. 

The reset sequence involves a refractory period where there are not yet any second messenger particles ready for 

release.  They must be attracted and bound.  The final binding (staging) of the second messenger particles causes yet 

another kinetic change which readies the receptor site for the trigger particle.  

Some receptor sites act only as a catalyst, and as such need only turn on and turn off that catalytic property.  In a 

model, this process is akin to the challenge of the vesicle which must manufacture all the contents of a single vesicle 

(presumably by catalysis)  and then get everything in the proper position and set all the mechanisms that can very 

quickly push the entire package out into the synapse.  The practical solution for vesicles was to get all of this work 

done prior to the release stimulus, because then the response can be much faster.  The model has the same challenge: 

how to get all of these necessary steps accomplished fast enough to be truly useful as a receptor.  If the dt is reduced 

down to millionths of a second then it is feasible to represent all of these steps individually, in sequence driven by 

chemistry.  But there is a great need to get the dt up to about 1E-4 seconds so as to focus on NIP.  This suggests 

taking a cue from the vesicles and setting up the receptors in advance, loaded with a package of second messengers, 

then delivering them efficiently to their target channels at a rate of speed similar to the timing of such signaling in  

vivo.  Every abstraction of the physical processes into some such “short-cut” is a compromise to the physics, and 

thereby deprives the modeler of a genuine first principles model that can generate emergent properties.  As larger 

computing machines become available, fewer such compromises are necessary.   The modeler must make the 

decisions at the time of experimental design as to which processes are priority, and which can be simplified by 
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abstraction because they are not NIP significant.  If the receptor is truly serving as a transducer, not as an 

information processor, then simplifying the receptor to a kinetic release mechanism is justified.  

A catalytic receptor would need accomplish a series of steps all within the time known for a receptor to trigger 

nearby channels (about 1e-4 s).  The sequence must include:

1. Affinity for the reactant particles in quantities sufficient to its second messenger role, at least as many as there are 

target channels.  This requires identifying the quantity of reactant particles within an affinity distance not so great 

that it would steal from other receptors. All of these then must be moved to the receptor.

2. A kinetically triggered chemical conversion of the reactant particle into the second messenger particle.  This 

would be fast and voluminous to provide all needed second messenger particles.

3. The second messenger particles must arrive at their target actors very quickly and precisely.  Simple diffusion is 

likely to have a very high miss rate.  If only 1% of the created particles collided with a target actor in a timely 

fashion, then 100 times as many particles must be created.   

4a. Second messenger systems are known to operate by  a sort of 2-dimensional diffusion, whereby the messenger 

molecules trolley along the membrane surface, free to move in the X and Y directions, but not Z (away from the 

membrane).  This cuts down the number of particles to the 2/3 power.  But it still relies upon random collisions to 

communicate with the target channels.  The biological membrane is such a busy place with so many proteins and 

structures that it is quite likely those X and Y directions are not so free, but rather are constrained so as to hit the 

target channels reliably.  To the extent this is true, the simple concept of a 1-dimensional shuttle may be justified. 

When the experimenter is not concerned with the intricacies of the second messenger system, a straight shuttle 

mechanism may be the most computationally efficient mechanism to communicate between receptor and channels.

4b. Some forms of G-protein second messenger systems employ intermediate stages of catalysis.  In particular, the 

cyclases receive second messengers via 2-dimensional diffusion, and then produce copious amounts of third 

messengers, such as phosphates.  The third messengers apparently diffuse 3-dimensionally and hit multiple types of 

targets, many more than channels, and much that is out of scope for this model.  Such two-step multipliers can 

achieve great fan out leverage, up to 30000:1.  For very sensitive detectors, such as the eye in near darkness, this 

leverage enables “seeing” a single photon.  Because this model can do both diffusion and shuttles, these systems can 
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be modeled.  For experiments where this is not of interest, computational load can be conserved by collapsing the 

second messenger system to a shuttle that delivers in time envelops mimicking the in vivo performance. 

5.  A shuttle is a set of links, each between a single receptor, and one of the prescribed set target channels.  A 

receptor triggering event releases all the messenger particles within a time envelope, and each proceeds down its 

link at a velocity of mean plus variance.  The length of the link determines arrival times.  The kinetics of binding at 

the target determines the success rate of communications.  The particles then return down the link to reset for the 

next communication event.

Theoretically, a receptor can be made to preform its intended function even when its kinetics are fully reversible.  A 

messenger must bind on one side, which causes a messenger on the other side to unbind.  When the far side resets 

(binds again, the first side must unbind to reset.  The 2 sides are complimentary.  A rather simple kinetics can 

accomplish this, and it needs no energy source other than thermal.  It is only modulation that necessitates greater 

kinetic complexity.

9.16.8 CHANNELS:  

Channels have allosteric binding sites as described above and are thereby modulated stochastically.  In addition, 

channels typically consist of 4 or 6 subunits which operate almost independently.  They can be treated as 4 (or 6) 

smaller stochastic devices, or merged into one larger stochastic device.  Which one is used depends upon the degree 

of coupling between the subunits.  Significant coupling indicates the merged state transition matrix.  The digital 

instantiation of the subunits and their state changes yield only state numbers, not pores that open up.  The state 

number has consequences only when it is fed into a lookup table (called the phenostate table) which lists which 

executable functions to call in response to each state number.  In the case of channels, most states have a closed 

pore, so there is nothing to do.  However those few states which result in an open pore require a digital process that 

culminates in particles moved across the membrane to a new compartment.

When a pore is indicated to be open, the affinity hemispheres on both sides of the channel are consulted.  They 

return all particle types within the hemispheres.  From these counts several calculations are preformed.  The local 

concentration gradients are calculated.  The local voltage gradient is calculated. the individual Nernst partial 

voltages are calculated.   Then the driving force for each ion type is determined as membrane voltage minus partial 
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voltage ; and the concentration gradient force is calculated.  These two forces are summed to a single driving force. 

This set of forces, one for each particle type, is multiplied  with the conductivity profile of the channel type.  This 

yields the flow rate of all particle types through the open pore under those local conditions.   These flows are then 

multiplied with the open duration time.  The solution is rounded off to whole numbers.  This yields the exact number 

of each particle type that was transported by that channel during that opening event.  The conductivity profile may 

reveal the channel to be highly selective, or quite unselective.  No matter, the calculation steps are the same.  This 

sequence works equally well for fast channels and for leak channels.  The only difference is that for any duration of 

opening longer than 1 dt, then the duration = 1 dt, repeated as many times as necessary.  This is to move particles in 

a timely fashion, avoiding bunching them all up at the end of the duration.

Channel gating may be determined to last some time duration less than the model dt.  That is OK, because the 

calculated duration time (from the stochastic process) multiplies with the flow rates to transport the correct 

quantities of particles.  Where such fast events trigger downstream events within that same dt, the model will 

become sluggish to in vivo performance unless the dt is shortened .  A distinction is made between short intervals 

which merely downsize the quantities of particles transported and a fast series of causal events.

Although channels have been extensively characterized by others with regard to the open times and modulator types, 

little has been said thus far about the patterns of openings.  We know with certainty that channels can change modes, 

i.e. change opening patterns (e.g. bursts, rhythmic, chaotic), but to date no framework for investigating these 

patterns has been proffered.  It is the intent of this model to support such investigations.  This requires robust kinetic 

schemes that are instantiated and run at length so as to capture, average and characterize the patterns that emerge 

under various modulation conditions.  The kinetic schemes are crucial to this objective.  That some of the kinetic 

schemes are admittedly arbitrary works against this objective.  When several different kinetic schemes are available 

for the same actor type, they can each be run, characterized and then comparisons made to determine which behaves 

closest to the biological entity.  This is a new area of investigation so little can be cited as peer reviewed fact.  But it 

is a promising direction, because it is these kinetic schemes that are key to biocomputation.   As biologic methods 

improve, the kinetics yielded will be less “schemes” and more real kinetics.  It is expected that the new field  of MD 

will assist in this quest.
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Adding to the complexity of the investigation of actor kinetics is that the possible combinations of  modulation site 

bindings can grow to very large numbers.     It is not the quantity of modulation sites that determines the number of 

state transition matrices, but the quantity of combinations of modulation.  For example, given 3 binding sites; the 

first which can bind Ca++ or Mg++, the second which can bind 5HT, and the third which can bind Na+ or K+;  then 

there are 18 binding combinations, including the possibilities of vacant sites.  Then, if the actor has 10 states in its 

kinetic scheme, there must be 18 separate pages of 10x10 probabilities.   This comes to 1800 data values for one 

actor type.  It is suspected that some actors will have upwards of 30 states and a dozen allosteric binding sites (many 

are known to have more).   And we are already over 900*2^12 data values for one actor type. (That's 3686400 

probability values).  It is admittedly unlikely to come from wet lab work.  But conceivably may be generated by 

molecular dynamics simulations.

Channels do not require an energy source other than thermal.  Their kinetics may be simple and reversible and still 

accomplish the gating function.  Complexities in the kinetics are implied by modulation, by pattern recognition, and 

by pattern generation.

Given:    t,  s(A01,t),  Q(A01),  r(A01,t),  R(A01); 
pdf(A01,t) = Q(A01(s(t),:,mod(A01,t)) ;                                                              % transition probs at t+1
s(A01,t+1) = randI(CDF(pdf(A01,t))));                                                               %  state of channel at t+1
o(A01,t+1) = O(A01,s(t+1));                                                                               %  opening/closing of 
channel
g(A01,t+1) = G(A01)*o(A02,t+1);                                                                       %  conduction of channel at 
t+1                                    
Vm(pos(A01),t) = CoulombMemb(pos(B,t),BT,BC);                                           % EM force across 
membrane
Ev(Ao1,t+1) = Nernst( concin(pos(A01),t), concout(pos(A01),t), z(BT(i,:)),kelv(t));    % force due to half cell
Ec(A01,t+1) = ConcGrad(concin(pos(A01),t+1), concout(pos(A01),t+1);          % force due to 
concentrations
E(BT(i,:),pos(A01),t+1) =  Ev(Ao1,t+1) + Ec(A01,t+1);                                       %  sum 2 gradients , for ea 
ion
J(BT,pos(A01),t+1) =  (Vm(pos(A01,t) - E(BT,pos(A01,t+1)) * g(A01,t+1) ;        % full - partial = net for ea 
ion
concin(pos(A01),t+1) =  concin(pos(A01),t) + J(BT,pos(A01),t+1) ;                    % net gain of ions to concin
concout(pos(A01),t+1) = concout(pos(A01),t) - J(BT,pos(A01),t+1) ;                 % net loss of ions to 
concout

9.16.9 VESICLES:  

The modeling of a single vesicle replete with its many subunits and intricate mechanisms would of itself be a major 

project.  It is simply not tractable to this project to replicate a physics based model of vesicles.  Compromise is not 

optional; its necessary.   The great risk of simplification is that some modulation mechanisms are inherent in the 
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design, and would be lost when simplified.  In answer to this concern, if and when modulation functions are  they 

can be added into the stochastic representations in a straight forward manner, with little if any design work required. 

Because this model is set up to accommodate any size state transition matrix, a very wide variety of modulation 

mechanisms can be captured by such.  Ultimately, some one or more input patterns sets into motion certain kinetics 

that culminates in the release of ligands into the synaptic cleft.  The release mean, variance, and lag are studied and 

published.  It is not difficult to create a kinetic table to replicate the timing performances, and to enact a set of links 

to insure that messengers arrive at targets in a timely fashion.  Such links are not authentic, but rather a shortcut to 

avoid computation of a much larger number of particles, most of which are unsuccessful at reaching targets.

The vectorial directions from the receptor to each of its target channels is calculated.

Upon release, the messengers are set upon these vectors at velocities that vary per in vivo results.

When messenger particles eventually arrive at the target actors, they are treated as any other allosteric binding.  If, 

however, there is found to be modulation of these individual messengers after they are released, then an intermediate 

type of actor must be created to effect that modulation.  It would act as yet another receptor type, in series.  The 

logic of the cell dictates the wiring of the actors.  Shuttles are merely devices to make that wiring explicit, rather 

than as implicit in the case of diffusion.  

It is worth noting that charged messengers necessarily cling to the membrane.  There is no choice in that.  The EM 

force is too strong, and nothing else the cell offers can override it to break charged particles away from that 

membrane.  Therefore the trolley like mechanisms of G-proteins might be nothing more than the effects of charge. 

The more nuanced effect is that they are so effective at finding their targets in such a obstacle-ridden environment. 

Perhaps we must suspect that those obstacles are really acting as curbs to guide the direction of the messenger 

towards their targets.

Vesicles represented as transducers may be built of simple kinetics that require no energy source other than thermal. 

They may even be reversible processes, though pumps are required to retrieve the exocytized particles.
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9.16.10 PUMPS:  

Pumps are specific transporters of ion and ligands, performed ratio-metrically.  The pumping rates are modulatable, 

and are dependent upon some source of energy.  Pumping rates may vary in response to concentration pressures, 

especially at levels of starvation on the input side, and saturation on the output side.   and for steady state and 

recycling

Pumps always require some source of energy to drive them, unless they are allowed to run backwards and “bleed” 

the concentrations gradients down.  The effects of energy injection, such as with the conversion of ATP into 

ADP+Pi, are 2-fold.  First, to overcome the concentration gradient and the voltage gradient to move particles “up-

hill” metaphorically speaking.  The second is to give the state graph directionality.  Pumps must have a state path 

cycle, and traverse that cycle only forwards.  To run backwards means death for the cell, so this is a critical feature. 

So how do pumps ensure the directionality of their duty cycles?  Though this is ultimately a thermodynamics 

question, you can see it in the state transition probabilities.  We can run a little program that identifies the duty cycle 

by following the probabilities for each subsequent state change, and pumps will always go forward except for one of 

the transitions in the cycle.  That one step is the one that requires ATP (or other energy source).  The metaphor is a 

staircase.  Each transition is a step down, until you get to the bottom.  Then ATP is required to boost back up to the 

top of the stairs.  If the geometry between the atoms is such that ATP can only degrade to ADP in a reaction that 

simultaneously resets the Gibbs energy of the pump molecule to the top level - then you have directionality in state 

flow.

Therefore, the kinetics of pumps are limited in the sense that there must be at least one step that injects energy into 

the molecular conformation, and that the sequence through the subsequent steps each gradually release this energy. 

Unlike the other classes of actors, directionality of pump state paths is required.

Pumps can be made to run backwards.  They will do this only when the voltage gradient plus concentration gradient 

forces sum to something greater than what the ATP (or other source) injects.  In that case the pump is making ATP 

out of ADP, and the work is not lost, but merely stored in a different form.  This is somewhat like driving an electric 

motor against its driven direction.  This will result in forcing the motor to become a generator.  Such reversals are 

brought about not by the conformer kinetics (internal states) but by the bind kinetics.  This requires a certain 
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intelligence in the software to recognize untenable thermodynamics, and allow the kinetics to run backwards under 

those conditions.  

When the ATP's of the system are overworked, then there will be a shortage of ATP and a surplus of ADP. This will 

result in a low binding frequency of ATP, but a high frequency of ADP bindings to that site.  This predicament sets 

the pump up to run backwards.  The probabilities of backward transitions may be low but they are not zero.  When 

there are no forward cycles, then the pump is stalled in precisely those states likely to initiate backward cycles, i.e. 

ADP binding sites.  Even the thermal energy might help bump the pump into backward transitions, and occasionally, 

and ATP is born. 

9.16.11 ALLOSTERIC BINDING SITES ON ACTORS  

All actors have allosteric binding sites for particles which may modulate actor behaviors.   All actors have 2 poles, 

one on either side of the membrane.  The poles are found along the surface normal of the node, out some distance 

equal to or slightly greater than the half thickness of the membrane.  Each pole may have any number of separate 

binding sites.  Each binding site is exposed to every type of particle in the compartment, and the binding algorithm 

acknowledges this fact.  

The particular combination of bindings on a single actor molecule determine the kinetics table (state transition 

probabilities) in effect for the actor at that time.  The state number that the actor is in at each dt determines the 

bind/unbind kinetics in effect.  The total number of matrix elements necessary to describe a single actor is a 

summation of the internal events and the external events:  

qS1*qS1*CqS2 + qS2*(qB+1)*qS1;   where qS1 = quantity of states;   qS2 = quantity of binding sites on 
actor;
             qB = quantity of types of particle;   CqS2 = quantity of possible binding combinations;
  
In each of these triple products, the first two terms comprise the possible transactions and the third defines the 

conditions of those transactions.  Note that they impinge on each other, that is, are heavily coupled.  That is the 

whole point; that external events can modulate internal events, which in turn effect other external events.  This is of 

the essence of neuronal information processing, so will be given a lot of attention throughout this modeling effort.
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To populate all of these states and their transition probabilities requires considerably more data than is collected by 

biologists when they study the kinetics of an actor.  It may be that it simply is not feasible to measure all of these 

possibilities on a single molecule.  Reasonable approximations for the missing bits are necessary for modeling their 

behavior.  Of course, as data becomes available, the accuracy of the kinetics improves.

Code for Hill's EQ:
a = -7:.2:-2;          % spans log space
c = 10.^a;             % log scale
k = c;                    % dissociation constant
h = (1:0.1:2.0);     % hill's coefficient

figure(1),
N=length(k);         % number of plots
col = linspace(0,1,N)';    % span of colors
col3 = 1-col;
col2 = 1-abs(col3-col);
color = [col col2 col3];   % rainbow
for i = 1:N,
y(:,i) = c.^h(5) ./ (c.^h(5) + k(i)^h(5)); 
semilogx(c,y(:,i),'color',color(i,:)),hold on,
end
title('varying the dissociation constant'),
xlabel('concentration of the ligand'),
ylabel('fraction of ligand bound to receptors')
hold off

figure(2),
mid = round(N/2);
N2=length(h);     % number of plots
kol = linspace(0,1,N2)';              % span of colors
kolor = [kol 0.3*ones(N2,1) 1-kol];   % rainbow
for i = 1:N2,
y(:,i) = c.^h(i) ./ (c.^h(i) + k(mid)^h(i)); 
semilogx(c,y(:,i),'color',kolor(i,:)),hold on,
title('varying Hills coefficient'),
xlabel('concentration of the ligand'),
ylabel('fraction of ligand bound to receptors')
end
hold off

9.16.12 KINETICS OF BINDING AND UNBINDING  

The kinetics capture in the binding and unbinding rates at each allosteric binding site on the actor, and at each 

transport binding site as well.   The challenge is that .  

Bound and unbound states are identified by tags.  
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The challenge is to relate the mathematical outcomes to the actual collision rates and visual events of the diffusion 

model.     See Kolmogorov below.

9.16.12.1 Kolmogorov representation of Kinetics  

Q matrix transition rate constants in Q matrix form system.

P(t) utilize the probabilities as input into the gating equation

Y(t) gating function as input into conductance equation

G(t) maximum conductance determines dynamic conductance

I(t) determined by ohm's law and Nernst, conductance through a unit channel

Pss Steady State values are initialized to establish system sanity, and initialize that matrix of Nernst dV's.

9.16.13 KINETICS OF MODULATION  

Functions are offered in the literature for voltage gated channels.  They make worthy study cases for how one might 

simulate modulated channels.  Given a set of formulas for determining the element values in the Q matrix, how is 

the behavior of that type to be characterized?  

EX   a 10 x 10 Q matrix scheme for a Kv channel (voltage modulated)
Q = zeros(10);
Q(1,2) = 0.007*e^(V/91);
Q(2,1) = 0.002*e^(-V/65);
Q(2,3) = 0.122*e^(V/81);
Q(3,2) = 5.00*e^(-V/112);
Q(3,4) = 0.212*e^(V/91);
Q(4,3) = 1.65*e^(-V/38);
Q(3,6) = 3.28;
Q(6,3) = 5.06;
Q(4,5) = 0.246*e^(V/73);
Q(5,4) = 5.61*e^(-V/70);
Q(4,7) = 1.06;
Q(7,4) = 4.38;
Q(5,8) = 8.37;
Q(8,5) = 2.44;
Q(6,7) = 0.027*e^(V/93);
Q(7,6) = 0.561*e^(-V/39);
Q(7,8) = 0.012*e^(V/72);
Q(8,7) = 0.019*e^(-V/68);
Q(7,9) = 0.07*e^(V/88);
Q(9,7) = 0.6;
Q(8,10) = V/130;
Q(10,8) = 0.08;
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If one knows the physiologic voltage domain and the critical voltages, then one can run this “matrix” over a series of 

voltages and study the dominant state path circuits in each one.  If they were all the same, then at most voltage 

would merely be speeding up or slowing down the circuit.  However, if the circuit changes above or below certain 

voltages, then we have modalities.

V = [-100   -80   -60   -40   -20     0    20   ] ;     generates the following Q from the EQs above.

val(:,:,1) =

   -0.0023    0.0023         0         0         0         0         0         0         0         0
    0.0093   -0.0448    0.0355         0         0         0         0         0         0         0
         0   12.2105  -15.5611    0.0706         0    3.2800         0         0         0         0
         0         0   22.9279  -24.0504    0.0625         0    1.0600         0         0         0
         0         0         0   23.4090  -31.7790         0         0    8.3700         0         0
         0         0    5.0600         0         0   -5.0692    0.0092         0         0         0
         0         0         0    4.3800         0    7.2868  -11.6923    0.0030    0.0225         0
         0         0         0         0    2.4400         0    0.0827   -1.7535         0   -0.7692
         0         0         0         0         0         0    0.6000         0   -0.6000         0
         0         0         0         0         0         0         0    0.0800         0   -0.0800

val(:,:,2) =

   -0.0029    0.0029         0         0         0         0         0         0         0         0
    0.0068   -0.0523    0.0454         0         0         0         0         0         0         0
         0   10.2136  -13.5816    0.0880         0    3.2800         0         0         0         0
         0         0   13.5453  -14.6875    0.0822         0    1.0600         0         0         0
         0         0         0   17.5914  -25.9614         0         0    8.3700         0         0
         0         0    5.0600         0         0   -5.0714    0.0114         0         0         0
         0         0         0    4.3800         0    4.3634   -8.7755    0.0040    0.0282         0
         0         0         0         0    2.4400         0    0.0616   -1.8862         0   -0.6154
         0         0         0         0         0         0    0.6000         0   -0.6000         0
         0         0         0         0         0         0         0    0.0800         0   -0.0800

val(:,:,3) =

   -0.0036    0.0036         0         0         0         0         0         0         0         0
    0.0050   -0.0632    0.0582         0         0         0         0         0         0         0
         0    8.5433  -11.9330    0.1096         0    3.2800         0         0         0         0
         0         0    8.0022   -9.1704    0.1081         0    1.0600         0         0         0
         0         0         0   13.2195  -21.5895         0         0    8.3700         0         0
         0         0    5.0600         0         0   -5.0742    0.0142         0         0         0
         0         0         0    4.3800         0    2.6128   -7.0334    0.0052    0.0354         0
         0         0         0         0    2.4400         0    0.0459   -2.0244         0   -0.4615
         0         0         0         0         0         0    0.6000         0   -0.6000         0
         0         0         0         0         0         0         0    0.0800         0   -0.0800

val(:,:,4) =
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   -0.0045    0.0045         0         0         0         0         0         0         0         0
    0.0037   -0.0782    0.0745         0         0         0         0         0         0         0
         0    7.1462  -10.5628    0.1366         0    3.2800         0         0         0         0
         0         0    4.7275   -5.9298    0.1422         0    1.0600         0         0         0
         0         0         0    9.9342  -18.3042         0         0    8.3700         0         0
         0         0    5.0600         0         0   -5.0776    0.0176         0         0         0
         0         0         0    4.3800         0    1.5646   -5.9959    0.0069    0.0444         0
         0         0         0         0    2.4400         0    0.0342   -2.1665         0   -0.3077
         0         0         0         0         0         0    0.6000         0   -0.6000         0
         0         0         0         0         0         0         0    0.0800         0   -0.0800

val(:,:,5) =

   -0.0056    0.0056         0         0         0         0         0         0         0         0
    0.0027   -0.0980    0.0953         0         0         0         0         0         0         0
         0    5.9775   -9.4277    0.1702         0    3.2800         0         0         0         0
         0         0    2.7929   -4.0400    0.1870         0    1.0600         0         0         0
         0         0         0    7.4653  -15.8353         0         0    8.3700         0         0
         0         0    5.0600         0         0   -5.0818    0.0218         0         0         0
         0         0         0    4.3800         0    0.9369   -5.3817    0.0091    0.0558         0
         0         0         0         0    2.4400         0    0.0255   -2.3117         0   -0.1538
         0         0         0         0         0         0    0.6000         0   -0.6000         0
         0         0         0         0         0         0         0    0.0800         0   -0.0800

val(:,:,6) =

   -0.0070    0.0070         0         0         0         0         0         0         0         0
    0.0020   -0.1240    0.1220         0         0         0         0         0         0         0
         0    5.0000   -8.4920    0.2120         0    3.2800         0         0         0         0
         0         0    1.6500   -2.9560    0.2460         0    1.0600         0         0         0
         0         0         0    5.6100  -13.9800         0         0    8.3700         0         0
         0         0    5.0600         0         0   -5.0870    0.0270         0         0         0
         0         0         0    4.3800         0    0.5610   -5.0230    0.0120    0.0700         0
         0         0         0         0    2.4400         0    0.0190   -2.4590         0         0
         0         0         0         0         0         0    0.6000         0   -0.6000         0
         0         0         0         0         0         0         0    0.0800         0   -0.0800

val(:,:,7) =

   -0.0087    0.0087         0         0         0         0         0         0         0         0
    0.0015   -0.1576    0.1562         0         0         0         0         0         0         0
         0    4.1823   -7.7264    0.2641         0    3.2800         0         0         0         0
         0         0    0.9748   -2.3583    0.3235         0    1.0600         0         0         0
         0         0         0    4.2158  -12.5858         0         0    8.3700         0         0
         0         0    5.0600         0         0   -5.0935    0.0335         0         0         0
         0         0         0    4.3800         0    0.3359   -4.8196    0.0158    0.0879         0
         0         0         0         0    2.4400         0    0.0142   -2.6080         0    0.1538
         0         0         0         0         0         0    0.6000         0   -0.6000         0
         0         0         0         0         0         0         0    0.0800         0   -0.0800

By taking the eigenvalue conditions we hope to identify the state of greatest occurrence, to use as a start state for our 

searches.  A state tracking algorithm begins at each state as a start node yields the following state path cycles.

V(1)   V(2)   V(3)   V(4)   v(5)   v(6)   v(7)  
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[1;2;3;2] [1;2;3;2] [1;2;3;2] [1;2;3;2] [1;2;3;2] [1;2;3;2] [1;2;3;2]
[2;3;2] [2;3;2] [2;3;2] [2;3;2] [2;3;2] [2;3;2]  [2;3;2]
[3;2;3]  [3;2;3]  [3;2;3]  [3;2;3]  [3;2;3]  [3;2;3]  [3;2;3]
[4;3;2;3] [4;3;2;3] [4;3;2;3] [4;3;2;3] [4;3;2;3] [4;3;2;3] [4;7;4]
[5;4;3;2;3] [5;4;3;2;3] [5;4;3;2;3] [5;4;3;2;3] [5;8;5]  [5;8;5]  [5;8;5]
[6;3;2;3] [6;3;2;3] [6;3;2;3] [6;3;2;3] [6;3;2;3] [6;3;2;3] [6;3;2;3]
[7;6;3;2;3] [7;4;3;2;3] [7;4;3;2;3] [7;4;3;2;3] [7;4;3;2;3] [7;4;3;2;3] [7;4;7]
[8;5;4;3;2;3] [8;5;4;3;2;3] [8;5;4;3;2;3] [8;5;4;3;2;3] [8;5;8]  [8;5;8]  [8;5;8]
[9;7;6;3;2;3] [9;7;4;3;2;3] [9;7;4;3;2;3] [9;7;4;3;2;3] [9;7;4;3;2;3] [9;7;4;3;2;3] [9;7;4;7]
[10;8;5;4;3;2;3] [10;8;5;4;3;2;3] [10;8;5;4;3;2;3] [10;8;5;4;3;2;3] [10;8;5;8] [10;8;5;8] [10;8;5;8]

We can see from these cycles that modal changes occur between voltage 4 and voltage 5, that is between -40 and -20 

mv.  This is as expected.  This channel type spends most of its life oscillating between states 2 and 3, but in 

depolarized conditions experiences the other states, especially a state 5  to state 8 oscillation.

By exploration of state graph alternatives, the modalities can be characterized.

In this EX 16 state Q matrix, we can find the modalities.

% columns 1:8
5.20E-01 5.93E-07 9.70E-01 6.81E-07 1.80E-02 8.79E-07 9.71E-07 2.86E-07
3.16E-07 6.41E-01 6.00E-02 8.35E-07 1.79E-07 1.05E+00 6.03E-07 8.33E-07
3.00E-02 9.40E-01 3.41E-01 8.96E-07 2.49E-07 3.57E-07 9.20E-03 7.70E-07
8.86E-07 4.13E-07 1.94E-07 6.48E-01 5.20E-03 4.40E-02 8.63E-07 2.01E-07
5.00E-03 7.70E-07 9.13E-07 1.34E-02 3.55E-01 8.06E-07 3.20E-03 7.65E-07
8.63E-07 4.60E-02 6.84E-07 9.56E-01 9.21E-07 8.50E-01 1.12E-02 6.16E-07
2.45E-07 6.08E-07 3.00E-03 3.10E-07 5.20E-03 6.60E-03 5.43E-01 9.64E-07
4.34E-07 7.95E-08 7.13E-07 4.47E-07 9.03E-07 9.47E-07 6.95E-07 6.73E-01
2.60E-03 4.15E-07 4.85E-07 9.64E-07 1.90E-07 9.51E-07 8.41E-07 6.20E-03
2.16E-07 1.30E-02 8.33E-07 4.62E-07 9.93E-07 3.21E-08 6.76E-07 1.46E-02
7.75E-07 8.43E-07 1.26E-02 4.96E-07 3.26E-07 2.76E-07 7.01E-07 9.80E-07
8.72E-08 5.24E-08 2.55E-08 1.68E-02 2.28E-07 6.78E-08 8.95E-07 1.02E-02
4.00E-07 7.28E-07 3.36E-07 1.92E-07 1.40E-02 8.27E-07 5.87E-07 2.61E-07
5.90E-07 1.15E-07 4.87E-07 8.98E-07 8.11E-07 6.40E-03 3.25E-07 5.90E-07
1.97E-07 4.85E-07 2.25E-07 3.89E-07 9.24E-07 5.81E-07 1.08E-02 7.45E-07
9.56E-01 6.20E-02 5.55E-07 1.20E-02 7.19E-07 3.44E-07 2.08E-07 1.12E-001

% columns 9:16
1.56E-02 2.69E-07 7.87E-08 6.28E-07 1.83E-07 2.55E-07 7.81E-07 4.40E-02
8.70E-08 1.00E-02 8.68E-07 7.86E-07 3.21E-07 9.12E-07 2.90E-07 6.20E-02
3.18E-07 9.54E-07 3.40E-03 7.49E-07 2.56E-07 3.68E-07 5.51E-07 2.52E-07
4.53E-07 1.18E-07 7.97E-07 1.22E-02 9.41E-07 3.80E-08 5.75E-07 1.01E+00
1.61E-07 2.49E-08 7.86E-07 1.83E-07 1.40E-02 6.51E-07 2.04E-07 3.99E-08
5.99E-08 4.22E-07 3.31E-07 8.44E-07 9.88E-07 1.92E-02 5.55E-07 6.24E-07
4.45E-07 6.44E-08 9.50E-07 7.16E-07 9.52E-07 8.38E-08 1.08E-02 3.87E-07
1.26E-02 1.00E-02 8.28E-07 1.16E-02 8.74E-07 1.15E-08 5.49E-07 1.12E-01
2.57E-01 9.24E-08 1.30E-02 6.13E-07 7.80E-03 3.66E-07 6.98E-08 3.32E-07
5.10E-07 1.21E-01 4.40E-03 8.74E-07 1.47E-07 1.10E-02 8.60E-07 9.32E-07
1.08E-02 6.80E-03 4.06E-02 7.93E-07 6.50E-07 4.16E-07 1.58E-02 4.68E-07
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8.30E-07 6.10E-07 9.89E-07 8.88E-01 1.24E-02 1.36E-02 2.39E-07 7.10E-11
7.80E-03 3.95E-07 3.44E-07 1.24E-02 7.53E-01 4.66E-07 5.80E-04 7.26E-07
4.27E-07 4.60E-03 2.40E-07 1.12E-02 2.45E-07 8.02E-01 2.20E-03 3.99E-07
7.33E-07 9.61E-07 1.58E-02 6.24E-07 1.48E-03 2.20E-03 4.41E-01 2.29E-08
5.27E-07 7.50E-07 9.09E-07 3.53E-07 2.33E-07 5.08E-07 3.19E-07 7.52E-02

A method for detecting the dominant limits cycles is developed here:

for k = 1:p,                                  % where p = number of pages in Q
Q = diagzero(QQ(:,:,k));                      % zero out the diagonals
for j = 1:length(s0),                         % for each starting state
    elx = [];                                 % init
    elx(1) = s0(j);                           % capture first state
    rowx = Q(elx(1),:);                       % go to state probability row
    if max(rowx)~=0,                          % all zeros means dead end
        [junk elx(2)] = max(rowx);            % find column# of highest prob
        i=2;                                  % cannot use for loop, len 
unknown
        while ~ismember(elx(i),elx(1:(i-1))), % keep going to a previous state
            rowx = Q(elx(i),:);
            if max(rowx)==0, break;  end
            [junk elx(i+1)] = max(rowx);
            i=i+1;
            if i>100, break;  end             % safety break extremely long 
paths
        end  %  while
    end  %  if
    series{j,k} = elx(:);                     % columnize
end  %  for j
end  %  for k

This Q matrix results in the following dominant limit cycles, starting at each of the state numbers:

[1;3;2;6;4;16;1]
[2;6;4;16;1;3;2]
[3;2;6;4;16;1;3]
[4;16;1;3;2;6;4]
[5;13;5]
[6;4;16;1;3;2;6]
[7;15;11;15]
[8;16;1;3;2;6;4;16]
[9;11;15;11]
[10;8;16;1;3;2;6;4;16]
[11;15;11]
[12;4;16;1;3;2;6;4]
[13;5;13]
[14;12;4;16;1;3;2;6;4]
[15;11;15]
[16;1;3;2;6;4;16]
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Revealing three modalities:

1,3,2,6,4,16
5,13
11,15

Only the first of these three can do work, because a minimum of 3 states are required to impart directionality.  As 

interesting as this might be, it is only the beginning of investigation.  Each modulation combo produces another Q 

matrix, and each of those Q matrices produce a set of limit cycles.  Having determined the complete 3-dimensional 

Q-space, then limit cycles may be investigated as to their dynamic possibilities.  Though many of the possibilities be 

found worthless, it is those occasional few that perform useful work that will be selected for.

A huge new fascinating area is the pursuit of dynamic duty cycles that can be brought about by fast modulation  

patterns.

9.16.14 ENERGY BARRIER PROFILES FOR ION CHANNELS  

Each type of ion channel has a complex charge/shape interaction with any ion passing through it.  Because ions are 

of varying size, mass and charge, the energy barrier profile will be different for each ion type.  This is critical 

because it determines the selectivity of the channel.  Furthermore, this energy profile will change as a function of 

any force which strains the shape of the proteins comprising the channel, e.g. voltage.  To the extent that the energy 

profiles can be accurately measured across it parametric domain for each type of ion present in the system, a model 

incorporating this data should have high predictive value regarding the quantity of ions passing in both directions 

under any given set of conditions.

However, the literature rarely produces such completeness. As of this date, it is usually the case that only one ion 

type, the dominant one, is studied quantitatively.  Others may be referred to qualitatively, or as assumed or 

approximated ratios in conductivity.

Such paucity of data is not fatal IF:  

a) the conductance of other ions is several orders of magnitude smaller than that of the dominant ion;

b) the conductance ratios between ion types are nearly constant. 
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9.16.15 GATING MECHANISMS  

Gating phenomena can be effected via a variety of mechanisms.  In essence: 

there must be some obstructive arrangement via: lever, plug, twist, charge, reflection, deflection, binding, wedge, 

misalignment, loss of pressure, freezing, viscosity, etc.

This obstruction must be modifiable via changes in its conformation, position, charge, temperature, etc.

The gating mechanism thereby “opens” to allow the passage of some commodity.

At some later time a different type of event occurs that effectively closes the gate.  This may be a totally separate 

obstructive mechanism, moving the same obstructive mechanism by different means, or by the same obstructive 

mechanism closed by a reversal of the original opening force.

The forces that open and close gates may be thermal, charge, mechanical.  

There may additionally be “hidden” states that effect the opening and closing behavior of gates. For example if there 

are four gates, any one of which obstructs a channel, then when only on closed, the states of the other three are 

unknown (and do not immediately matter for purposes of mensuration, but do matter for correct stochastic 

behaviors). 

9.16.16 CONDUCTION  

Most references to ion channel conduction in the literature refer to ohm's law I = V*G, as the determinant of exactly 

how many ions are conducted per unit time.  This imported concept from the realm of linear electronics in the solid 

state is too simplified for biological prediction.  Ion channels are not acting a passive resistors, but rather extremely 

dynamic (thermally) with complex resonances, that have great effect upon which types of ions pass through and how 

many of each.  Therefore, it must be recognized from the onset that an ion channel might conduct far more than 

ohm's law would predict.  Some report up to 100 times as much.  Although we may talk of the effective diameter of 

a channel to compensate for this phenomena, doing so cannot explain why then most types of ions cannot pass. 

Another compensation scheme might be to consider negative resistance, whereby some pumping might take place 

against the gradient.  This too has its shortfalls because it would then predict flows against the gradient all the time. 
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Another approach might be to consider superconductivity as in play.  There is merit to this in that those ions with 

matching resonances to the interior of the channel might be greatly facilitated in passage.

9.16.17 DIRECTIONALITY  

Given that ion channels are cylindrical in shape and positioned perpendicular to the membrane, how is it that the 

neural membrane can propagate any action potential in a single direction from dendrites to axonal boutons?  There is 

no algorithm for directionality.  It is an emergent property of the channel refractory period.

9.17 PROGRAMMING LANGUAGES  

When I first looked at the computer simulation program Neuron, written in C, the documentation described an ion 

channel as being an I/V curve (current over voltage lookup table).  This implies no time function, no multi-

configuration molecules, no probabilistic state changes, patterns, rhythms, modes, reversals, multiple modulator 

binding kinetics. This was woefully inadequate to my stated goals, and so I pursued Neuron no further.  The criteria 

I use for deciding which feature should be included in the model is”What contribution does this phenomenon make 

to the information processing of neuronal throughput?”  Rank ordering phenomena by their impact upon information 

sets the modeling priorities.  And when the impact is low enough to be masked by natural noise, then the model may 

be deemed complete.  To this end , a model of primarily Stochastic Differential Equations (in massive quantities) 

can meet the need. 

Matlab enjoys a short learning curve thanks to its ready made plotting routines and Fortran like simplicity in 

notation, making it tempting for most non- Computer science majors. However, in the course of this project several 

downsides to Matlab have been revealed .  They include:

1. There is lacking a coherent library of geometry functions.

2. The few canned plotting routines had to be rewritten to receive the outputs directly from this project.

3. Numerically intense simulations absolutely require efficient algorithms, but Matlab functions are often 
written with multiple features to accommodate a variety of fields.  The logical tests within these (installed 
to receive various input formats) must be stripped out to achieve speed.

4. Ultimately the programmer must “bit manage” to get each routine lean and powerful, but Matlab is not 
conducive to low level manipulations, as it protects its files from read/write privileges.
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5. All of the benefits that entice the newbie to use Matlab fade into insignificance in the face of the deep 
mechanics of accurately representing the continuities of space-time and physical principles in a digital 
machine.

6. Matlab has errors, but are not always easy to discover nor correct, due to its packaging and proprietary 
encoding.

7. The proprietary nature of Matlab puts economic distortions into research efforts that were not present with 
Fortran or C++.  Buying toolboxes, renewing licenses, and embedding routines in other languages often 
caused delays and slows progress where open source domains can support unencumbered progress in these 
respects.

8. It is not easy to collaborate in Matlab, as it does not animate over the web without tedious efforts, and may 
trip on proprietary restrictions for those who have not paid a Matlab license.  Note that Octave is an open 
source application that will run mat lab functions (albeit with careful editing for coding exceptions).

In retrospect, this project probably would be better off written in Java.  Java is as algebraically complete as C++ and 

is immediately post-able on the web for animation, sharing and collaboration.  My greatest surprise in tackling this 

project is how little has been done, and therefore the immense amount of work that remains to be done, to create a 

library of routines that constitute a platform (library, toolbox) of useful, mutually compatible functions in physics 

and geometry, upon which to build and tackle ever more complex phenomena, such as chemistry and biology. 

Accepting that so large of a  library is a challenge beyond one person's ability, it is imperative that global 

collaboration be facilitated, encouraged, and captured in public databases. One of the huge benefits from the open 

source movement is that it has enabled the participation of millions of people who previously could not afford to 

participate.

The development of computer languages in many ways has paralleled the production of scientific literature. 

Historically, science has been written in many languages, using many units systems and employing distinctive 

mathematical symbolisms.  Over time English has become dominant, and the SI units have been tightened and 

become dominant.  Computer languages are in a much earlier phase, one of exploding numbers of languages.  This 

is a great exploration of the semantic space, but is also an implicit admission that we do not yet understand the 

theory of languages well enough to create a general computer language for science.  This is a tough time to be 

modeling, forced to express one's “science” in some transitory language experiment, doomed to go extinct soon.

Human thinking relies heavily upon assuming, bundling, naming, and associating - in a discrete, subjective fashion. 

These are of the essence in human information processing and decision making.  But the underlying mechanisms of 

these “thoughts” are stochastics within the neurons, and that is where probabilistic mathematics performs admirably. 
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When we maintain a basis in drift20 and kinetics, we gain both the ability to predict and the benefit of emergent 

properties and behaviors.  Ones that mimic the naturally emergent higher phenomena.  This is a strong case against 

the distilled shadows of mathematics that we call logic and procedure, which are endlessly fraught with inadequacy 

and poor predictions when applied to the real world.  No amount of man-made law can predict the next exception to 

the rules. But stochastics can predict them probabilistically.  

The concepts that embody science are merely facades unless they obviously disassemble into their constituent first 

principles.  Yes, even the emergent phenomena.   A teaching aid  for demonstrating simulations requires a Graphical 

User Interface (GUI) over either a physics model or over a concepts library.  The concepts library is simpler, cheaper 

and less prone to trouble.  A research simulating program must be based upon first principles, else it will be blind to 

important phenomena, will be more a model of man's prejudices than of real science, and will hit the “brick wall” 

every time one ventures outside the tried and true.   Once the research project has stabilized to the point of 

parametrizing the input domains, then it may be economical to add the GUI and “release” it for teachers and 

students.  Noteworthy, is that it is often a different person or group who adds the GUI, and the motivations and 

talents are different from the original creators

 In my experience domain specific languages always lead to the “brick wall” experience.  All fields at some point 

interface with other fields, and require their incorporation, while field-specific applications lack this wisdom.   Just 

as disappointing, any “general purpose language” consisting of a library of  “concepts” derived from years of 

teaching, will likely be built up of menu selections of useful but shallow formulas.  The history of education is but a 

mighty collection of well digested heuristics, far divorced from the tools and mental agonies of original 

experimentation.  Concepts are not the end game.  Concepts are static snapshots brought home from a vacation 

visiting an aboriginal tribe.  The snapshots are not life, nor can they be “drilled down” to arrive at life.  They are 

shallow indeed. They predict the deterministic, but are wrung clean of the variance and emergent behaviors. 

Therefore they only predict the simple things.  Concepts are a weak intermediate form of knowledge, the projections 

of science upon the billboards, convenient for visitor though they may be.  The end game is prediction.  Science is 

the observation of nature, and allowing its current state to grow new behaviors, patterns, and future states.  These 

subsequent states and patterns we may choose to call concepts, or not.  They will be too numerous to name.  The 

20 Drift is a weak term for naming the important ionic wave transmission.  We need a new term.  How about lasma?
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more complex behaviors are usually beyond our ability to assign a “concept” name to each, but rather a series of 

them is seen as a “performance”,  no two quite alike.  

Thus, it is not concepts we wish to store in our languages, but rather capacities, potentials, traits, natural patterns and 

probabilities (spatial, temporal, and others).   New nomenclature will undoubtedly evolve to give names to observed 

patterns that do not fit into our old concepts.   It is the patterns themselves which the computer must embody, not as 

individual entities (concepts), but as a network of coupled interactions, all growing from the underlying first 

principles.  So called “emergent behaviors” are simply the addition of layers of complexity built up of  patterns meta 

to the previous patterns.  

A frequent complaint about the quest for a universal computing machine, or a theory of everything,  is that it is crazy 

to insist that anyone employing a computer to do, say, graphic art, needs to drill all the way down to the molecule 

and built up from there.  Certainly, it would seem computationally impractical to do so.  Yet, that is precisely what 

each computer “application” does in the every day work place.  It takes user interface data (keystrokes), runs them 

through the “highest” levels of software (e.g. PhotoShop), which calls lower level functions (e.g. Windows), which 

calls still lower levels (Drivers), down to “machine code”(e.g. AMD instruction set), which in turn is constrained by 

a “hardwired” set of chipset constraints and procedures.  For those “drill downs” which are too cumbersome to 

repeat and are reliably consistent, prior runs may be “saved” as lookup data.  Whenever there is an exception  (query 

exceeds bounds of domain), then a drill down must be executed to expand that domain.  This is the essence of 

multiscale modeling.  To make all of this work for science we need only replace “machine code” with first principles 

of physics.  It is quite feasible.  We only need a new hardware architecture.  The rest is consequent.

Not an expert in the philosophy of language, there are none-the-less some aspects of it relevant to this work.  A 

universal language must be capable of mimicking physics, and of assembling first principles into aggregate 

behaviors of chemistry, biology, ecology, society, art and politics.  Where ever there is continuity in time and/or 

space, then the continuous number line of mathematics (not digital bits) is an appropriate representation.  It is not 

until we build up complexity to the level of human sociology, particularly symbol-manipulating societies, that 

nominalism and logic emerge.  And there we discover that man's rendition of things (giving names to perceived 

entities and applying logic to their various potentials) is a gross simplification of reality.  Counting numbers are a 
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gross simplification of the whole of mathematics.  So also is the digitization of scientific processes. The surprise is 

that we have gotten so far with such a handicapping view of things.

The digital computer is one creation of such handicapped thinking.  By imagining that logic was somehow valid 

outside of contrived simple games, we declared the scientific method (“All other things remaining equal,  A causes 

B.”).  We have held the concept of causality in high esteem and are simulating rather complex physical phenomena 

based upon it.  But we do so painfully, having to compensate for both the digital discontinuities at every “step” and 

the very large quantities of “causal” combinations.  Digital representations distort (“butcher” would be more 

accurate) the behavior of most natural phenomena.  It is like trying to discover fractions where only whole numbers 

are allowed.  Where continuity is absolutely not allowed, how can one emulate and study continuity?   What is 

sorely needed is development of HAD machines (hybrid analog digital).

9.17.1.1 Universal simulation language characteristics  

A representation of continuity in N-space implies a native adjacency, not a calculated one.  This, in  turn, implies 

what is usually called an analog computer.  

A representation of physical particles, with size, mass, charge, movement, transmutations, etc.  This implies a native 

sense of discreteness,  entities that can move and collide.

A library of aggregate phenomena, stored as patterns of lower level interactions.  These may be “simplified” 

(collapsed) into lookup tables of previously recorded results when used consistently.

These three will get us from atoms to astronomy, but may not well serve the whimsical, the arbitrary, symbolic or 

science fiction based projects.  And that brings us to a critical decision.  Do we really want to incorporate impossible 

fiction into our modeling language, or would we be better off with a reality-based modeling program that checks 

unrealistic “models” and labels a hypothetical as such?   

For better or worse, we now live in an arbitrary context of such artifices as persuasive logic, legal systems, and 

digital computers.  Postmodernity is defined, among other things, as going beyond reality-based semantics.  Science 

however would be best served by developing a strictly reality based software environment, such that fiction would 

require conscious effort to “violate” its general domain.  Admittedly, arguments are sure to continue as to the nature 
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of claimed reality domains, as refinements.  The man/machine interface is a mapping between how nature works and 

how humans like to think they work.

Matlab uses scripts, functions, external calls and data.  Python is very good at external calls, fetching pieces from 

various data bases, fetching routines from a variety of languages and scripting them together to execute a task.  It 

also offers a certain terse style of database manipulations.  It allows opening the lower level code  accessible to bit 

management.  All of these are strong pluses.  Unfortunately, because Python is a top down effort, it is way at the 

other end of the spectrum from natural phenomena.  Python works at the most abstract end of the spectrum in its 

handling of arbitrary human data deposits. It provides great man/machine interface, but interface to what?   That is 

left wide open (nice) and unconstrained (no reality checks).   What is most needed by scientists is a fundamental and 

complete basis for representing (and indeed building) nature.  And that is what we usually call physics.  Physics 

supports every manner of complexity “above” it, so “bottom up” modeling works.  But the higher forms of 

complexity, such a sociology and politics, do not support “top down” modeling of physics (certainly not in their 

current forms, anyway).  That is because they stop cold at their conceptual definitions.  Concepts that do not 

disassemble into physics.  The unification of the body of scientific knowledge requires the spectrum from physics to 

politics be continuous.  This is certainly possible, but not yet implemented. 

Any general simulation language, to have staying power, will need GUI's that mimic the way humans learn a new 

field. Closely enough that learning the language and learning the field are one and the same thing, not two separate 

undertakings.  This is the essence of “user friendly”.  Python is a step in this direction, but surely not yet looking like 

the way scientific fields are taught.   A general simulation language will also be graceful in its transitions and 

interfaces between fields of study.  It will also require ll constructs to be built up from a library of true physical 

phenomena expressed in natural units, not abstract thinking, not a carte blanche.  This is likely to be accomplished 

within a mathematics program, like Matlab, Mathematica, Maple, or Octave, cleaned up so as to be driven by such a 

library.   Growth will be via evolution and accretion, expressed as patterns.  Each new entity will record its basis, 

exercise its domain, and then offered a collapsed image of itself for convenience, with a “clickable” portal into its 

inner workings and subcomponents.  The relationship between the traditional library of books and the library of 

computer routines is the precise relationship between statics and dynamics.  A successful language will support the 

gradual translation of all paper library holdings into a form that brings them to life via the natural dynamic processes 

inherent to each, of which the paper records were mere snapshots.  We are in transition from sketches to animations.
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The argument has frequently been made that there is no perfect language, that special purpose languages are much 

more efficient, and allow the user to learn his field without the encumbrances of learning all fields. The fallacy of 

this argument is revealed by the statement  “One does not have to learn every word in the dictionary before speaking 

English.”  A single mathematics, although not unique (see Godel's proof), may be adequate to represent the whole of 

physical phenomena.  One can then focus on a specific field or project by employing those bundled phenomena that 

are relevant.  Special purpose routines, if not based in the underlying phenomena, are built of shallow 

representations (facades)  and therefore of limited value.  The reductionist and anti-reductionist arguments have 

fallen on their logical over-simplifications.  Both the analysis to reduce, and the synthesis to induce are true and real, 

thanks to the highly coupled nature of all components of the universe and their ability to assemble in ever more 

complex patterns.  Nature supports both the analysis of science and the synthesis of engineering. Therefore we must 

not recoil at the thought of using physical phenomena as a basis of all that is knowable.  The key is in how we 

aggregate lower level phenomena into ever higher complexity.  That is, the calculus of complexity, in essence, the 

language of aggregate phenomena, that extends physics through biology and beyond.  But can it do poetry?  Yes, it 

can do poetry in the style of any author you wish, and invent new styles as well.  

A noteworthy technical development in the entertainment industry employs Computer Graphics (CG) workers 

within Dreamworks, Pixar, etc. to master the modeling of many natural phenomena:  3-d space, inertia, acceleration, 

gravity, force fields, collisions, material deformations and fractures, texture, water, flows, wind, fabrics, skin, human 

organs, hair, skeletons, muscles, eyes.  Such modeling has understandably evolved from fiction and over 

simplifications towards ever more realistic and detailed models of reality.  Their contributions are soon to impact 

science by their development of the tools of representation, prediction, presentation, and the effective utilization of 

ever larger computing machines.  They may even drive the development of new hardware, e.g. machines not based 

on step-by-step logic.

Be reminded that at the present we are hardware bound, with the vast majority of machines architected as step-by-

step logic only.   A machine that efficiently mimics natural phenomena will surely not be step-by-step.  That single 

change throws out almost all of the computer languages in current use.  Although the quantum computer has met 

with multiple, formidable snags on its quest to become a practical machine, it does embody both the continuity and 

the discreteness inherent in natural phenomena.  It will take something like this to break away from our current 

digital shortcomings.
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In an important sense, two languages are needed.  One to address real phenomena.  This is essentially the 

mathematics and stochastics of physics and its emergent phenomena.  The second to address the arbitrary 

ruminations of human queries, arbitrary databases, arbitrary industries, arbitrary labs and arbitrary funding agencies. 

Humans entertain hypotheticals, attend to urgencies, love art, and make decisions as to which to attend to.  Python 

might be very good at these (via semantics), but we still have to develop the sound basis (science).

Though the plethora of computer languages currently being invented represents progress in the understanding of 

representations of knowledge, modeling real phenomena, and human/machine interface, it is not good for the 

communication of science nor the collaboration now urgent in the tackling of large problems.  If you imagine 

science as being written in 200 different languages, with translations between them difficult, slow and uncertain - 

that would cast the current situation of computer languages in perspective.  There will be a shake out, and a very 

short list of  surviving “winners”.  Like English they will not be perfect, but rather good enough to carry us another 

decade or so.  Like mathematics, each must be algebraically complete, continuous, and support all manner of 

dynamics.  The resistance to this conversion will be substantial, for the same reason that the digitization of the 

library of congress is a monumental undertaking – its an economic burden most organizations cannot afford.  But 

science needs a universal language which couples all into a single body, coupled dynamically, rather than statically 

as in the present and past.  The more this new language looks like textbook mathematics the easier the transition.  In 

any case, it will be quickly bundled and built into more familiar routines, like colors, shapes, flowers and poems.

9.18 MASTER ALGORITHMS  

Follows is a summary account in English of the main features of this model.  The mathematical accounts for the 

patch and whole cell are below.  

An experiment is initialized via the Whole Cell Experimental setup, which entails creation of membrane shapes, 

particle populations, actor placements, and actor initialization.  Membranes are defined both as a group of nodes 

homogenously spaced over the membrane, and as piecemeal algebraic equations that define the contours.  Particles, 

initialized as boli, are then allowed to diffuse and equilibriate throughout each compartment.  The transmembrane 

voltage is measured via Coulomb's law, at all occupied nodes.  The Nernst partial voltages driving ion types through 



681

open channels are calculated via log2 of the ratio of particle concentrations in small hemispheres above and below 

each actor.  

Actor traits include: Q represents the state transition probabilities; and R represents the forward and backward bind 

affinities to the allosteric binding sites of the actor.  Both are stochastic processes.  R and Q matrices are conditioned 

to events per second, scaled to dt, and converted to CDFs.

Actor states are instantiated thusly:  For each actor, the particle bindings at the allosteric binding sites d are mapped 

into a modulation combo number dc.  This number is a pointer to the page in Qcdf.  The current state s is a pointer to 

the row in Qcdf.  The diagonal of Q indicates the probabilities of remaining in the same state. The indicated row 

contains the CDF for instantiating the next state. A random number 0..1 is generated from a uniform distribution. 

The resulting number is projected onto the CDF to yield the new state. 

Actor binding events are instantiated thusly:  For each actor, the current state s points to the page in R that contains 

the current binding affinities.  R contains a forward table for bindings and a backward table for dissociations.  The 

row is the current bind combo number.  The indicated row contains the CDF for instantiating the next particle 

bindings to the allosteric sites.  This CDF is dot-multiplied across the particle concentrations near the site.  That is, 

each binding site is assigned to one of two actor poles, and each pole is assigned to a compartment.  A random 

number 0..1 is generated from a uniform distribution. The resulting number is projected onto the CDF*conc to yield 

a new binding for each of the binding sites in d. 

The state s maps to a phenostate which indicates the transport activities of the actor, if any.  An open pore returns 

o=1, which is dot-multiplied across the actor type's particle conductivity profile, and then dot-multiplied across the 

concentration deltas of each of the particle types, multiplied times the duration of dt.  This determines the quantities 

of particles to pass in a channel opening event.  The process is similar for receptors and pumps, replacing 

conductivity with catalysis rates, and transport ratios, respectively.

Particles, upon being transported and dissociated, are reassigned to a new compartment, and assigned new velocities 

consistent with Boltzmann velocity distributions.  Most particles are in constant motion due to thermal inertia.  The 

EM forces from all charged particles, calculated each dt for the whole system simultaneously, results in summed 

drift acceleration (muted by viscosity) on each charged particle.  
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Particles may collide with other particles, with the membranes, or with actors.  Collisions are detected via center to 

center distances less than the sum of the two radii.  Particle-particle collisions are resolved via 3-d momentum 

transfers, using basis creation and reversion, along the axis of collision.  These are carefully executed so as to 

preserve the information carried by any patterns of motion other than white noise.  Actor collisions are described 

above.   

Most significant behaviors of the model are emergent from these basic processes.  An emergent result of the EM 

forces is the capacitation of all unbalanced charges, while balanced pairs are free to roam. The strength of the EM 

force dominates over the thermal noise, propagating signals between actors.

English account of the general model:

1. Establish actor traits:  Q R O G   aff erg  eff  = state transitions bindings openings conductivities affinities energy and 

messages

2. Q represents the state transition probabilities, as frequency of events per second; 

3. R represents the forward and backward bind rates to the allosteric binding sites of the actor afo concentrations. 

4. Condition R and Q matrices to units for uniform digital representation (some log compression is useful)

5. Rdt = R*dt;    Qdt = Q*dt,  with diagonal calculated as residuals

6. Rcdf = cumsum(Rdt,2);  Qcdf = cumsum(Qdt,2);       Integrals are useful for instantiation

7. Create: membrane 3-d shapes, particle populations, actor placements on surfaces as homogeneous nodal maps.  

8. Each binding site is assigned to one of two actor poles, and each pole is assigned to a compartment.  

9. Identify unbound particles.  (Bound particles have their velocity frozen at zero.)

10. F = sum(k0*q1*q2/dx^2);  Drift = sum across all charged particles in system.

11. A = F/m;        Acceleration per Newton

12. Va = mob*A;      Acceleration is converted to velocity by viscosity
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13. V = V + Va;       Current velocity plus drift = new velocity      Most particles are in constant motion due to thermal inertia.  

14. P = P + V;       Current position plus new velocity = new position     

15. Allow stabilization time for particles in motion to diffuse and equilibriate throughout the compartments.  

16. Measure transmembrane voltage via Coulomb's law.  

17. Measure Nernst partial voltages within small hemispheres above and below each actor, via log2 of ratio of particle 

concs. 

18. PB – PA = dxAB;   Positions of particles - Positions of actors = distance apart

19. If   dxAB < affinity distance, then possible bindings

20. Actors are given initial states per stat distributions (or eigenvalues on Q) 

21. For each actor, the particle bindings at the allosteric binding sites d are mapped into a modulation combo number dc.  

22. This number serves as a pointer to the page in Qcdf.  The current state s is a pointer to the row in Qcdf.  

23. The indicated row contains the CDF for instantiating the next state s.  

24. A random number (0..1) is generated from a uniform distribution.  

25. The resulting number is projected onto the CDF to yield the new state.  Both are stochastic processes.  

26. For each actor, the current state s points to the page in R that contains the current binding affinities.  

27. For each actor, the current state s also points to the O table to determine the phenostate (openings, transport, etc.)

28. R_forward* local concs yields probabilities of bindings to particles in immediate vicinity

29. R_backward yield probabilities of dissociations.  

30. A row in R is selected to match the current bind combo number dc.  

31. The indicated row contains the CDF for instantiating the next particle bindings to the allosteric sites. 
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32. This CDF is dot-multiplied across the particle concentrations near the site.  

33. A set of random numbers (0..1) are generated from a uniform distribution for the binding sites. 

34. The resulting numbers are projected onto the CDF*conc of each d to yield a new binding for each. 

35. The phenostate o of chan indicate open pores.  O =1 is dot-multiplied across the actor type's particle conductivity 

profile G

36. then dot-multiplied across the transmembrane concentration gradients of each of the particle types, 

37. then multiplied times the duration of dt.  

38. This determines the quantities of particles nB to pass in a channel opening event.  The nearest n particles are chosen.

39. The process is similar for receptors and pumps, replacing conductivity with catalysis rates and transport ratios, 

respectively.

40. Particles, upon being transported and dissociated, are moved to the opposite pole and reassigned to a new 

compartment.

41. Such particles are assigned new velocities consistent with Boltzmann velocity distributions (as a function of 

temperature).  

42. If distance between particle centers < sum of radii of the two particles, then a collision has occurred. 

43. Particles may collide with other particles, with the membranes, or with actors.  

44. Collisions with actors are detected via center to center distances less than the sum of the two radii.  

45. Particle-particle collisions are resolved via 3-d momentum transfers, using basis creation and reversion, along  collision 

axis  

46. Each collision is momentum conserving to preserve the information carried by any patterns of motion other than white 

noise. 
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47. Particles impacting membrane are reflected off without loss of momentum.

48. Particle may be absorbed into and out of the membrane via stochastic treatment of partition coefficients.  

49. Certain experiments may require higher level dynamics, such as moving actors, changing shape, changing tonicities.

Most significant behaviors of the model are emergent from these basic processes.  An emergent result of the EM 

forces is the capacitation of all unbalanced charges, while balanced pairs are free to roam. The strength of the EM 

force dominates over the thermal noise, propagating signals between actors.  

9.18.1 PATCH PROCEDURE  

Script:  patch01
  particles in adjacent boxes with a dielectric membrane in between
  pump to build a charge differential across membrane
  units are [nm ms amu e-]
 
BEGIN DESIGN %  % BEGIN DESIGN %  % BEGIN DESIGN %  % BEGIN DESIGN %  
 
cd C:\Users\Norm\Documents\dissertation\RSD21\Matlab
cd C:\Users\dyer1\Documents\ndyer1\dissertation\Matlab
load TypeP, load TypeA, load TypeB, load TypeC,
load DistP, load DistA, load DistB, load DistC,
 
P
dt    = 1E-5;            % seconds
qt    = 1E4;             % duration of run equal qt*dt
kelv  = 300;             % temperature, kelvin
 
C dist
Cchoose selects SH rows, or else a new row must be created in SH_master. 
SH_h1 = {'Sh#','quad','qx','qc','xmin','xmax','ymin','zmin','ymax','zmax'};
SH_h2 = {'0=start point' '1=box' '2=cone' '3=cylinder' '4=disk' '5=perforation' '6=sphere' '7=torus' '8=vane' 
'9=arbitrary'}';
SH   = [1,0,4,8,-43,-3,-50,-50,50,50;     % compartment dim's in nm
        1,0,4,8, 3, 43,-50,-50,50,50];    % membrane thickness = 6 nm
    
a membrane is the differential of the compartmental volumes. M = derv(C1,C2);
or a compartment is the integral between two membranes C = int(M1,M2)
how many membranes there are is determined by the juxtapositioning of the compartments
it would be more elegant to define the membranes and let the compartments
be the integrals between them, but for today, this method is expedient.
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MC = [2 1];  % assign a membrane# to each compartment-compartment interface
1 row says there is only 1 membrane, lying between compartments C2 and C1
   MC creates membranes into which A can be embedded
   Membranes are subdivided lengthwise into zones (along x axis), 
   Zones are subdivided into rings (similar SH rims, but spaced at dx)
ZON = [1]; % the 1st zone goes from 0 to ZON(1); 2nd zone is from ZON(1) to ZON(2),etc.
in this model there is only one membrane and it has only one zone.
EX:   2 membranes 3 zones ea:  ZON = [.2 .6 1; .1 .3 1];
you can name the zones with ZON_h8 ={...};
by convention h8 indicates the units of the values of the matrix elements
 
 
 
B type
TB           = getspreadsheet(pathB,'20datastructures.xls','211','F11:AK1034');
[junk TB_h1] = getspreadsheet(pathB,'20datastructures.xls','211','E11:E1034');
[junk TB_h2] = getspreadsheet(pathB,'20datastructures.xls','211','F8:AK8');
Bchoose chooses which particles from TB will comprise the shortlist BT
BT_h1_ = 
{'Na','Mg','Cl','K','Ca','Gly','GABA','Ach','Glu','His','NE','Ser','Epi','caf','dop','cAMP','cGMP','IP3','ADP','ATP','
An','NU'}';
Bchoose_ = [11  12  17 19 20 475 503  531 547 553 566 572 580 593 594 746 762 817 827 903 1021 
1022]';
Bq0_     = [95  0  105  0  0  0   0    0   0   0   0   0   0   0   0   0   0   0   0   0   0   100; 
           105  0   95  0  0  0   0    0   0   0   0   0   0   0   0   0   0   0   0   0   0   100]';   % quantities of each 
ion type in each compartment
 
BT_h2_ = {'mass','valance','radius','mob','red','green','blue','sh','sz','clas'};
Uchoose  =  [ 2     3       4       9     27    28      29    30   31    32];
%new assign [ 1     2       3       4      5     6      7     8     9    10]           
 
 
 
A type
%          1 2  3 4 5   6   7 8   9 10
TA = cell {B R RQ Q O aff eff G erg id} library of actor type traits
for convenience actors are stored separately by clas:  TA1 TA3 TA4 TA5
   clas#=1 recp;  clas#=3 chan;  clas#=4 ves;  clas#=5 pumps;
Achoose selects actors from TA to create the shortlist AT
Achoose = [5 1];   % [clas# type#] list to be used in this experiment; populates AT from TA
 
 
A dist
AD = [2 3; 2 1; 2 4; 2 5];  % =[intra extra; intra core; intra dendroplug; intra axoplug] is standard
convention is to put intracellular compartment in first position if possible
AD = Atype x [pole1 pole2] x membrane#;  3-d
AD1 = 1;  % membrane#'s that the receptors are on.  See MEM for pole to compartment mapping        
AD3 = 1;  % membrane#'s that the channels are on
AD4 = 1;  % membrane#'s that the vesicles are on
AD5 = 1;  % membrane#'s that the pumps are on
the only surface for actors in this design is between compartments 2 and 1
this ordering implies compartment 2 is intracell and 1 is core;
AD_h1 = 'actor#';
AD_h2 = '[pole1 pole2]';
the only surface for actors in this design is between compartments 1 and 2
this ordering has defaults: compartment 1 is intracell and 2 is extracell  
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all pdfs must be same length and same units: units are actors/nm^2
Apdf = Atype x pdf x membrane#;  3-d
each row in AT1..AT5 requires one row of pdf for each membrane
Apdf1 = [0 0 0 0 0 0 0];
Apdf3 = [0 0 0 0 0 0 0];
Apdf4 = [0 0 0 0 0 0 0];
Apdf5 = [0 0 0 700 0 0 0];  % (AT x pdf x qM)   q elements in pdf should be a 1/multiple of qrings
Apdf is the lengthwise density distribution for each actor type along a membrane.
when there are more than 1 membrane, a third dimension, or cell struct is needed
 
spatial pattern (length by width)
Apdfx = [0 0 0 1 0 0 0];      %  actortype x distribution of actors
lengthwise density distribution for each actor type in a membrane.
Apdfc = [0 0 0 7 0 0 0];     %  radial distribution of actors on ring 
sum(Apdfc)== length(Apdfc;  This is to normalize the effects of Apdfx
circumferential density distribution function for each actor type
 
in this model there is only 1 actor, so 1 row
     Apdf = qAT x length(pdf) x qAM
each row in AM requires a page of pdf's in Apdf, 1 row for each actor type in AT
 
A check should be performed that A pole to pole distance > Mthk
 
 
  ABC
designtitle = '2 cubes with membrane between, 1 Na pump at ctr';
disp(designtitle);
 
 
P dist                  PARAMS, MODEL scaling and limits
sfA   = 0.0000000001;    % acceleration scaling factor
sfB   = 01.0000;         % particle size factor
sfC   = 1.00000;         % scaling factor for size of C compartments
sfD   = 00.0500;         % set water collision fraction equal to
sfE   = 01.0000;         % collision elasticity
sfF   = 01.0000;         % Force scaling factor, EM
sfG   = 01.0000;         % Force scaling factor, affinity
sfH   = 1.00000;         % downscale quantities of A actors by
sfI   = 3.0;             % actor icon scaling factor (original=[-.5 .5])
sfJ   = 0.00001;         % downscale particle quantities by factor of
sfK   = 1 ;              % temperature downscaled by factor of
sfL   = 1.00001;         % log scaling C compartments (compression)
sfM   = 1.00001;         % log scale quantities of B particles
sfN   = 1.00001;         % log scale quantities of A actors
sfO   = 1.0;             % radius of bolus 
sfP   = 1;               % pump rates
sfQ   = 1;               % channel conductivity
sfR   = 1E-6;            % channel density units /micron^2 to /nm^2
sfS   = 1.0;             % nodes per pdf value (use 2,4,8 for finer grain)
sfT   = 0.0;             % 
sfU   = 00.0010;         % water viscosity
sfV   = 1;               % velocity scaling factor
sfW   = 0.01000;         % downscale quantities of D water by
sfX   = 1;               % 
sfY   = 00.0600;         % clipA = limit acceleration/dt (to avoid escapees)
sfZ   = 00.0600;         % clipV = limit velocity per dt (to avoid escapees)
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swAaff = 1;   % switch on/off particle actor attraction
swBaff = 0;   % switch on/off particle particle attraction
swCaff = 0;   % switch on/off particle container attraction
swDaff = 0;   % switch on/off particle water attraction
 
swAr = 1;   % switch on/off particle actor bind/unbind kinetics 
swBr = 0;   % switch on/off particle particle bind/unbind kinetics
swCr = 0;   % switch on/off particle container bind/unbind kinetics
swDr = 0;   % switch on/off particle water bind/unbind kinetics
 
swAq = 1;   % switch on/off particle actor kinetics 
swBv = 1;   % switch on/off particle particle velocity collisions
swCv = 1;   % switch on/off particle container velocity reflections
swDv = 1;   % switch on/off particle water collisions
 
swAo = 1;   % switch on/off actor phenostates
swBo = 1;   % switch on/off particle phenostate effects
swDo = 0;   % switch on/off water phenostate effects
swAeff =1;  % switch on/off shuttles
swAerg =1;  % switch on/off energy consumption reactions
 
 
particle switches:  (qCxqB, (C#,Btype) )
BT_h1_ = {Na Mg Cl K Ca Gly GABA Ach Glu His NE Ser Epi caf dop cAMP cGMP IP3 ADP ATP An NU};
Bchoose_=[11 12 17 19 20 475 503 531 547 553 566 572 580 593 594 746 762 817 827 903 1021 1022];
swB     =     [ 1   1   1  1  1   1    1   1   1   1   1   1   1   1   1    1    1   1   1   1    1    1;
                     1   1   1  1  1   1    1   1   1   1   1   1   1   1   1    1    1   1   1   1    1    1];
Bchoose  = [ 1   0   1  0  0   0    0   0   0   0   0   0   0   0   0    0    0   0   0   0    0    1];
 
% actor switches  (qCxqA, (C#,Atype) )
switch on/off recep shut chan ves pump];   1 row for each compartment;
swA      =  [ 1    1    1    1    1;  
                   1    1    1    1    1 ]; 
  
% END DESIGN %  % END DESIGN %  % END DESIGN %  % END DESIGN %  
 
% BEGIN BUILD %  % BEGIN BUILD %  % BEGIN BUILD %  % BEGIN BUILD %  
 
  0. load data set (TP TA TB TC DP DA DB DC)
  1. create compartments (SH)
    1a. CB  SH piecemeal boundary equations (segs)
            CAD working points + spacings (arcs)
                contour of rotation
                point fill (dx)
    1b. CR rings
                point fill (dc)
    1c. CN nodes
              pos, orientation, polarity
              nearest neighbors
              Cceilings
              Creflectors
              Careas
              Cvolumes 
              Volume subtractions for nested shapes
              bolus injection sites (Cinj)
   1d. Cvanes
   1d. Cplugs, create and locate boli within
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   1e. position all compartments relative to each other
  2. create actors
    2a. AC  assign to nodes via dists:  poles, orientation
    2b. AT  copy in actor trait subset:
       2b1  affinities,  aff function for A bindsites
       2b2  bind/unbind probabilities, R function for A bindsites
       2b3  conformational transition probabilities, Q function
       2b4  phenostate map,  O function
       2b5  conductivity profile,  G function
       2b6  transport equations,
       2b6  aff function
       2b7  erg function
       2b8  eff function
  
3.  BT  create particles
    3a  BC  per concs, volumes: center bolus and sequestered
    3b  BV  per temp, mass: assign Boltzmann velocities
    3c  RUNB until particles at SS (random positions)

4.  RUNC sequence
    4a  AS  initialize states of actors
    4b  B reflections, BC
    4c  B collisions,  BB
    4d  B bindings/unbindings  BA, R
    4e  turn on pumps A5: aff R Q O erg; document approach to SS
    4f   turn on channels A3 and vesicles A4:  aff R Q O G     (G gives conductivity rates)
    4d  turn on receptors A1 and input signal:  aff R Q O G eff    (G gives catalytic rates)
 
 
% C Build
qC = length(SH(:,1));                                        % quantity of compartments
Mthk = abs(SH(2,5) - SH(1,6));                        % thickness of membrane
Mmid = (SH(2,5) + SH(1,6)) /2;                        % location of middle of membrane
Mpoles = [ Mmid-0.6*Mthk  Mmid+0.6*Mthk ];  % ideal location for actor poles
Mx = SH(1,9) - SH(1,7);                                    % awkward, but expresses the 'length' of patch
Mc = SH(1,10)- SH(1,8);                                   % awkward, but expresses circumference of patch
Msz = [Mx Mc];
Marea = prod(Msz);
fluidabove = abs(SH(2,6)-SH(2,5));                  % thickness of extracell or core saline
fluidbelow = abs(SH(1,6)-SH(1,5));                   % thickness of intracell saline
 
% NOTE: although nodes belong to C, they are best calculated with A
 
 
[Crib Crim Cnor Ccg] = buildCwireframe(SH,Cax,0);   %row1=leftcomp; row2=rightcomp;
 
qSH = length(SH(:,1));                        % count how many compartments there are
qC = qSH;
for i=1:qSH, SHctr(i,:) = Ccg{i}; end    % merely converts a cell list to a matrix
 
 

% B build
Bchoose chooses which particles will comprise the shortlist BT
then eliminate Btypes with zero quantities to further shrink BT
BT_h1_ = TB_h1(Bchoose_);    % ion types chosen for this model
BT_h2 = TB_h2(Uchoose);        % ion traits needed for this model
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BT_ = TB(Bchoose_,Uchoose);  % Shrink TB to the needs of the model
% e.g. BT column headings: mass=2; valance=3; radius=4; color=5:7; shape=8; size=9; type=10; 
 
[Bq0 BT BT_h1 Bchoose] = compress0(2,Bq0_,BT_,BT_h1_,Bchoose_);  
% note flags on long forms
% note that [ Bq0 BT h1 Bchoose ] have been truncated to remove zero entries
Bq0 = qB x Cix = tonicities of each compartment
qBT = length(BT(:,1));
 
sfO = bolus size;
sfV = velocity scaling             
[CDF vrange] = CDFboltz(BT(:,1),kelv*sfK,0:1:3000,1);  % make cdf's for Bvel
[BP BU LB LC] = buildB(BT,Bq0,CDF,vrange,SHctr,sfO,sfV);
BP = [ positions velocities acceleration ];       % Bpos
BU = [ atomicnum mass radius valance ... ];  % Btrait
LB = qBxqBT =                                               % logicals for Btypes;       
LC = qBxqC =                                                 % logicals for Comps;
 
BBr = BU2rr(BU);                                           % table of radius additions = r1+r2
[qBT qC] = size(Bq0);                                    % quantity of Btypes and of Ccompartments
qB = length(BP(:,1));                                     % quantity of particles in system
 
 
% A build
qAT = length(Achoose(:,1));
[AT1 AT3 AT4 AT5] =  peelA(Achoose,TA1,TA3,TA4,TA5);
AT = shortlist from TA by clas of each actor type traits in this experiment
AT1 = cell receptor traits, short list
AT3 = cell channel traits, shortlist
AT4 = cell vesicle traits, shortlist
AT5 = cell pump traits, shortlist
Hereafter, actor type will be only referred as the row# in AT
 
easiest way to determine node count is via pdf's.  
change units of pdf's from A/micron^2 to A/nm^2
Apd1 = sfR*Apdf1;
Apd3 = sfR*Apdf3;
Apd4 = sfR*Apdf4;
Apd5 = sfR*Apdf5;
Apdc = Apdfc;                  % Apdc = sfR*Apdfc? No, its units were never /micron^2
if pdfs are too grainy, interpolate them to greater node counts of choice
lenpd = length(Apd1(1,:,1));   % quantity of nodes along length of patch
widpd = length(Apdc(1,:,1));   % quantity of nodes along width of patch
Nsz = [lenpd widpd];           % size of nodegrid = [len wid]
qN = lenpd*widpd;              % total quantity of nodes according to pdfs
 
check for required actor density.  See if node grid can handle them all.
Apdq = sum([Apd1;Apd3;Apd4;Apd5],1); % sum pdf's to get total density
qApd = Marea*Apdq;                % mem area * actor density/nm^2 = lineal q
Apdxc = Apdc'*Apdq;               % grid of nodes with density values, according to pdfs
qN = sfS*numel(Apdxc);            % sfS is 1/grain
qA = sum(qApd);                   % q nodes should be at least 8 times this
Narea = Marea/qN;                 % area/node
Npeakload = max(max(Apdxc))*Narea;% find greatest channel density per node
                                  % You can only put 1 actor in a node
sfS=1;                            % default grid size = pdf size
if Npeakload > 1, sfS = ceil(sqrt(Npeakload)); end  % surface area
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NOTE: if there is 1 anomaly of very high actor density, ...
% this will drive up the node count to extremely high quantity.
Nlen = sfS*lenpd;
Nwid = sfS*widpd;
Nsz = [Nlen Nwid];
qN = Nlen*Nwid;
Narea = Marea/qN;
if sfS~=1,                % then all pdf's must be interpolated to fit Nsz
 Apd1 = interpoNor(Apd1,1:Nlen);
 Apd3 = interpoNor(Apd3,1:Nlen);
 Apd4 = interpoNor(Apd4,1:Nlen);
 Apd5 = interpoNor(Apd5,1:Nlen);
 Apdc = interpoNor(Apdc,1:Nwid);
end
 
NODES  = NODES4patch(x,y,pdfxc,grain)
NODES  = NODES4patch([SH(1,7) SH(1,9)],[SH(1,8) SH(1,10)],Nsz,Mmid,1);
      
 
Apos = placeActors(Acdf,SH); 
[AN AU LA LM sf] = buildA2(NODES,Apd1,Apd3,Apd4,Apd5,Apdc,Msz);
NODES = (length x [xyz] x width)
Apd = pdfs for 1 actor clas; row = type
Apdfc = pdf for circumference
qA = quantity of actors
AN = actor# to node# assignments (see NA for node# to actor# assignments)
AU = [class type ] = extension of AT wastes RAM; so use only pointers to AT
LA = logical for actor columns = [recep chan ves pump]
LM = logical for actor assignments columns = [mem zon rin]
Apos = NODES(AN,:);
qA = length(Apos(:,1));
get pdfs for Apos and position icons
CellIcons = iconGen(Aicoparam,sfI,Aax);  
% this function will crash if header column is in Aicoparam
CellIcons = {ico1 ico2 ico3 ico4};
ico1 is a cell of 5 icon rims;  ico2 is a cell of 5 icon ribs;  
icon3 is a cell of 5 icon poles; ico4 is a cell of 5 icon names;
 
Atype = 5;   % 5=pump
for i = 1:qA;           % ico1,2,3,4,5 are cells for 5 icons
ico1{i} = RowAdd(CellIcons{Atype,1},Apos(i,:));   % ico1 is a cell of rims
ico2{i} = RowAdd(CellIcons{Atype,2},Apos(i,:));   % ico2 is a cell of ribs
ico0{i} = RowAdd(CellIcons{Atype,3},Apos(i,:));   % ico0 is a cell of poles
ico3{i} = RowAdd(CellIcons{Atype,4},Apos(i,:));   % ico3 = cell of bind sites
icoN{i} = RowAdd(CellIcons{Atype,5},Apos(i,:));   % icoN = cell of joysticks
end
 
 P build
Activity Switches, set to defaults, then manually alter to suit
swAp = ones(1,qAT);   % switch on/off actor position assignments, length = qAT
swBp = ones(1,qBT);   % switch on/off particle initial assignments, length = qBT 
swCp = ones(1,qC);    % switch on/off compartments, length = qC
swDp = ones(1,qC);    % switch on/off water positions in each compartment manually set to off as desired
 
 
 
% STATIC Plot
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 concatenate all points within plot axes
figure(2),
bord  = border(0.2,1,Crib,Crim);
 
C
for j=1:qC  % loop, for each compartment
   plotC(sC,Ccol,bord,varargin)
   plotC(1,Ccol(j:(j+1),:),1,0,Crib{j},Crim{j}), hold on;
end % j
plotNode(si,col,sz,NODES),
 
plotNode(9,[.7 .7 .7],12,node),
 
A
qA=1;
for k=1:qA,
    plotA(Asi,Acol,Alw,p1,p2,p0,p3,cn)
    plotA(Aico_si,Aico_col{k},Aico_lw,0,ico1,ico2,ico0,ico3,icoN);
end
 
B
for j=1:qC,   % for compartments
   for i=1:qBT    % for particle types
      plotB(sC,FaceB,EdgeB,SizeB,bord,varargin)
      plotB(Bico(i),Bcol(i,:),rand(1,3),Bsiz(i,:),0,BP(LB(:,i),:)),
   end % i
end % j
 title(designtitle),
 xlabel('x'), ylabel('y'), zlabel('z'),
 axis equal, view(20,20), axis(bord),
 
END BUILD %  % END BUILD %  % END BUILD %  % END BUILD %  % END BUILD %  
BEGIN RUN %  % BEGIN RUN %  % BEGIN RUN %  % BEGIN RUN %  % BEGIN RUN %  
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%
 
 
  
 
  TIME LOOP
for t=1:qt,  
tic;
   
   logicals
   BinC1 = BP(LC(:,1),:);  % to get all the particles B in compartment C
   BinC2 = BP(LC(:,2),:);
   Required: re-assignment of compartment for each particle transported
   
 
    %%  %%  ACCELERATION  EFFECTS DUE TO FORCES %%  %%  %%
   
    BA  acceleration   Actor Affinities
   if swAa == 1,   
     [Blist] = ABprofile(TA,TB);
     [Bconcs Bacc] = Abaffinity(TA,TB,r6,Blist);
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     [A B] = ABbinding(A,B,Bconcs);
          
         get local concs at actor poles
     Mconc = getAconc(AP,AT,Apoles,Aprof,Aaffin,Cnum,Bconc);
     % identify all profiled particles for affinity within capture radius
     BAacc = affin2acc(AP,Apoles,Aaffin,Mconc,sfMa);
     BAacc = BAz2Bacc(BP,BU,AP,AU,expon,sfBa);
     % determine reaction rate wrt current modulation and effects upon state
     
   else BAacc = zeros(qB,3);   
   end
      
  % BB  acceleration   Charge forces
   if swBa == 1,  
    BBacc = BBz2Bacc(BP,BU,expon,sfBa);
   
   else BBacc = zeros(qB,3); 
   end
   
  % BC  acceleration   Charge forces
   one side of plate is positive, other negative
   Be aware of impact on temperature of velocity increases.
   if swCa == 1, 
      BCacc =  BCz2Bacc(BP,BU,CP,CU,expon,sfCa);  
   
   else BCacc = zeros(qB,3); 
   end
      
  % BD  deceleration   Water forces
    water is a dampener on velocity, but slowing velocity cools liquid
   if swDa == 1,
      BDacc = BDz2Bacc(BP,BU,DP,DU,BBacc,expon,sfDa);
   else BDacc = zeros(qB,3);    
   end
      
 %  SUM Acceleration
   Bacc = BAacc + BBacc + BCacc + BDacc;
   
   
   
    %%  %%  VELOCITY EFFECTS  %%  %%  %%
   
  % BD  Detect Water Collisions
   [V qHits] = colliderWater(V,LB,CDF,vrange,sfW,sfV)
   if swDv==1, 
      BP(:,:,t) = WaterViscosity(BP(:,:,t),LB,CDF,vrange,sfW,sfV);  
   
  % BD  Resolve Water Collisions  ( handled within colliderWater)
     end
   
% BB  Particle Collisions
        %  BB  Detect Collisions
   if swBv == 1,
      [BBd2 BBd] = B2ABCdistance(BP(:,:,t),BP(:,:,t));
      BBhitlog  = BBcollisionDetection(BBd,BBr,sfR);
      
       %  BB  Resolve Collisions   
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   [BP2 BP3] = BBcollisionResponse(BP,BU,BBhitlog);

   end
   
  
   BA  Actor Bindings
   if swAv ==1,
    BA  Detect Collisions
      [BAd2 BAd] = B2ABCdistance(BP,BA);
      BAhitlog = BBcollisionDetection(BAd,sfR);
      
    BA  Resolve Collisions as bind/unbind
    BAbindings = BAinstantiate(AS,AMkinet,ABkinet,BAhitlog);
    [AMbound BP] = BAbind(AMbound,BP,AS,AR,AMkinet);
   end
      
   
   
 % BC  Container Reflections
   
 %  BC  Detect Collisions
   if swCv==1,
       BP   =  collisionBox(BP,box,sfE)
      [BCd2 BCd] = B2ABCdistance(BP,BC);
      [inbound outbound in out log] = collideBox(BP,BV,Sh);
      BP(LC(:,1),1:6,t)   =  collisionBox(BP(LC(:,1),1:6,t),Sh(1,:),sfE);
      BP(LC(:,2),1:6,t)   =  Ccollision(BP(LC(:,2),1:6,t),Sh(2,:),sfE);
   
    BC  Resolve Collisions
      BP(LC(:,1),1:3,t) = noLeaks(BP(LC(:,1),1:3,t),BU(LC(:,1),3),Sh(1,:));
      BP(LC(:,2),1:3,t) = noLeaks(BP(LC(:,2),1:3,t),BU(LC(:,2),3),Sh(2,:));
   end
   
   
     %%  %%  POSITION EFFECTS  %%  %%  %% 
   
   BD  Water shells,  solvation
if swDv==1, 
      BP(:,:,t) = WaterShells(BP(:,:,t),LB,CDF,vrange,sfW,sfV);  
   
     BD  Resolve Water Collisions  (covered above)
   end     
     
   [A B d] = bindBA(A,B,s,d)
   get AMcombos
   get Bbound 
   
  %%   ACTOR STOCHASTICS   
%   Certain blocks omitted per proprietary protection requirements 
 %   ACTORS  % organize data extracted from TA to cell of short list
    Each Actor type has associated with it kinetics: AR, AQ, AO, and AL
    AR = binding site kinetics:  ARf for bindings, ARb for dissociations
    AQ = conformation kinetics  = kolmogorov Q
    AO = lookup table from state to phenostate (effects transport)
    AL = subunit interlogic 
   
 %   Actor modulation
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     ARf = modulator kinetics perform stochastic bindings
     Arb = modulator kinetics perform stochastic dissociations
     ARQ = lookup table maps D into a page number for Q
     ADbinds = current bind state of each actor (vacancies+Boccupancies)
     ABaff = draws B into binding range to match empirical
    ABerg = conversion of bound ATP-like particles into less energetic forms
    ABtrans = stochastic transport of bound B to other pole
    Dcombo = Actor:B bindings:   allosteric bind state + transport bind state
  
  
   Actor state
     AQ = state transition matrix
     AS = list of all actor current states as time series
     D = list of all actor vacancies and bindings, as time series 
  
   Actor phenostate
     AL = lookup table for logical relationships between subunits
     AO = instantiated phenostate
   
   BA Transport
    receptors, none
    pumps, only by kinetic schemes
    vesicles, none
    channels, as function of partial pressures
    shuttles, as function of kinetic schemes
   
 %  BA unbindings
   
      
%  Add VELOCITY to POSITION
   BP(:,4:6,t+1) = BP(:,4:6,t) + clipit(BP(:,7:9,t),clipA);   % acceleration
   BP(:,1:3,t+1) = BP(:,1:3,t) + clipit(BP(:,4:6,t),clipV);   % velocity
   
  %  check BB Collision Detection
  %  check BB Collision Response
    
end  % time loop

9.18.2 WHOLE CELL PROCEDURE  

Assemble the concepts into a computer program that executes compartments, actors and particles dynamically 

and captures their behaviors for replay.

 BUILD SCRIPT for Goblet-shaped neuron
_extracts design data from Spreadsheet

    INPUTS
  Main = [neu mem zon p2x p2y h thk memnane ];  where 
  p1 = [ x1 y1 ] = first p1.   starter point = [0 0]
  h = arc height above line between P1 and P2 (this is recalculated into [r0 x0 y0].
  neu = which neuron cell this is: type, serial #
  mem = { main extra core plugin plugout }
  zon = { synin stalk soma hillock axon ranvier bouton synout }  (others may be defined)
  thk = thickness of fluid spaces, to calculate adjacent membrane working points
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  dxdc = { internode spacing on this membrane }
  
    OUTPUTS  (calculated values)
  wall = B layers that particles perceive as their floor and ceiling (calculated)
  segm_sorted = seg numbers ordered to align to pdfs

     VERSION    ndyer1    20090311
 Copyright    Norman Jay Dyer    20090311
 
  
    NOTES
 shapes = {0=startpt 1=box 2=cone 3=cyl 4=disk 5=perf 6=sphere 7=torus 8=vane 9=arb 10=spindle)
 ss = {'-';'--';'-.';':';'.';'*';'+';'x';'o';'v';' '̂;'>';'<';'d';'s';'p';'h'}; 
        1   2    3    4   5   6   7   8   9  10  11  12  13  14  15  16  17
 
 SEGM = nx200 block of line segment traits for contours of revolution 
        columns 1:50 = geometry
        columns 51:100 = types
        columns 101:150 = adjacencies
        columns 151:200 = externalities

   SEGMS,RINGS,NODES have the following columns
 P=position D=derivatives T=types S=serial Q=quantity N=nearest F=pdf C=color
 
 P          1            2            3            4            5
          'x1',        'y1',        'z1',       'a1x',       'a1z', 
  
            6            7            8            9           10
          'x2',        'y2',        'z2',       'a2x',       'a2z', 
  
           11           12           13           14           15
          'x0',        'y0',        'z0',        'r0',         'h', 
  
 D         16           17           18           19           20
     'bisectx',   'bisecty',   'bisectz',    'intLen',       'sh#', 
   
           21           22           23           24           25   
     'midarcx',   'midarcy',   'midarcz', 'thk under',  'thk over', 
  
           26           27           28           29           30
        'norx',      'nory',      'norz',        'dx',        'dc', 
  
           31           32           33           34           35    
       'perpx',     'perpy',     'perpz',    'circum',    'redund', 
           
           36           37           38           39           40
      ' r2r x',     'r2r y',     'r2r z',       'r2r',   'ar surf', 

           41           42           43           44           45  
       'wallR',     'wallL',     'vane+',     'vane-',        '  ',

           46           47           48           49           50
     'compart',  ' compart',   'compart',   'compart'         '  ',

 T         51           52           53           54           55
     'neutype',   'memtype',   'loctype',   'radtype',   'functype', 
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           56           57           58           59           60   
     'zontype',   'segtype',   'rintype',  ' nodtype',   'acttype', 
  
 S         61           62           63           64           65  
        'neu#',      'mem#',      'loc#',     'rad#',     'func#',
  
           66           67           68           69           70
        'zon#',      'seg#',      'rin#',      'nod#',      'act#', 
  
           71           72           73           74           75
       'plotG',     'plotN',    'xposSN',    'rposSN',    'funcSN', 
  
           76           77           78           79           80
       'zonSN',     'segSN',    'ringSN',    'nodeSN',     'actSM', 
  
 Q         81           82           83           84           85
        'qneu',      'qobj',      'qloc',      'qmem',      'qrad',  
  
           86           87           88           89           90
        'qzon',      'qseg',      'qrin',      'qnod',      'qact', 
  
 N        101          102          103          104          105 
  'NN1 before', 'NN2 after', 'NN3 left1', 'NN4 left2','NN5 right1', 
  
          106          107          108          109          110 
  'NN6 right2', 'NN7 above', 'NN8 below', 'NN9 Rwall', 'NN0 Lwall', 
  
          111          112          113          114          115,
  'dx Abefore', 'dx Aafter',  'dx left1',  'dx left2', 'dx right1', 
  
          116          117          118          119          120
   'dx right2',  'dx above',  'dx below',  'dx Rwall',  'dx Lwall',

          121          122          123          124          125
      'aR xA', 'aR xRbelow','aR xRabove','aR RAbelow','aR RAabove',
  
          126          127          128          129          130
      'aN xA', 'aN xRbelow','aN xRabove','aN RAbelow','aN RAabove',

          131          132          133          134          135
    'vol over', 'vol under',  'ring vol'  'vaneunder',  'vaneover', 
  
 F        156          157          158          159          160
     'pdf zon',   'pdf seg',   'pdf rin',   'pdf nod',   'pdf act',
  
          171          172          173          174          175
       'loadx',     'loady',     'loadz',       '   '        '   '; 
  
 C        191          192          193          194          195
        'red1',    'green1',     'blue1',      'sym1',        '  ', 
  
          196          197          198          199          200
        'red2',    'green2',     'blue2',      'sym2',        '  ',
 
 PEEL from master table of points a structure can work for keeping track of a hierarchy of pieces
 neuron.membrane.zone.segments.rings.nodes
 disadvantage is that the zone is best defined after the segs are all assembled



698

 and to merely cross from one seg to the next in a new zone requires going up and down the hierarchy
 
 calculate: pivot, radius, start angle, stop angle,
            bisectors, midarcs, normals, perpendiculars, intLen, shape 
 note: negative radius on arcs indicates counterclockwise sweep from start point
 cones DO have p0,r0 values; sign(r0)= - indicates expansion to the left
 
 LOAD
clr, pause,
filename = 'DistC05';   %% CHANGE THIS TO SPREADSHEET NAME of DESIRED SHAPE    
 
% load DistA06
cd C:\Users\Norm\Documents\matlab_work\474\WholeCell
path='C:\Users\Norm\Documents\matlab_work\474\WholeCell';
sheetname = {'Mem','Van','Plu','Act','Com' };
header = {'Mem_h', 'Van_h','Plu_h','Act_h','Com_h' };
 
Mem data = [ neu      mem     zon     x2      y2      h       thk1 thk2 dx dc ];
[Mem Mem_h] = getspreadsheet(path,filename,'Mem');
Vane data: 'xstart' 'xstop' 'Lvar'  'Wvar' 'Lsec2' 'Lsec4' 'Lsec8' 'Lsec16' Lsec32' Lsec64' Lsec128'
[Van Van_h] = getspreadsheet(path,filename,'Van');
Plug data: xpos   rpos  Apos  flip  gap  type  xpos  Dmax  Rmax  qR  Dmin    Rmin
[Plu Plu_h] = getspreadsheet(path,filename,'Plu');
% Actor data: pdf chan densities over length of neuron divied into 100 values
[Act Act_h] = getspreadsheet(path,filename,'Act');
Act = Act';   % transpose such that a pdf is horz = [1 x 100] 
% Compartment data: 
[Com Com_h] = getspreadsheet(path,filename,'Com');
 
%% PARAMS
 
graphit = 1;
maxcol = 200;   % sets quant of columns for SEGMS,RINGS, NODES
log = 1;        % 1 = asks for log plots on pdfs 0 = linear plots
sf = 0.3;       % scaling factor, depends upon node density, lower densities require lower sf
cols = [ 51 52 53 55 56 62 63 64 66];        % search columns
  
memM=1;    memE=2;    memC=3;    memV=4;    memP=5;   % membrane numbers for ref 
 
%% find out what we've received in the package
typeneu = unique1(Mem(:,1));     % get all types of neuron
qneu = length(typeneu);          % how many neurons are there?
 
% for neuN = 1:qneu,             % so far this script only processes one neuron
neuN = 1;                        % set which neuron you want to process
Mem = Mem(Mem(:,1)==neuN,:);     % reduce Mem data down to one neuron as a time
 
memT = unique1(Mem(:,2));        % get all types of membrane
qmem = length(memT);             % how many membranes are there?
 
iplu = Mem(:,2)==5;              % get all plugs
plum = unique1(Mem(:,3));        % how many plug types are there?
 
%%  peel out text: column and row headers and NAMES of things
NamesActor = Act_h(end,2:(end-1));  NamesActor = NamesActor(:);  % columnize 
NamespdfZone = Act_h(1:(end-1),end); NamespdfZone = removeemptycells(NamespdfZone);
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NamesMembrane = Mem_h(:,end); NamesMembrane = removeemptycells(NamesMembrane);
NamesMemTrait = Mem_h(end,1:(end-1));  NamesActor = NamesActor(:);  % columnize 
 
NamesPlug = Plu_h(1:(end-1),end); NamesPlug = removeemptycells(NamesPlug);
NamesPluTrait = Plu_h(end,1:(end-1));
 
NamesVane = Van_h(1:(end-1),end); NamesVane = removeemptycells(NamesVane);
NamesVanTrait = Van_h(end,1:(end-1));
 
% NamesCompartment = Com_h(1:(end-1),end); NamesCompartment = 
removeemptycells(NamesCompartment);
% NamesComTrait = Com_h(end,1:(end-1));
 
% calls multiple membranes at once
mems5=[memM; memE; memC; memP];  
mems6=[memM; memE; memC; memV; memP];   
 
%% generate SEGMS
                                   % sets data block size for: SEGMS,RINGS,NODES
[SEGMS SEGa Extr Main] = Mem2SEGMS(Mem,maxcol);     % diagnostics 
pause(.1),
 
Van = zeropad(Van,15);                               % clip off dummies or pad with zeros to insure std block size
SEGMSv = Van2SEGMSv(SEGMS,Van);    % create vane segments, borrowed from SEGMS
% SEGMS = [ SEGMS; SEGMSv];              % vert cat
 
%%  Define RINGS
RINGS  = SEGMS2RINGS(SEGMS);         % genRINGS
RINGSv = SEGMS2RINGS(SEGMSv);      % genVaneRINGS
 
plotRings(RINGS,cols), 
plotRings(RINGSv,cols)
RINGS = [RINGS; RINGSv];
%% define Floors, Ceilings, Walls
 
%% Final Ring sort
RINGSz = sortZones(RINGS,mems5,0);        % mems is vane-less at this point
 
%%  Define NODES
% from [neuron#, membrane#, zone#]
NODES  = RINGS2NODES(RINGS,0);          % this function consumes minutes
 
% from vane params
NODEX(:,64)=0;                                              % clean slate for vanes
NODESv = VanePlacer(RINGSv,Van);            % col52=4 to retrieve all vanes
 
% from plug params
NODEX(:,63)=0;                                              % clean slate for plugs
Plu2 = Plu2many(Plu,gcf+2);                          % clone plugs already in RING
NODESp = PlugPlacer(NODES(NODES(:,52)==5,:),Plu2,0); % col52=5 to retrieve all plugs
 
NODES(NODES(:,52)==5,:)=[];                      % delete base plugs to replace with multi plugs 
NODEX = [ NODES; NODESv; NODESp ];    % vertcat positioned multi plugs
plotRings(NODEX,cols), pause(.1),                                            
                                            
%% Final Nodes sort                         
NODEX = sortZones(NODEX,mems6,0);       % resorts all nodes for pdf's
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                                                                        % mems6 includes vanes & plugs
%%  Nearest Neighbors
 
%%  load actors
NODEX(:,60)=0;                                             % clean slate for placing actors
zonebreak = displayDistA(Act,NamespdfZone,1);               % finds zones in pdf's
RINGSpdf = Act2pdfA(RINGSz,Act,memM,13);                   % scales pdf's into actor counts per ring
NODEX   = ActorPlacer(NODEX,RINGSpdf,memM,sf,0);     % 60=type; 70 = SN 80=quantity
 
%% static plot
si  =    [  9    9    9    1    2    6];
siz =    [  5    3    3    2    1    8];
 
swit = [0 0 0 0 0 1];
plotNODES(si,col,swit,NODEX,gcf+1),                         % plot: zones, core, extra, vane, plug, actors
 
Act1 = NODEX(NODEX(:,60)==1,6:8);
Act2 = NODEX(NODEX(:,60)==2,6:8);
Act3 = NODEX(NODEX(:,60)==3,6:8);
Act4 = NODEX(NODEX(:,60)==4,6:8);
plotP(6,[1 0 1],8,0,Act1),
plotP(6,[0 1 0],8,0,Act2),
plotP(6,[1 .2 0],8,0,Act3),
plotP(6,[0 1 1],8,0,Act4),
 
%% motivate particles

 TIME LOOP
for t=1:qt,  
tic;
   
   logicals
   BinC1 = BP(LC(:,1),:);  % to get all the particles B in compartment C
   BinC2 = BP(LC(:,2),:);
   Required: re-assignment of compartment for each particle transported
   
 
    %%  %%  ACCELERATION  EFFECTS DUE TO FORCES %%  %%  %%
   
%  BA  acceleration   Actor Affinities
   if swAa == 1,   
     ABprofile
     ABaffinity
     ABbinding
     
     
%         get local concs at actor poles
     Mconc = getAconc(AP,AT,Apoles,Aprof,Aaffin,Cnum,Bconc);
     identify all profiled particles for affinity within capture radius
     BAacc = affin2acc(AP,Apoles,Aaffin,Mconc,sfMa);
     BAacc = BAz2Bacc(BP,BU,AP,AU,expon,sfBa);
     determine reaction rate wrt current modulation and effects upon state
     
     
   else BAacc = zeros(qB,3);   
   end
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    BB  acceleration   Charge forces
   if swBa == 1,  
    BBacc = BBz2Bacc(BP,BU,expon,sfBa);
   
   else BBacc = zeros(qB,3); 
   end
   
    BC  acceleration   Charge forces
   one side of plate is positive, other negative
   Be aware of impact on temperature of velocity increases.
   if swCa == 1, 
      BCacc =  BCz2Bacc(BP,BU,CP,CU,expon,sfCa);  
   
   else BCacc = zeros(qB,3); 
   end
      
    BD  deceleration   Water forces
 %   water is a dampener on velocity, but slowing velocity cools liquid
   if swDa == 1,
      BDacc = BDz2Bacc(BP,BU,DP,DU,BBacc,expon,sfDa);
   else BDacc = zeros(qB,3);    
   end
      
    SUM Acceleration
   Bacc = BAacc + BBacc + BCacc + BDacc;
   
   
   
    %%  %%  VELOCITY EFFECTS  %%  %%  %%
   
    BD  Detect Water Collisions
   [V qHits] = colliderWater(V,LB,CDF,vrange,sfW,sfV)
   if swDv==1, 
      BP(:,:,t) = WaterViscosity(BP(:,:,t),LB,CDF,vrange,sfW,sfV);  
   
     BD  Resolve Water Collisions
   
   end
   
   
 %   BB  Particle Collisions
 %   BB  Detect Collisions
   if swBv == 1,
      [BBd2 BBd] = B2ABCdistance(BP(:,:,t),BP(:,:,t));
      BBhitlog  = BBcollisionDetection(BBd,BBr,sfR);
      
      
 %    BB  Resolve Collisions   
   [BP2 BP3] = BBcollisionResponse(BP,BU,BBhitlog);
 
   end
   
  
 %  BA  Actor Bindings
   if swAv ==1,
 %   BA  Detect Collisions
      [BAd2 BAd] = B2ABCdistance(BP,BA);
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      BAhitlog = BBcollisionDetection(BAd,sfR);
      
 %   BA  Resolve Collisions as bind/unbind
    BAbindings = BAinstantiate(AS,AMkinet,ABkinet,BAhitlog);
    [AMbound BP] = BAbind(AMbound,BP,AS,AR,AMkinet);
   end
      
   
   
 %   BC  Container Reflections
   
 %  BC  Detect Collisions
   if swCv==1,
       BP   =  collisionBox(BP,box,sfE)
      [BCd2 BCd] = B2ABCdistance(BP,BC);
      [inbound outbound in out log] = collideBox(BP,BV,Sh);
      BP(LC(:,1),1:6,t)   =  collisionBox(BP(LC(:,1),1:6,t),Sh(1,:),sfE);
      BP(LC(:,2),1:6,t)   =  collisionBox(BP(LC(:,2),1:6,t),Sh(2,:),sfE);
   
 %   BC  Resolve Collisions
      BP(LC(:,1),1:3,t) = noLeaksBox(BP(LC(:,1),1:3,t),BU(LC(:,1),3),Sh(1,:));
      BP(LC(:,2),1:3,t) = noLeaksBox(BP(LC(:,2),1:3,t),BU(LC(:,2),3),Sh(2,:));
   end
   
   
     %%  %%  POSITION EFFECTS  %%  %%  %% 
   
 %  BD  Water shells,  solvation
if swDv==1, 
      BP(:,:,t) = WaterShells(BP(:,:,t),LB,CDF,vrange,sfW,sfV);  
   
 %    BD  Resolve Water Collisions
   end
     
     
 %  BA bindings
   get AMcombos
   get Bbound 
    
  
%  ACTORS
% Certain blocks omitted to meet proprietary protection requirements
    Each Actor type has associated with it kinetics: AM, AQ, and AL
    AR = binding site kinetics  = AM1 for modulators;  AM2 for ions that modulate
    AQ = conformation kinetics  = kolmogorov Q
    AO = lookup table from state to phenostate (effects transport)
   
   
 %   Actor modulation
     AR = modulator kinetics 
     AMbind
     AB = transport particle kinetics
     ABbind
     AcomboBM
  
  
 %  Actor state
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     AQ transition matrix
     AS instantiated state
    
  
 %  Actor phenostate
     AL  lookup table
 %  AO  instantiated phenostate
   
   BA Transport
    receptors, none
    pumps, only by kinetic schemes
    vesicles, none
    channels, as function of partial pressures
    shuttles, as function of kinetic schemes
   
   BA unbindings
   
      
    Add VELOCITY to POSITION
   BP(:,4:6,t+1) = BP(:,4:6,t) + clipit(BP(:,7:9,t),clipA);   % acceleration
   BP(:,1:3,t+1) = BP(:,1:3,t) + clipit(BP(:,4:6,t),clipV);   % velocity
   
   % check BB Collision Detection
   % check BB Collision Response
end  % time loop



10  DATA STRUCTURES

Every function must receive data from an array or structure, and deliver its output to an array or structure.  As the 

digital model works primarily by applying functions to matrices and lists of data, formality is essential to achieving 

consistent usage and predictable results.  Each function requires one or more input arguments and generates one or 

more outputs arguments.  Most function arguments are constants, lists or matrices.  Standardization is achieved by 

defining the columns of each matrix, in fixed order, but allowing the quantity of rows to float with the instantiation 

count of the moment, and allowing some columns to remain blank if not applying to the specific row type.  Follows 

is the set of forms as employed in this model, with rationale as to what the options were, and what the selection 

criterion was, that determined data structure choices.

10.1.1 DATA CAPTURE & REPOSITORIES  

A significant part of the work in getting the model experimental design to RUN benefits from pre-existing libraries 

of TYPEs.  From the physics of ions to the neuronal cell types, the discovery, translation and formatting of such data 

is a valuable resource to the modeler.  Conversely, there is always more such foraging to be done, and so it must be 

convenient and  appreciated that all interested parties contribute what they find in the biological literature to the base 

info within this model.

Beyond the elemental types, there are the DISTs that can also be preserved in the library.  DISTs are the PDFs of 

elemental placements within the neuron.  They include ion concentrations, membrane shapes, actor placements and 

initial states.  At a slightly higher order of capture.  A set of Types and DISTs may constitute an “neuron type” or 

“neuron type instance”.   

Furthermore, this model is evolving new functionality.  The available set of functions is also part of the “library”of 

choices that enables a user to tackle increasingly complex phenomena.  A readme.txt file shall be maintained, the 

first section of which  announces new functionality since the last release.

704
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10.1.2 RE-USE POTENTIALS  

All algorithms shall be written across the most general usage space except when doing so incurs computational 

inefficiencies detrimental to the model.  In such cases, the commentary within such functions shall clearly indicate 

the compromises made in the interest of speed, and document the code (as comments) that would serve a more 

general case.  Where both the specific heavy use case and a lighter use more general case would both be used, then 

two functions shall be written; the general one by the standard name, and the specific one written with the same 

name but tagged  “_fast”.

Those functions and variables which serve to operate and maintain the database and data structures shall be set up as 

globals.  Most other functions shall be set up as local operators, to avoid the accidental overwrite of far off variables 

that happen to have the same name.

10.2 DATABASE MANAGEMENT   

As data is received from various sources, with occasional new data superseding old data, the database grows in 

awkward ways.  Judgment is required to discard one bit to replace with another, especially problematic when data 

groups overlap, and neither completely meets the needs of the model.   Ideally, a peer review committee would 

review proposed additions, with an eye to what it would be replacing, and to its overall compatibility to the model. 

Once a new entity is deemed worthy of inclusion in the model library, then the matters of units, normalization and 

completeness of traits are addressed.  

Critical are the methods by which data is read, added and modified.  Defending the integrity of the database is a 

heavy liability because it is so easy to destroy blocks of data, even very large blocks.  Slight errors in the pointers in 

copy and paste maneuvers can easily result in devastating damage and/or corruption to data.  Then there results two 

problems.  The first is to detect such damage; and the second is to be directed to the best copy for replacement.  It is 

easy to call in old  data and overwrite the one best and correct copy.   It is much more secure to lock the user out 

from touching the original data.  And only allowing images to be copied from that original database.
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10.2.1 DATA BLOCKS  

Data Structures are necessary for:

1. libraries of Actor TYPE's: Binding kinetics, Conformational kinetics, Phenostates, Conductivity, aff, erg, 
eff

2. libraries of Actor DIST patterns for each actor type: PDF (along axis), PDC (around circumference), per 
cell

3. TA = Actor types cell structure for binding/unbinding, state, modulation, transport, energetic, shuttles 

4. TA.B  = of Actor matrix particles of interaction list

5. TA.G =  receptor catalytic rates, channel conductivity profiles, vesicle contents, pump pumping rates

6. TA.R = Actor binding site lists and their forward/backward rate kinetics with Btypes as probabilities

7. TA.Q = state transition probabilities

8. TA.RQ = maps bindsite states from R into internal states in Q

9. TA.O = actor phenostates (outward expressions of impact upon environment, e.g. channel openings)

10. TA.aff  = actor affinities for both modulators and transport particles

11. TA.eff  = actor release of messenger particles, identifying target types

12. TA.erg = actor requirements for energy inputs, e.g. ATP must bind and be converted to ADP+Pi

13. TB = library of Particle TYPE's, with trait values as may be useful to modeling molecular phenomena

14. TC = library of Compartmental Shapes, as primitive shapes

15. DA = Actor distribution patterns, CDFs across the length of the neuron

16. DB = init concentrations, particle counts, and particle bolus init params

17. DC = compartment extent, positions, contiguous shapes

18. MEMBS = Cbuild, matrix for cell membrane components

19. SEGMS = Cbuild, matrix for shape SEGMENTS, manages reflective surfaces

20. RINGS = Cbuild, matrix for shape RINGS, manages nearest neighbor events

21. NODES = Cbuild, matrix for shape NODES, manages particle bindings and transport

22. CONNEX = Cbuild, library of connectivity matrices, for multi-neuron models

23. INPUT = library of commonly used, or repetitively used, input signals

24. HIER = A diagrammatic relationship tree; depicting organization of elements

25. DESIGN = library of experimental DESIGNS; sets chosen from the above

26. CT, CU, BT, BU, AT, AU = BUILD sequences instantiate every element  
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27. RUNparam = library of simulation RUN parameters; set of scaling factors, switch settings, constants, 

28. BP = matrix of PARTICLE DYNAMICS during run:  [ pos vel acc  comp binds act pol ]

29. As = matrix of instantiated Actor STATES during run:  [ state modulation transport  pheno]

30. Bs = matrix of particle assignments (compartments, bindings, transport processes, etc.)

31. Bf = matrix of instantiated FORCES during a run

32. Bx = matrix of particle collisions:  BA, BB, BC, BW and their impact upon momentum and velocity

33. Bbinds = matrix of instantiated BINDINGS during a run mapping B to A and A to B

34. Btrans = matrix of instantiated TRANSPORTS during a run (transport events, what was transported)

35. Of = process support arrays with links from phenostate to functions (process conditions map)

36. Evar = calculate concentrations, voltages, flux, and currents during a run, on a per voxel basis

37. Bwave = track wave fronts during a run, as tags generated by detection algorithm

38. W = system OUTPUTS

39. Werror = capture error measures and out-of-tolerance events

40. Wcorrect = record corrective measures to out-of-tolerance events  [ adjustments  results ]

41. REPORTtypes = library of data visualization customizations, display preferences for data captured 

42. REPORTformats =  library of REPORT formats  [ print preferences ]

43. REPORTcapture = capture of  streaming REPORT data from runs 

44. REPORTgraphics = REPORT's and plots generated shall be archived

10.3 DATA DESIGN  
Input data for each of the components is largely organized around two principles: intrinsic qualities and extrinsic 

qualities.  Intrinsics are referred to as traits, and extrinsics as distributions.  Instantiations require both of these.

Libraries are maintained for convenience, such that to construct an experimental design the user need only select 

which particle and actor types and at what concentrations they are to be present in each compartment or zone.  New 

entities can be created or adapted by modifying pre-existing ones.  This is usually accomplished by choosing row 

numbers in list of options.  Therefore, whenever practicable rows are entities, and columns are the traits of those 

entities.
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10.3.1 INDEX SETS  

Given that dynamic data will be held in large matrices, and will be operated on unevenly by a variety of 

functions, database integrity is a challenge.  For example the Compartment nodes are held in a matrix about 100000 

rows x 300 columns.  Particle instantiations are held in a matrix about 10000 rows x 40 columns. The chosen 

strategy is avoid doing sorts, finds, or other means of extracting subsets.  But rather to utilize the bit-efficient and 

non-disturbing method of index sets.  Any subset of matrix M can be specified either by its dimensional array 

addressing as a subscript, M( i,j,k), or by counting the cell number as an index, M(n).  The effect of this method is to 

leave the master array unscathed except for time-wise updates, while all other uses employ projections from that 

array.  That is, all subsets are stored only as pointers to the original data, not as copies of parts of it.
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FIGURE 110: GLOBAL DATA STRUCTURE SCHEME 

In its most general an abstracted form, the data of the model is organized into :

23. persistent forms, types, intrinsics, libraries

24. variable forms, distributions, designs, parametric values

25. instantiations, that occupy space, that are built

26. runs, that occupy continuous time, that require memory

MAP1 Data Structure
 process:  intrinsics pdf's instantiations memory pde's sde's transfers integration
product:  TYPE DIST SPACE TIME dt ddt communication mass action

LIBRARY DESIGN BUILD RUN STATE EVOLVE BEHAVIOR COUPLING

C Compartments
extracellular 700
intracellular capacitance

core
synapse current

voltage

B Interactors
monatomic ions flux
polyatomic ions

ligands conics

A Actors
receptors input sig

shuttles
ion channels conductivities

vesicles
pumps output sig

restoration

leverage

D Implicit
flux

exocytosis
voltage
charge

resistance
current

0 Design
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27. changes in state, changes in discrete time, nonlinear events

28. systemic evolution, stochastics, modulation, behavior

29. interaction, communication, transfers

30. integration, merging, higher levels of order

Expanding that scheme to address the divisions, classes and types of the model, let's first consider the volumetric 

compartments of the cell, each enclosed by membrane.

FIGURE 111: DATA STRUCTURE SCHEME FOR COMPARTMENTS, PART 1

 process:  intrinsics pdf's instantiations
product:  TYPE DIST SPACE

Units 
101 TypePhysic 102 TypePhysic 103 DistPhysic

constants conversions mappings

LIBRARY DESIGN BUILD
C Compartments choose set all params instantiate

Shapes comp param1 comp param32 comp1 compn comp64
Comp type1 111 basic shapes 121 DistC working pt 131 contours
Comp typen 112 extents assemblies 122 CS segs 132 CR rings
Comp type1024 113 TypeC SHparams 123 extents 133 CN nodes

memb trait1 memb trait32 xyz thk c
Memb type1 141 TypeMemb 151 DistMemb 161 PosMemb
Memb typen chemical makeup surfaces normals areas
Memb type32 specific capacitance ceils thickness

param1 param32 ctr nor r
Perf typen 171 TypePerf 181 DistPerf 191 PosPerf
Perf type2 continuity disks subtracted from surfaces
Perf type8 reflection/absorption surfaces

Shape Hierarchy 401 membs 405 nodes
402 zones 406 occupy
403 segms 407 NN
404 rings 408 Tesselate
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Part 2 is a continuation to the right of part 1.  The box entitle coupling extends downward through all of C,B,A,D

Then the core data for the particles is expanded.     

FIGURE 112: Data Structure for Compartments, part 2

memory pde's sde's transfers integration
TIME dt ddt communication mass action

104 105 106 107
params sorts metrics adjustments

STATE RUN EVOLVE BEHAVIOR COUPLING
iterate stochastics feedback emergence calculations Compartments

Shapes
411 basic*siz + pos 800

Nearest Neighbors
areas & volumes Comp type1024

tri,q
421 ceiling 441 current Memb type1

radial columns capacitance Memb typen
metrics floor voltage Memb type32

nodepair,Ru,Rd
431 451 current Perf typen

Voxel table saline Perf type2
resistance voltage Perf type8

grad
Shape Hierarchy

div

curl
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FIGURE 113: DATA STRUCTURE SCHEME FOR PARTICLES, PART 1

B Interactors qualities quantities positions

Mono-atomic Ions ion trait1 ion trait32 comp1 compn comp64
ion type1 211 TypeIon 214 DistB 216 MovRuleIon
ion typen
ion type128 BL Bassign2C Bind  

BU distBT
Poly-atomic Ions Unbind
ion2 type129 221 TypeIon2 BBd distance
ion2 typen Transport
ion2 type256 BAd distance

Ligands BAf filtered
ligand type257 231 TypeLigand 236 MovRulLigand
ligand typen
ligand type512

Concentration Profiles 281 TypeConc 284 DistConc 246 Particles Bound
in N/micron 3̂  choose from TypeConc tags

History

IconB r q col
ID 291 TypeIconB 294 BP Scale,Orientation 297 BU instantiations

FIGURE 114: Data Structure Scheme for Particles, part 2

BINDINGS COLLISIONS FORCES Interactors

[x y z] [dx dy dz] [ddx ddy ddz] Mono-atomic Ions
511 512 513 521 flux ion type1

PosA VelA AccA force table ion typen
PosB VelB AccB concs ion type128
PosC VelC AccC
PosD VelD AccD Poly-atomic Ions

531 ion2 type129
voltages ion2 typen

ion2 type256

541 Ligands
partial ligand type257

voltages ligand typen
ligand type512

514 551 Concentration Profiles
Nearest Neighbors voxel

concentrations

571 576 History
History, Interactors History, flux

IconB
ID
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Particles require tracking of  position, velocity, acceleration, type, serial number, compartment assignment, floor and 

ceiling membranes (implied by compartment assignment), binding events, actor bound to, pole of actor bound to. 

The the case of a binding, the velocity goes to zero, but the old velocity is remembered so as to release (unbind) at a 

reflection of that velocity.  These are formalized into a 30 column standard matrix.  When a transport event occurs, 

the particle is reassigned to the opposite pole of the actor, and to its new compartment.

Next is expanded the scheme for the actors (receptors, channels, vesicles, pumps)

FIGURE 115: DATA STRUCTURE SCHEME FOR ACTORS, PART 1

A Actors 300 qualities quantities positions
PosActor

Receptors actor trait1 actor trait32 memb1 membn memb1024 cn poles icon
recep type1 310 TypeRecep 316 DistRecep 610 pdf pdc
recep typen 311 affinities 317 species 611 AN node#
recep type1024 312 bind kinetics 318 cell type 612 AO pos ori

313 conform kinetics 319 zones 613 AP pole pos
314 phenostate duty cycle PosRecep
315 conductivity profiles

Ion Channels
chan type1 330 TypeChan 336 DistChan 630 pdf pdc
chan typen 331 modulator affinities 337 species 631 AN
chan type1024 332 bind kineitics 338 cell type 632 AO

333 conform kinetics 339 zones 633 AP
334 phenostate duty cycle PosChan
335 conductivity profiles

Vesicle Release
ves type1 340 TypeVes 346 DistVes 640 pdf pdc
ves typen 341 modulator affinities 347 species 641 AN
ves type1024 342 bind kinetics 348 cell type 642 AO

343 conform kinetics 349 zones 643 AP
344 phenostate duty cycle PosVes
345 conductivity profiles

Ion Pumps
pump type1 350 TypePump 356 DistPump 650 pdf pdc
pump typen 351 modulator affinities 357 species 651 AN
pump type1024 352 bind kinetics 358 cell type 652 AO

353 conform kinetics 359 zones 653 AP
354 phenostate duty cycle PosPump
355 conductivity profiles

Shuttles cn poles icon
shuttle type1 320 TypeShuttle 326 DistShuttle 621 AN
shuttle typen 321 modulator affinities 327 species 622 AO
shuttle type1024 322 bind kinetics 328 cell type 623 AP

323 conform kinetics 329 zones AA
324 phenostate duty cycle links
325 conductivity profiles

Modulators
tracks which actor types 371 375 378
are modified by which TypeMod DistMod field modulators
Modulators maps TypeMod(choose)

379
particle modulators

IconA
391 TypeIconA 394 DistIconA 397 instantiations

Icon node assignments
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Each of the numbers in the boxes corresponds to a spreadsheet sheet number in Appendix C, which contains design 

information and other details for that matrix form.  Figure 4 continues to the right; see figure 5 for additional 

matrices.

FIGURE 116: DATA STRUCTURE SCHEME FOR ACTORS, PART 2

Actors

Receptors
614 615 616 recep type1
mod state catalysis input sig recep typen

Recep Recep Recep recep type1024

eigenvalues

610 prior values
Ion Channels

634 635 636 chan type1
Mod state Conductivity conductivities chan typen
Chan Chan Chan chan type1024

eigenvalues

630 prior values
Vesicle Release

644 645 646 ves type1
mod state release output sig ves typen
Ves Ves Ves ves type1024

eigenvalues

640 prior values
Ion Pumps

654 655 656 pump type1
mod state transport  restoration pump typen

Pump Pump Pump pump type1024

eigenvalues

650 prior values
Shuttles

624 625 626 shuttle type1
mod state target vels leverage shuttle typen

Shuttle Shuttle Shuttle shuttle type1024

671 Nearest Neighbor table

620 prior values
Modulators

681 691 tracks which actor types
History, states History, g are modified by which

Modulators

IconA

617    Mbind

618  Bbind

619 Transport

637     Mbind

638  Bbind

639  Transport

647     Mbind

648  Bbind

649  Transport

657     Mbind

658  Bbind

659  Transport

627     Mbind

628  Bbind

629  Transport
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Actors are all complex and highly individualistic.  This posed a challenge for general treatment within digital 

computers.  If a general treatment could not be abstracted, then each new actor type to come along would require a 

computer programmer to fathom how it should be represented within this model.  Follows is an attempt to reframe 

what actors do into a general structure.  The strategy is to  find a union of all actor processes, and then allow some of 

these processes to fall silent, as would best characterize each actor type.  There are 3 rows in the table below, the 

first for inputs, the second for state, and the third for outputs.  



716

FIGURE 117: Data Structure Scheme for Implicit Variables, part 1

D Implicit Variables instant equations
flux 720 Physical metrics 721 flux

722 grad
723 div

curl 724 curl

un/binding 730 Chemical metrics 731 BAd distance
732 BAf affinity
733 collisions
734 binding unbinding

energy transfers 738 energy

voltage 740 Electrical Metrics 741 volts
capacitance 742 cap charge
resistance 743 resistance
current 744 current

exocytosis 750 Biological metrics 751 exocytosis

channel capacity 760 Systemic metrics 761 info capacity
mutual information 762 mutual information

765 pattern depth

0 Design Actors

Receptors 810 811 812 813 814 815 816
with recycling automated design of transducers affinity un)bind modulate duty cycle s1 contents
with Shuttles retrieval and recharge mechanisms 821 822 823

broadcasting mechanisms setup targets transport

Ion Channels 830 831 832 833 834 835 836
with Subunits automated design of ion channels affinity un)bind modulate duty cycle s1 s2

as pattern recognizers 
as pattern generators

Vesicle Release 840 841 842 843 844 845 846
with recycling automated design of transducers affinity un)bind modulate duty cycle s1 contents

retrieval and recharge mechanisms

Ion Pumps 850 851 852 853 854 855 856
with energy source automated design of pumps affinity un)bind modulate duty cycle s1 s2
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FIGURE 118: Data Structure Scheme for Implicit Variables, part 2

time series Implicit Variables
791 History, Implicit Variables flux

curl

un/binding

energy transfers

voltage
capacitance
resistance

current

exocytosis

channel capacity
mutual information

Design Actors

817 818 819 Receptors
release recovery recycle with recycling

with Shuttles

837 838 839 Ion Channels
conductivities phenostates transport EQ with Subunits

847 848 849 Vesicle Release
release recovery recycle with recycling

857 858 859 Ion Pumps
energy transport release with energy source
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The columns, in order, track the environmental availability of interactors, the attraction and conductivity profiles of 

each interactor type, the bind/unbind kinetics, the impact of bindings upon state kinetics, the state transitions, the 

expression of state upon the environment, and any transport processes that are executed.   Only the receptors release 

messengers, only the channels have conductivity profiles.  Only the pumps and (optionally) vesicles consume 

energy. The receptors do not effect transport processes.

Defining an actor type adequate to modeling needs requires copious amounts of data, especially to capture their 

stochastic behaviors.  Modulation is a process of attraction of certain types of particles, leading to stochastic binding 

(and unbinding) to certain intracellular and/or extracellular sites on the actor. The interactions between the various 

possible binding combinations across multiple sites expresses as a complex relation to the molecular state 

TABLE 25:  DATA STRUCTURE SCHEME FOR ACTOR PROCESS

Universal process scheme for all actors

Transition Flow Map

entities
conc      (dist) profile    (filter) affinity (force)

messengers 1 2 3 4 5 6
actors 7 8 9
ions 10 11 12 13 14 15 16

Function Map

entities
conc      (dist) profile    (filter) affinity (force)

messengers Mmove AMprofile AMattractor chooseAMkin instAMbind MB2Astate
actors Qrow Qelement lookupAR
ions Bmove ABprofile ABattractor chooseABkin instABbind MB2Astate transport  

Data Structures

entities
conc      (dist) profile    (filter) affinity (force)

messengers Mconc Gmod AMaffinity AMkinet AMbind AMcombo
actors AQ(M,B) AS AR
ions Bconc G ABaffinity ABkinet ABbind ABcombo flux

un(bind) kinetics 
  (prob)

un(bind) 
instantiation   

(state)

bind state 
determines

transport process 
(force)

conformer 
kinetics (prob)

conformer 
instantiation 

(state)

phenostate 
(mapping)

un(bind) kinetics 
  (prob)

un(bind) 
instantiation   

(state)

bind state 
determines

transport process 
(force)

conformer 
kinetics (prob)

conformer 
instantiation 

(state)

phenostate 
(mapping)

un(bind) kinetics 
  (prob)

un(bind) 
instantiation   

(state)

bind state 
determines

transport process 
(force)

conformer 
kinetics (prob)

conformer 
instantiation 

(state)

phenostate 
(mapping)
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transitions.   Transport phenomena are also captured as numeric values.  Although a set of these substructures define 

an actor, they do not lend themselves to populating a single matrix due to their widely varying dimensionality.  They 

are therefore assembled into a structure (within Matlab, called a “cell”): 

10.4 TYPES  

Type is an input format that contains data intrinsic to each Actor and Interactor.  It can be thought of as trait 

constants.  Traits are usually persistent throughout the RUN, but may be altered between runs for hypothetical 

studies.  All Types are stationary, and therefore only calculated once, in the BUILD.

EX:  For each particle, certain traits are relevant to the RUN

BU = {'mass''valance''radius''mob''red''green''blue''sh''siz''clas''typ''ID'};
These constitute the columns of  BU,  a complete list of particles in the system and their traits, repeated per their 

type.  Columns 5..10 are artificial attributes for plotting the icn of this particle type.   BU may easily be extended 

when the model run requires additional traits.  The full list of particle traits is embodied in TB, the master library of 

particle types.

columns          1                  2                   3                    4                             5                           6             7                8 

TB_h2 =   'Atomic #'   'mass, amu'   'valance'    'radius calculated nm'  'radius Atomic nm'   'radius Pauling nm' 

'mobE'

                  9                   10                 11                     12                        13                       14                  15               16

            'mobM'  'beta H20:lipid'  'electronegativity'  'gram atomic vol'  'sphere volume'  'density'  'melting pt'  'boiling 

pt'   

             17                     18                      19                       20                       21                              22                        23

'ionization pot'  'ionization pot2'  'ionization pot3'  'ElectroAfinity Ev'  'Electroresistivity' 'Electro pot half' 

'Oxidation pot'

            24                25               26               27                28               29                30                 31             32

'diffusion coef'   'solubility'   'ppm earth'    'color_R'    'color_G'    'color_B'    'icon shape'    'icon size'    'Class'
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Actor Traits are somewhat more complicated, involving variously sized matrices.  They therefore cannot be aligned 

as values in a matrix, but rather require organization within a cellular structure.   Actors have states, and therefore 

require transition matrices.   Actors can bind and unbind, therefore have probabilistic kinetics for each allosteric bind 

site across all particle types in the system.  

TA = cell {1.B   2.R   3.Q   4.RQ   5.O   6.aff   7.eff   8.G   9.erg   10.id}, where
B = list of particle types of any relevance to this actor
R = forward and backward reaction rates for each bind site, across all particle types, one set of R for each 
state
Q = state transition probabilities, one set of Q for each bind combo.
RQ = maps current bind conditions into a particular set of Q
O = maps state into the actor's outward expression.
aff = [d o B A r4 f1 r5 f2 var];    affinity of each bind site for each particle type given the current state
eff = [d o B A r8 f1 r9 f2 var];    release of one or more particles as messengers
erg = [ b1a b2a, b1b b2b, ...]
id = serial number for each actor type = class.type

Taking the Actors as 4 classes, then taking a union of their traits, generates the following:

W [pole1 pore_open pole2]
B particle types
B+ qB + empty_site + voltage_mod
f1 driving force partials, inward
f2 driving force partials, outward

aff affinity of B to D
r5 distance reach of affinity
r4 distance reach of bind
erg energy consumed per cycle
ba1 energy source reactants
ba2 energy byproducts
eff emitted B from A
qB quantity of B released
vel messenger mean velocity
var variance on velocity
-vel return velocity (reset)
r8 mean messenger target range
r9 max messenger target range
d bind site
o  position of bind site (for pumps)
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10.4.1.1 Cell Structures for Types  

R and Q matrices are required for every actor, because by definition every actor has states and has relationships with 

the environment.  Note that their dimensionality expresses their intent.  They start with a definition of the actor 

mathematically: SxP; where S = the conformer state, P = the bind combination at present.  Each bind combination 

becomes a page in the state transition matrix.  Then the 'self' (SxP) crosses the possible states (S) to effect a state 

change  (Q = SxPx(S)).  The 'self' crosses the environment to effect a binding change (SxPx(DxB+); where D = the 

binding sites on the actor.  B = all the types of particles in the system.  B+ is that list augmented with a “hole” to 

indicate a vacant binding site, and a series of voltage steps so that voltage can also act as a modulator.

The matrices R, Q, O, and G manage the internal traits of the actors.  But some effects of actors are more like 

functions than states.  They requires operations to be performed upon B (particle types) in the vicinity.  

'aff'  = the parameter set for the affinity function.  This function draws particles to the binding sites at a rate 

consistent with empirical data.  

'erg'  = the parametric set for the energy_consumption function for an actor.  Mostly this is so pumps can 

consume ATP, become fatigued when ATP is depleted, and even run backwards when there is a high ADP 

concentration.

'eff'  = in some sense the opposite of 'aff' in that it radiates out particles.  In this model it serves the specific 

function of providing second messengers between receptors and certain channel types.  So 'eff' provides the 

parametric set for a G-protein system.

Channels and Pumps actually have parts that move ions around.  Three things can happen: 1) some part of the 

molecule moves from compartment 1 to compartment 2;    2)  a pore opens up connecting compartment1 and 

compartment 2;  or    3) something moves from side 2 to side 1.  Moving actor parts are represented by the O matrix. 

ACTOR TRAITS R Q O G aff erg eff

action E-I kinetics I-I kinetics I-motion selectivity E-motion inbound Energy converted E-motion outbound

matrix [d o A B r3 F r4] [in1 in2 out1 out2]

Recep x x x x
Chan x x x x x
Ves x x x ?

Pump x x x x x

SxPx(DxB+) SxPx(S) SxW Wx(BxFi(B))  [B qB  A vel var -vel] 
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Finally, the G matrix provides the ion conductivities for each channel type.

10.4.1.2 Type Comp  

The main compartment of the cell is its plasma lemma.  Other relevant compartments may be generated 

automatically around this shape.  For example the extracellular compartment may be specified by its “thickness”, i.e. 

distance away from the plasma lemma. 

Compartment types include a library of shapes that may be specific to a neuron type, an animal species, or even a 

individual cell from which the morphometrics were collected.  In most cases, a single main compartment type will 

have associated to it several companion compartments, e.g. the extracellular compartment and the core 

compartment.  However any number of shapes may be associated with the main when together they form the various 

compartments of interest comprising a neuron.

For single cell studies, the synapses are modeled by synaptic plugs, each of which has two compartments.

When local circuits are studied, and several neurons are present in the model, the synaptic plugs may be replaced 

with interneuron synaptic links.

10.4.1.3 Type Ion  

TypeIon, a fixed length vector of choices for types of ions to place in solution in each compartment.   Data is based 

upon the chemist’s periodic table = { number, mass, radius, charge, electronegativity, mob.water, mob.lipid  }

10.4.1.4 Type Ligand  

TypeLigand, neurotransmitters, cellular messengers and other signaling molecules, data held in a fixed-length vector 

based upon assembly of its constituent atoms, data from the chemist’s periodic table.  

data ={ number, mass, radius, charge, electronegativity, mob.water, mob.lipid  }

10.4.1.5 Type Recep  

TypeActor =  periodic table data = { number, mass, radius, charge, electronegativity, mob.water }



723

10.4.1.6 Type Chan  

TypeActor =  tabular data = { number, mass, radius, charge, electronegativity, mob.water }

10.4.1.7 Type Shuttle  

TypeActor =  tabular data = { number, mass, radius, charge, electronegativity, mob.water }

10.4.1.8 Type Ves  

TypeActor =  tabular data = { number, mass, radius, charge, electronegativity, mob.water }

10.4.1.9 Type Pump  

TypeActor =  tabular data = { number, mass, radius, charge, electronegativity, mob.water }

10.5 DISTRIBUTIONS  

DIST contains positional data for each actor. Any stationary input parameter which contains variety, variance, a 

contour, or variations over the length of the neuron can be represented in Dist. Approaching spans of data as 

distributions (pdf's) provides a highly generalized scheme for the generic handling of most parametric ranges. 

Stationary Distributions, such as Membrane shape and Actor locations, are only calculated once, in the BUILD. 

Distributions can be in 1-space, 2-space, 3-space or 4-space.

The storage of DIST data per membrane consists of  qAT x 100, where qAT is the quantity of actor types in the 

model.  There are usually more than one membrane; e.g. the boutons, the core and the extracellular envelope.    

The extracellular envelop usually parallels the main plasma lemma quite closely, so these two may be of the same 

length and the same zone designations .  The boutons are much shorter and simpler so need not consume a length of 

100.  A membrane length of 10 per bouton is found sufficient, as it begins in the center and radiates outward, so as to 

address the conditions of the wrap away from the synapse.   The core is usually simple, with few zones, and a length 

of 10% is usually sufficient.   All of the membranes of one experiment may be concatenated horizontally.  For EX, 

an experiment consisting of membranes: main, extracellular envelope, a core,  five dendritic boutons and one axonal 

bouton; and with 5 actor types,  would be housed in a matrix of  qAT x (100+100+10+50+10) = 5 x 270 elements.

It is convenient to designate zones along the course of the PDF's.  For EX, the main membrane may consist of a 

dendritic bouton, dendritic stalk, soma, hillock, axon, and axonal bouton.  Its allocation of 100 values may be 

allocated thusly:
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Dzon.main = [ 10 30 60 70 90 100 ];      for DIST zones on the main membrane, and

Dzon = [ 10 30 60 70 90 100  110 130 160 170 190 200 210 220 230 240 250 260 270 ];   for the set of membranes, 

zon_h2 = { 'db1'  'ds1'  ' soma1'  ' is1'  'axon1'  'ab1'  'db2'  'ds2'  ' soma2'  ' is2'  'axo21'  'ab2'   'core'  'dplu1' ... 'aplu' }

Repeated boutons of same actor densities need not be represented in the DIST more than once.  Similarly, when a 

series of nodes of Ranvier are present, the node need only be represented once (as a zone).   The length of each zone 

is not related to actual size in the living cell, but rather to detail and variations within it.  A physically lengthy zone 

of absolutely homogenous distributions needs only a PDF length of 1.  The arbitrary lengths of zones are managed 

by calling them through the vector Dzon, onto the actor distributions, and interpolated each onto corresponding 

zones of the shape nodes as built in C BUILD.  That is, Dzon maps onto Czon. 

Approaching spans of data as distributions (pdf's) provides a highly generalized scheme for the generic handling of 

most parametric ranges. Distributions can be in 1-space, 2-Space, 3-space or 4-space.  DISTmod data is regarded as 

transitory, and calculated iteratively each dt throughout the RUN.

10.5.1 SPATIAL DISTRIBUTIONS   

Although most particles are initialized as freely roaming within an assigned compartment, messenger molecules may 

be held (bound) a specific locations.  To initialize stationary particles, tags are set to 'bound', velocity set to 0, and 

position set to  poles of actors to which they are bound.  Where the actor affinity for such particles is high, then 

ligands need only be released near the actors, in the usual free sense, and the actors will soon pick them all up and 

bind them.

10.5.1.1 Shape  

The general hierarchy of shape:

  EXPER:  experiment defined
 CELLS:  lists the cell types, quantities and positions of an EXPERIMENT
 MEMBS:  lists the membranes and their positions from CELLS          [ given ]
 ZONES:  list the types and positions of zones of each membrane      [ given ]
 SEGMS:  list the line segments comprising each zone            [ given as Sh]
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 RINGS:  list the rings comprising each seg                      [ ContourMake ]
 NODES:  list the nodes comprising each ring                  [ ContourRotate]
 ACTRS:  list the actors occupying the nodes                   [ PlaceActors ]

           Note: 5-letter code refers to the hierarchical data tables above.  Please avoid other 5-letter names unless they are 

consistent with this scheme.

Most commonly: 
MEMBS = { 'main'; 'extr'; 'core'; 'plug' }
ZONES = {'isyn'; 'stlk'; 'soma'; 'hill'; 'axon'; 'node'; 'bout'; 'osyn' }
SEGMS = {'cone'; 'cyln'; 'disk'; 'sphr'; 'tors'}

Primitive Shape format, generated as contours of revolution

Sh = [Sh# 0   qx qc   x0 r0   x1 r1   x2 r2]; 
      Sh# = {1=boxs 2=cone 3=cyln 4=disk 5=perf 6=sphr 7=tors 8=vane 9=arbi } 
      quad = 0 
      qx = quant spaces longitude;   calculates dx
      qc = quant spaces circumferential;   calculates dc
      x0 = vertex  
      r0 = swing radius from vertex (not used in cylinder)
      x1 = start   
      r1 = start
      x2 = stop    
      r2 = stop   
 
The Sh data drives the creation of the Line Segments comprising the contour. 

%% SEGMS  is populated Sh and generated by Sh2SEGMS

 y1_ = SEGMS(:,2);  = start point of seg                 (given)
 a1_ = SEGMS(:,3);  = start angle
 x2_ = SEGMS(:,4);  = stop point of seg                  (given)
 y2_ = SEGMS(:,5);  = stop point of seg                  (given)
 a2_ = SEGMS(:,6);  = stop angle
 x0_ = SEGMS(:,7);  = center point horz position
 y0_ = SEGMS(:,8);  = center point vert position
 r0_ = SEGMS(:,9);  = swing radii for each segment (used to calc reflections)
 h__ = SEGMS(:,10); = arc height, of curve off secant    (given)
 mem = SEGMS(:,11); = membrane# this segment is part of, (given)
 zon = SEGMS(:,12); = zone# this segment is part of,     (given)
 seg = SEGMS(:,13); = seg#, KEY                          (given)
 rin = SEGMS(:,14); = last ring# in this segment
 nod = SEGMS(:,15); = last node# in this segment (later, from Rotate)
 act = SEGMS(:,16); = last actor# in this segment (later, from PlaceActors)
 Ls_ = SEGMS(:,17); = integrated length of segment
 are = SEGMS(:,18); = area contained by segment
 vol = SEGMS(:,19); = volume contained by segment
 typ = SEGMS(:,20); = shape type = {2cone 3cyl 4disk 7sphere 8torus}
 NN1 = SEGMS(:,21); = Nearest Neighbor = seg# left
 NN2 = SEGMS(:,22); = Nearest Neighbor = seg# left under
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 NN3 = SEGMS(:,23); = Nearest Neighbor = seg# right under
 NN4 = SEGMS(:,24); = Nearest Neighbor = seg# left over
 NN5 = SEGMS(:,25); = Nearest Neighbor = seg# right over
 NN6 = SEGMS(:,26); = Nearest Neighbor = seg# right
 onz = SEGMS(:,27); = orthonorm to secant z
 ony = SEGMS(:,28); = orthonorm to secant y
 htu = SEGMS(:,29); = height under
 hto = SEGMS(:,30); = height over
 qm_ = SEGMS(:,31); = which membrane in this model       (given)
 qz_ = SEGMS(:,32); = which zone number in this membrane (given)
 qs_ = SEGMS(:,33); = which segment number in this zone  (given)
 qr_ = SEGMS(:,34); = quant of rings in this segment
 qn_ = SEGMS(:,35); = quant of nodes in this segment
 qa_ = SEGMS(:,36); = quant of actors in this segment
 aru = SEGMS(:,37); = area under the segment (vane)
 aro = SEGMS(:,38); = area over the segment  (vane)
 dr_ = SEGMS(:,39); = differential euclidean spacing of points
 sn_ = SEGMS(:,40); = serial#  (for sorts)

Note:  3 letter code allows calling a column value by name.  Underline characters must be included in the name. 
These names are declared as global variables.

%% RINGS  is populated via SEGMS data and generated by ContourMake
 x1  = RINGS(:,1);  = posx           
 r1  = RINGS(:,2);  = posy           
 h   = RINGS(:,3);  = posz           
 x2  = RINGS(:,4);  = Z2      magnitude
 r2  = RINGS(:,5);  = R2      radius
 a2  = RINGS(:,6);  = A2      angle 
 nx  = RINGS(:,7);  = nx      normal to the point      
 ny  = RINGS(:,8);  = ny      normal to the point     
 nz  = RINGS(:,9);  = nz      normal to the point
 cla = RINGS(:,10); = class 
 mem = RINGS(:,11); = membrane# this ring is part of, (given)
 zon = RINGS(:,12); = zone# this ring is part of,     (given)
 seg = RINGS(:,13); = seg#, this ring is a part of,   (given)
 rin = RINGS(:,14); = ring#   KEY
 nod = RINGS(:,15); = last node# in this segment (later, from Rotate)
 act = RINGS(:,16); = last actor# in this segment (later, from PlaceActors)
 len = RINGS(:,17); = circumference
 are = RINGS(:,18); = ring area
 vol = RINGS(:,19); = ring volume within (ignoring the presence of others)
 typ = RINGS(:,20); = type = {2cone 3cyl 4disk 7sphere 8torus}
 NN1 = RINGS(:,21); = Nearest Neighbor = ring left
 NN2 = RINGS(:,22); = Nearest Neighbor = ring# left under
 NN3 = RINGS(:,23); = Nearest Neighbor = ring# right under
 NN4 = RINGS(:,24); = Nearest Neighbor = ring# left over
 NN5 = RINGS(:,25); = Nearest Neighbor = ring# right over
 NN6 = RINGS(:,26); = Nearest Neighbor = ring# right
 dx  = RINGS(:,27); = width (to left) of ring (z-axis projection)
 dy  = RINGS(:,28); = height (to left) of ring (radial projection)
 htu = RINGS(:,29); = height under to next ring
 hto = RINGS(:,30); = height over to next ring
 qm  = RINGS(:,31); = membrane # in this model
 qz  = RINGS(:,32); = zone # in this membrane
 qs  = RINGS(:,33); = segment number in this zone
 qr  = RINGS(:,34); = ring number in this segment
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 qn  = RINGS(:,35); = quant of nodes in this ring
 qa  = RINGS(:,36); = quant of actors in this ring
 vau = RINGS(:,37); = vane area under to next ring
 vao = RINGS(:,38); = vane area over to next ring
 O   = RINGS(:,39); =
 sn  = RINGS(:,40); = serial number (for sorts)

%% NODES  is populated with RINGS data and generated by RINGS2NODES
 x1_ = NODES(:,1);  = posx           
 r1_ = NODES(:,2);  = posy           
 h__ = NODES(:,3);  = posz           
 x2_ = NODES(:,4);  = Z2      magnitude
 r2_ = NODES(:,5);  = R2      radius
 a2_ = NODES(:,6);  = A2      angle 
 nx_ = NODES(:,7);  = nx      normal to the point      
 ny_ = NODES(:,8);  = ny      normal to the point     
 nz_ = NODES(:,9);  = nz      normal to the point
 cla = NODES(:,10); = class 
 mem = NODES(:,11); = membrane# this node is part of, (given)
 zon = NODES(:,12); = zone# this node is part of,     (given)
 seg = NODES(:,13); = seg#, this node is a part of,   (given)
 rin = NODES(:,14); = ring#, this node is a part of,
 nod = NODES(:,15); = node#   KEY
 act = NODES(:,16); = actor# on this node, if any
 vu_ = NODES(:,17); = node volume under
% aro = NODES(:,18); = node area
 vo_ = NODES(:,19); = node volume over 
 typ = NODES(:,20); = type = {2cone 3cyl 4disk 7sphere 8torus}
 NN1 = NODES(:,21); = Nearest Neighbor = node# left under
 NN2 = NODES(:,22); = Nearest Neighbor = node# left over
 NN3 = NODES(:,23); = Nearest Neighbor = node# under
 NN4 = NODES(:,24); = Nearest Neighbor = node# over
 NN5 = NODES(:,25); = Nearest Neighbor = node# right under
 NN6 = NODES(:,26); = Nearest Neighbor = node# right over
 dx_ = NODES(:,27); = width (to left) of node (z-axis projection)
 dy_ = NODES(:,28); = height (to left) of node (radial projection)
 htu = NODES(:,29); = height under to next node
 hto = NODES(:,30); = height over to next node
 qm_ = NODES(:,31); = which membrane in this model
 qz_ = NODES(:,32); = which zone number 
 qs_ = NODES(:,33); = which segment number 
 qr_ = NODES(:,34); = which ring number 
 qn_ = NODES(:,35); = node number
 qa_ = NODES(:,36); = quant of actors in this node
 vau = NODES(:,37); = vane area under to next ring
 vao = NODES(:,38); = vane area over to next ring
 dc_ = NODES(:,39); = dc
 sn_ = NODES(:,40); = serial number (for sorts)

BUILD Compartments

SH =  [sh# sect; qx qc; -z  z; -x  -y; x  y ]    %  compartment shape 
parameters
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Ccg = compartment center of gravity or load point

Crib = compartment ribs

Crim = compartment rims

% each row is a compartment 

BUILD Particles

TB = Type Particles:  table of particle 66 traits

BS = quantities of each particle type by compartment

BT = TB(unique(BS),:)   = subset of TB as employed in this  model

BU = BT expanded over the instantiation of particles

Ba = particle atomic numbers, a column within BU

Be =  particle valance, a column within BU

Bm =  particle mass, a column within BU 

Br = particle radii, a column within BU

Bv = atomic volume, a column within BU

10.5.2 TEMPORAL DISTRIBUTIONS  

The vesicle release patterns require instantiation of a temporal distribution.  They determine stochastically when 

each vesicle will exocytize, how many, and what percentage discharge of contents.  The opening of a vesicle will 

produce a time distribution of released particles.  If these events are 2 or more orders of magnitude faster than the 

diffusion time across the synaptic cleft, then perhaps they can be ignored and treated as instantaneous.  

10.5.3 TYPE DISTRIBUTIONS  

In matters of choice, the options are usually weighted unevenly.  There must be a type distribution for each binding 

site on an actor.  This can be represented as a binding probability for each particle type.  But it is not static.  Such 

distributions are altered both by discrete events (bindings on other binding sites and transport events) and continuous 

events (e.g. voltage).  
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10.5.3.1.1 Conductivity profiles
Proper interpretation of Q requires multiplication by a O vector, which is a 1-D DIST type row vector, to indicate 

which of the states represent an open channel (=1), and which states represent a closed channel (=0). 

For the above,   O = [ 0 0 0 0 0 1 1 1 0 0 ];   because only states 6, 7 and 8 are open states.

     Note:  Q matrix elemental values may be modified any or every dt.

10.5.4 FORM DISTRIBUTIONS  

There are three cases for Q, each requiring rather unique treatment and associated functions.  a Static Q is the type 

most commonly presented in the literature.  By holding all modulation effects constant in the lab, a 2-d Q matrix can 

represent the all the measurable state transitions found.  However, there are at least two ways to modulate actors. 

The first is discrete.  A chemical binding event usually alters the values throughout the Q matrix.  When there are 

more than one binding site on the actor, each possible binding combination will yield a unique set of transition 

probabilities.  Therefore, the Q takes on a third dimension, one page for each bind combination.   Because all 

considerations are discrete, a digital computer makes efficient execution of this case.   The third case is one of 

continuous modulation.  The classic example is voltage gated channels.  Other continuous variables may apply: 

temperature, pH, pressure.   In the continuous case, the entire Q matrix must be recalculated each dt.  This is likely 

to consume much more computational effort than a mere page look-up, especially as the EQs  usually involve 

exponentials and reciprocals.   It is noteworthy that the continuous case may be degenerated into the discrete case by 

choosing physiologically significant ranges, and treating any value within that range as a discrete (precalculated) 

page in the Q matrix.   Similar to above, but its values are not stationary.  They may be modified any or every dt.

10.5.4.1 Static Q   

The state transition probability Q matrices contain values in units of 1/s.  When all values are constants, Q matrices 

can be held as data, rather than as functions.  The latter being computationally more expensive.  Within the Q, the 

states should be numbered so as to follow the most common state path that performs the actor's biological function, 

referred to as the 'duty cycle'.  The rest state may be the last state or the first state.  Off the diagonal, the upper 

triangle is populated by alpha values (forward rate coefficients) and the lower triangle is populated by beta values 
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(backward rate coefficients).    The Q element values are regarded as persistent throughout the RUN, and therefore 

are only calculated in the BUILD.   Values are scaled to the chosen dt value of the run, and should not exceed 1.0. 

Probabilities of 2 or more events within a single dt will lead to distortions and possibly errors.  Static Q applies to all 

actor kinetics not modulated during the RUN.  Generally, unmodulated actors play support roles.    They cannot 

directly play a role of information processing, though they can do transduction, ratiometric exchanges, and resets.  

Unmodulated Q matrices are  s x s in size.

EX   Q matrix for a unmodulated pump 

 For a 16-state pump, the  Q = 

10.5.4.2 Discrete Q  

Actors that possess allosteric binding sites are subject to alterations in their state transition probabilities.  Qmod is 

the same as Q except that the matrix elemental values are subject to modulation and must be recalculated each dt 

throughout the RUN.  

Qdt = e^(Q*dt);

It should be noted that Qdt creates a DIST-type output, and must be instantiated for a specific molecular state.

0.52 5.93E-007 0.97 6.81E-007 0.02 8.79E-007 9.71E-007 2.86E-007 0.02 2.69E-007 7.87E-008 6.28E-007 1.83E-007 2.55E-007 7.81E-007 0.04
3.16E-007 0.64 0.06 8.35E-007 1.79E-007 1.05 6.03E-007 8.33E-007 8.70E-008 0.01 8.68E-007 7.86E-007 3.21E-007 9.12E-007 2.90E-007 0.06

0.03 0.94 0.34 8.96E-007 2.49E-007 3.57E-007 0.01 7.70E-007 3.18E-007 9.54E-007 0 7.49E-007 2.56E-007 3.68E-007 5.51E-007 2.52E-007
8.86E-007 4.13E-007 1.94E-007 0.65 0.01 0.04 8.63E-007 2.01E-007 4.53E-007 1.18E-007 7.97E-007 0.01 9.41E-007 3.80E-008 5.75E-007 1.01

0.01 7.70E-007 9.13E-007 0.01 0.36 8.06E-007 0 7.65E-007 1.61E-007 2.49E-008 7.86E-007 1.83E-007 0.01 6.51E-007 2.04E-007 3.99E-008
8.63E-007 0.05 6.84E-007 0.96 9.21E-007 0.85 0.01 6.16E-007 5.99E-008 4.22E-007 3.31E-007 8.44E-007 9.88E-007 0.02 5.55E-007 6.24E-007
2.45E-007 6.08E-007 0 3.10E-007 0.01 0.01 0.54 9.64E-007 4.45E-007 6.44E-008 9.50E-007 7.16E-007 9.52E-007 8.38E-008 0.01 3.87E-007
4.34E-007 7.95E-008 7.13E-007 4.47E-007 9.03E-007 9.47E-007 6.95E-007 0.67 0.01 0.01 8.28E-007 0.01 8.74E-007 1.15E-008 5.49E-007 0.11

0 4.15E-007 4.85E-007 9.64E-007 1.90E-007 9.51E-007 8.41E-007 0.01 0.26 9.24E-008 0.01 6.13E-007 0.01 3.66E-007 6.98E-008 3.32E-007
2.16E-007 0.01 8.33E-007 4.62E-007 9.93E-007 3.21E-008 6.76E-007 0.01 5.10E-007 0.12 0 8.74E-007 1.47E-007 0.01 8.60E-007 9.32E-007
7.75E-007 8.43E-007 0.01 4.96E-007 3.26E-007 2.76E-007 7.01E-007 9.80E-007 0.01 0.01 0.04 7.93E-007 6.50E-007 4.16E-007 0.02 4.68E-007
8.72E-008 5.24E-008 2.55E-008 0.02 2.28E-007 6.78E-008 8.95E-007 0.01 8.30E-007 6.10E-007 9.89E-007 0.89 0.01 0.01 2.39E-007 7.10E-011
4.00E-007 7.28E-007 3.36E-007 1.92E-007 0.01 8.27E-007 5.87E-007 2.61E-007 0.01 3.95E-007 3.44E-007 0.01 0.75 4.66E-007 0 7.26E-007
5.90E-007 1.15E-007 4.87E-007 8.98E-007 8.11E-007 0.01 3.25E-007 5.90E-007 4.27E-007 0 2.40E-007 0.01 2.45E-007 0.8 0 3.99E-007
1.97E-007 4.85E-007 2.25E-007 3.89E-007 9.24E-007 5.81E-007 0.01 7.45E-007 7.33E-007 9.61E-007 0.02 6.24E-007 0 0 0.44 2.29E-008

0.96 0.06 5.55E-007 0.01 7.19E-007 3.44E-007 2.08E-007 0.11 5.27E-007 7.50E-007 9.09E-007 3.53E-007 2.33E-007 5.08E-007 3.19E-007 0.08
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Whenever the computational cost of the variable Qmod 's (see below) is too great, they may be represented as a 

series of static Q matrices.  The modulator values are then used to choose which of these Q series is to be applied, 

and the previous state is used to select the row applied.  This reduces computation to the inequality of binning the 

mod values into a lookup table.

10.5.4.2.1 Ligand Modulation of Q Matrices 
 A number of variables may serve as modulators to the actors.  Each actor has two voxels associated with it, one 

above and one below.  Within each of these voxels, all modulators may be measured.  A single standard vector for all 

modulator values is used to make portable these values to all actors in a uniform manner.  Mods includes kelv, 

voltage, pH, concentrations of all ions and ligands

10.5.4.3 Continuous Q  

When ever EQs are provided for transition probabilities (often a function of voltage and or concentration), then the 

Q must be reconstructed each dt.   Typically, the forward state paths to the transport event are dependent, and the 

return state path back to the rest state is not dependent.   Using the variables with reconstruction can eliminate some 

of the pages in Q, but the computational load is always increased none-the-less in the evaluation of probabilities.  

Qmod's are those Q matrices with variables embedded in the matrix.  Often this is voltage, but also may be other 

continuous variables like pH, temperature, concentrations, etc..  This applies to all kinetics which may be subject to 

modulation of transition rates during the RUN.  

Qmod are functions, not data, and therefore require different coding algorithms.  Maintaining a library of such 

functions that can be called as though data may require passing one function to another function for evaluation.  This 

can be accomplished via function handles or anonymous functions.  Qmod functions are therefore created differently 

than common functions: Qmods = { @Qmod1  @Qmod2 ... }

EX   Variable Qdt matrix that is a function of voltage.  ( Kv channel )
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A consolidation technique is to identify a small number of voltage ranges that are functionally distinct, such as: 

hyperpolarized, rest, depolarized, deep depolarization.  This discretizes a continuous input variable.   Then one page 

in Q is assigned to each range.  The only computation then is to determine which if these ranges the current voltage 

value falls into.    The treatment is similar for variables other than voltage.  

The cleanest way of treating the continuous modulators is to support N-dimensional Q and R, where N = the degrees 

of freedom.  Each allosteric bind site, plus each continuous variable, gets a dimension.  Instantiation is a walk down 

each dimension to reach its new value, then a right turn is taken onto the next dimension.  The entire Q is not 

evaluated, but rather only one value for each dimension.  This leads to a single vector of values, which become the 

probability distribution for instantiation of the next state.  The process for R is always simpler, because the R page is 

selected only on the basis of the new state number from Q.

10.5.4.4 Ion Distributions  

DistInteractor = list of x,y,z positions of all ions in the SUT

10.5.4.5 Ligand Distributions  

DistInteractor = list of x,y,z positions of all ions in the SUT

10.5.4.6 Actor Distributions  

DistActor= list of x,y,z positions of all ions in the SUT
10.5.4.6.1 Dynamic Actor Distributions        

DistActordt = list of x,y,z positions of all ions in the SUT

Most, if not all, Actors are modulatable.  Modulation changes the Q matrices.  There are two methods of altering the 

Q matrices.  The first is to maintain a stack of possible Q matrices, then the presence of a bound modulator merely 
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serves to select which of the stack shall be active at any given time.   The second method is to define the Q as a 

function of the modulator(s), such that it must be recalculated each dt.  The former is much faster in real time 

processing, but may require a large number of Q matrices in the stack, particularly when an Actor possesses multiple 

modulator sites.  The former is desirable for chemical modulators, but is rather crude for force modulators, e.g. 

voltage.  It must be determined empirically as to the optimal trade off between cpu time and graininess of Q-matrix 

switch offs.  

10.6 DYNAMIC DATA FOR PARTICLE ACTOR INTERACTIONS  
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FIGURE 119: Data Structure, Particle Actor Interactions, part 1

DATA structures 
for Particles and Actors  Time  BT data

 t start t event t stop num mass z r mobm

1 2 3 4 5

init values from previous
AE BB force 1 0.00 0.01 from
AE BA force 1 0.00 0.01 from
PE  ABaffinity 1 0.00 0.01
AE B force 2 0.00 0.01
AE B acc 3 0.01 0.02 from
AE B vel 4 0.02 0.03 from
VE compartments 5 0.03 0.03
VE BB collisions 5 0.03 0.04 0.05
VE BA collisions 6 0.05 0.06 0.07
SE get actor states 7 0.07 0.07
SE bind probabilities 7 0.07 0.08
PE BA bindings 8 0.08 0.09
PE A assignment 9 0.09 0.09
SE bind combos 10 0.09 0.10
SE state probabilities 11 0.10 0.11
SE phenotypes 12 0.11 0.12
OE gating 12 0.11 0.12
SE conductivities 13 0.12 0.13
OE receptor transduction 14 0.13 0.14
PE BA transport 15 0.14 0.15
OE vesicle transduction 16 0.15 0.16
PE C assignment 17 0.16 0.17
OE receptor catalysis 18 0.17 0.18
PE A catalysis 19 0.18 0.19
OE g-protein catalysis 19 0.18 0.19
OE pumping 20 0.19 0.20
OE vesicle packets 21 0.20 0.21
PE BA unbindings 22 0.21 0.22
PE BA release vel 23 0.22 0.23
ME free chemistry 24 0.23 0.24 from/to from/to
ME hydration 25 0.24 0.25 from/to from/to
OE shuttle pathways 26 0.25 0.26
VE BW collisions 27 0.26 0.27
VE BC collisions 28 0.27 0.28
VE limits 29 0.28 0.29
VE velocity effects (collisions) BY COMP
PE position effects (bind & transport) BY COMP
AE acceleration effects (forces) WHOLE
ME mass effects (hydration & chemistry) WHOLE
SE state effects WHOLE
OE operators WHOLE
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FIGURE 120: Data Structure, Particle Actor Interactions, part 2

 BP data
pos vel acc Btype c1,c2 m1,m2 n1,n2 a1,a2 p1:p2 vela velb velc magV acca accb accc magA Fa Fb Fnor magF

 1:3 4:6 7:9 10 11:12 13:14 15:16 17:18 19:20 21:23 24:26 27:29 30 31:33 34:36 37:39 40 41:43 44:46 47:49 50

AE from from to to
AE from to
PE from to
AE from to
AE to from from to
AE to from from
AE from
VE from  from
VE from from
VE from from
SE
SE from from  from from
PE from  to to to from
PE from to to to
SE
SE
SE
OE from  from from from
SE from to
OE from  from from from
PE from
OE from  from from from
PE from/to
OE from  from from from
PE from from/to from from
OE from  from from from
OE from  from from from
OE from  from from from to
PE to
PE
ME
ME
OE from  from from from
VE from
VE from from from
VE from  from from from
VE
PE
AE
ME
SE
OE
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FIGURE 121: Data Structure, Particle Actor Interactions, part 3

magF hitA hitB hitC hit hitTa hitTb hitTc hitvel hitvel2 clas a2v Wvel Cvel clastyp bindpos bindvel posLim velLim accLim

50 51:53 54:56 57:59 60 61 62 63 64:66 67:69 70 71:73 74:76 77:77 80 81:83 84:86 86:89 90 91:93 94:96 97:99 100

to

to

to
to

to

from

from
from

to
to

to to to
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FIGURE 122: Data Structure, Particle Actor Interactions, part 4

 AT data
num mass z r4 r5 h Faff dc s o Rrowf Srow Rrowb Beff Feff G#

1 2 3 4 5 6 7 8 9 10 11:15 16:20 21:25 26:29 30

from

to from from
from/to
from to

from
from

from from
from
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FIGURE 123: Data Structure, Particle Actor Interactions, part 5

 AP data
pos ori p1 type p2 d1 d2 SN c1,c2 m1,m2 n1,n2 a1,a2 p1:p2 Aclas clastyp func bindvel Fa Fmag

 1:3 4:6 7:9 10 11:13 14:16  17:19 20 21:22 23:24 25:26 27:28 29:30 31 32 33 34:36 37:39 40

from from

from

from from from/to

from from
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FIGURE 124: Data Structure, Particle Actor Interactions, part 6

Fnor velB velA magV velW velC velAcc Btype occup1 occup2

41:43 44:46 47:49 50 51:53 54:56 57:59 60 61:65 66:70

from from

from from

from from

from from

from from
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10.7 DATA SET FOR MODEL RUN  

Neuron Design Dimensions units min max norm var

derived contour of revolution of neuron shape, to scale (microns)
Dendrogram for dendritic arbor (with diameter data)
Synaptic types defined by ves, recep, pump (types/dists)
Synapse locations/size on dendritic arbor, soma, axons (by type)
Thickness contour of extracellular fluid
Thickness contour of intracellular fluid
Thickness of synaptic clefts
other compartments?
Membrane thickness profile
Membrane capacitance profile
texture of membrane, microstructure, caveoli, mossy
bifurcation radii
calculated Surface area of plasma lemma
calculated volume contained by plasma lemma
initial Tonicity of intracellular
initial Tonicity of extracellular
initial Tonicity of synaptic clefts

receptor distributions, by type, across membrane contour, polarity
channel distributions, by type, across membrane contour, polarity
vesicle distributions, by type, across membrane contour, polarity
pump distributions, by type, across membrane contour polarity

define receptor types
     binding sites (pole1, pole2)
     binding affinity profiles (pole1, pole2, quantities per release)
     binding kinetics (s2xs2xs1)
     conform kinetics (s1xs1xs2)

define channel types
     binding sites (pole1, pole2)
     binding affinity profiles, per site 
     binding kinetics (s2xs2xs1)
     conform kinetics (s1xs1xs2)
     phenostate table
     Conductance profile
     transport equation

define vesicle types
     binding sites (pole1, pole2)
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     binding affinity profiles (pole1, pole2, quantities per vesicle)
     binding kinetics (s2xs2xs1)
     conform kinetics (s1xs1xs2)
     transport profile
     transport statistics (probabilities of events, fractions, timing)

define pump types
     binding sites (pole1, pole2)
     binding affinity profiles, per site 
     binding kinetics (s2xs2xs1)
     conform kinetics (s1xs1xs2)
     transport profile, per seat
     energy source/sink per cycle

s = conformational kinetic states
d = bind/unbind kinetic combinations

TABLE 26: FORM FOR COLLECTING DATA FOR A MODEL RUN
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10.8 DATA STRUCTURE TERMS  

type
all intrinsic traits of an actor necessary for the model.  For particles: mass, 
radius, charge, hydration shells.  For actors, see below.

dist
pdf of density distribution across the axial length of each membrane.  Any 
membrane may have actors occupying its nodes.  This is useful in maintaining 
neighboring cell interactions across the extracellular fluid.  Implied is actor 
polarity, which end is inside/outside, and therefore which two compartments 
are assigned. 

contour
a constant sampled at various points along the axial length of the neuron (e.g. 
diameter, or thickness of the extracellular fluid)  A contour domain is  100 
values from 0 to 1, where 1 represents the total length of the neuron (from 
dendritic end to axon end).  Contour range depends upon that which is being 
measured.

profile
a profile domain is a vector of all particle types within the model.  Its range 
might be affinity to  a type of allosteric site, conductivity of an ion channel 
type, transport statistics of a pump type, binding probabilities under certain 
modulation conditions)   Rather than talk of say a Calcium binding site, the 
model entertains that any particle might collide with that site, but that Ca++ has 
the highest probability of binding and staying bound there.

Derived contour of revolution of 
neuron shape, to scale (microns) Shape of neuron is mapped into an equivalent contour of revolution.  Any form 

of morphological data that captures lengths, surface area, and volume will 
suffice.    Desirable would be designated zones, e.g. boutons, dendritic stalks, 
soma, initial segment, axon, nodes, boutons, but these may be inferred from the 
actor distribution data.

Dendrogram for dendritic arbor (w/ 
diameter data, synapse pos) Bifurcation patterns, diameter tapers, radius of bifurcation.  Typically read off 

morphometrics.
Synaptic types defined by ves, 
recep, pump (type/dist) Multiple types of synapses are supported, defined by the actor types/dists 

present + cleft thickness
Synapse locations/size on dendritic 
arbor, soma, axons (by type)

May have been included in dendrogram, but would like data on size of synapse
Thickness contour of extracellular 
fluid EM micrographs may show thickness of extracellular space.  Need variations 

along entire length.  A fixed thickness is used unless, the variations in 
extracellular fluid thickness is specified.  This data is converted to a axial 
vector of thicknesses from dendrite to axon.
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Thickness contour of intracellular 
fluid

It is desirable to limit the distance above and below the membrane that is 
modeled molecularly.  With the extracellular this is often measurable, but more 
vague for the intracellular where the reticulum is complicated.  Aside from Ca+
+ sequestration and ATP supplies, the model regards the membranal sandwich 
as autonomous: a known thickness of extracellular fluid above and a reasonable 
cut-off on modeled fluid below.  Because the EM force holds most ionic 
activity quite close to the membrane, varying the intracellular thickness doesn't 
affect model performance much, but can significantly increase computational 
load if thicker than needed for consistent results.

Thickness of synaptic clefts
A question arises: Is the circumferential edge of each synaptic bouton open to 
the extracellular fluid, or some how restricted/obstructed?

additional compartments are 
created by adding membranes The model easily accommodates any number of compartments, e.g. 

endolymph, perilymph, by adding more membranes, e.g. reticular lamina. 
Each membrane declares two surfaces, assigned respectively to two 
compartments, used in orienting actors.

Membrane thickness profile
Membrane is assumed to be of uniform thickness, unless variations are 
specified over axial length.

Membrane capacitance profile
Membrane capacitance is assumed to be of uniform value, unless either 
proportional to thickness, or specified as axial variations along the length of the 
neuron.  Rafts of differential thickness/capacitance are possible, but require 
some additional coding.

texture of membrane, 
microstructure, caveoli, mossy At current build state, the model does not implement specific textures, except 

as corrugations to increase surface area.  Specific shapes and structures,e.g. 
caveoli, will require additional coding.

bifurcation radii
Sharp vs rounded have some effect on antidromic conduction

initial Tonicity of intracellular
includes all mobile particle types, including basal levels of messenger 
molecules (hormones, ATP, etc.)

initial Tonicity of extracellular
ditto

initial Tonicity of synaptic clefts
ditto

receptor distributions, by type, 
across membrane contour, polarity

receptor densities, by type, per sq micron, samples taken at each significant 
zone, any gradients noted

channel distributions, by type, 
across membrane contour, polarity

channel densities per sq micron, samples taken at each significant zone, any 
gradients noted

vesicle distributions, by type, 
across membrane contour, polarity

vesicle densities per sq micron, samples taken at each significant zone, any 
gradients noted
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pump distributions, by type, across 
membrane contour polarity

pump densities, by type, per sq micron, samples taken at each significant zone, 
any gradients noted

define receptor types

     binding sites (pole1, pole2)
how many allosteric binding sites intra-, how many extra-?  How are second 
messenger particles to be released accumulated? (just one at a time, or how 
many, or catalyzed?).  The existence of these binding sites is implied in the 
affinity profiles

     binding affinity profiles (pole1, 
pole2, quantities per release)

the collision rate of modulator particles to their target sites  (may be implied in 
the binding data, but needs to be separated out)

     binding kinetics (s2xs2xs1)
Matrix of forward and backward rates for all binding sites, both allosteric and 
transport particles, per conformer state

     conform kinetics (s1xs1xs2)
Matrix of forward and backward rates between all state transitions, per 
modulation combo

define channel types

     binding sites (pole1, pole2)

     binding affinity profiles, per site 

     binding kinetics (s2xs2xs1)

     conform kinetics (s1xs1xs2)

     phenostate table
identifies which state numbers have environs impacts, e.g. channel open, 
channel closed

     Conductance profile
selectivity profile as a vector across all particle types present, including 
messengers.  Default value =0

     transport equation
Nernst per ion type + concentration pressure per ion type

define vesicle types

     binding sites (pole1, pole2)

     binding affinity profiles (pole1, 
pole2, quantities per vesicle)

     binding kinetics (s2xs2xs1)

     conform kinetics (s1xs1xs2)

     transport profile
contents of each vesicle, vector across all possible particle types, variance
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     transport statistics (probabilities 
of events, fractions, timing)

probability of performance, probability distribution of fraction of contents 
emptied, variation in timing of response.

define pump types

     binding sites (pole1, pole2)
stage1, stage2, and modulator sites 

     binding affinity profiles, per site 

     binding kinetics (s2xs2xs1)

     conform kinetics (s1xs1xs2)

     phenostate
state number maps to transport functions

     energy source/sink per cycle

e.g. transformation from ATP to ADP; or concentration driver equations

reuptake mechanisms and locations 
for each type of messenger particle

The model can only be stabilized when adequate reuptake of all messenger 
types, either by affinities or by pumps.

calculated Surface area of plasma 
lemma

any means of determining surface area and total membrane capacitance
calculated volume contained by 
plasma lemma

any means of adequately determining volume
s1 = conformational kinetic states

kinetic states “with bindings” (as sometimes indicated by asterisks) must be 
separated out as s2 states.

s2 = bind/unbind kinetics, as 
combinations s2 states modulate s1 transition probabilities and s1 states modulate s2 

bind/unbind probabilities



11 DISCOVERY

11.1 PROBLEM REDUCTION  

The initial stance was that this project would consist of a hybrid model of diffusion, Kolmogorov stochastics and 

electrical circuit representations, as necessary to capture the information flows through the neuron.   Subsequent 

findings have altered that set considerably.  Diffusion provides the back ground white noise of liquid state 

interactions, and drift provides the informationally significant motion.  Although the method of eigenvectors can 

calculate steady state conditions of  a transition matrix, it is the dominant state paths (and the near dominant 

alternates) that are  informationally significant.  And it is the ability of a state path to map to a temporal pattern that 

is its most significant functionality.   

Although circuit representations of ion channel action have been in use for more than half a century, they fall short 

of capturing the information flows and processes.  The charged particle model implemented herein transcends the 

circuit representation via several strong reasons.  

31. Ions generate flux in 3 dimensions, whereas circuits restrict flow to 1-dimensional flows.  Membrane capacitance 
is continuous over the entire cell surface.  

32. A circuit analysis would treat that either as 1 monotonic capacitor, instantaneously responding en bloc to any 
voltage changes, or as a series of discrete capacitors, severing the continuous membrane with artefactual barriers.  

33. The circuit interface required a number of compromises to convert calculated currents into a set of individual 
particles being transported.  In the final analysis, the electrical circuit analogy over-constrains the representation of 
biological systems that possess and require greater degrees of freedom to perform their tasks.   

34. A charged particle model acknowledges that an ion has mass, acceleration, and radius. These conspire to slow 
down the charge time along to the membrane, which in turn supports widely varying topology of charge over the 
surface of the membrane.  

35. The particle system exhibits emergent behavior without programming to induce it.  Capacitance, resistance, 
complex 3-dimensional flux patterns, waves of charge disturbance radiating outward from ion channels upon 
openings, the zeta potential of exponential charge densities wrt distance from the membrane - are all emergent 
behaviors of the model.  The impacts of ion channel shape and pore locations upon conductivity and selectivity - are 
all emergent from particle system dynamics.  
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As a result the entire circuit representation effort of several years had to be abandoned to make way for a charged 

particle system of diffusion and drift that completely supplanted what the circuits promised to deliver.  The particle 

system was superior in performance and predictive potentials, and it integrated into the stochastic system of the 

actors seamlessly, on a one-to-one basis (particle colliding with actor).  The particle/actor combination provided a 

match of types (atomic scale to atomic scale), a match of space (sharing the same 3-dimensional volumes) and a 

match of time (no conversions necessary to communication in either direction).

11.2 MODELING WITH WET LAB DATA  

11.2.1 K DR CHANNEL (DELAYED RECTIFIER)  

A kinetic scheme for the K delayed Rectifier channel was provided in 1998 by Klemic KG, Durand DM, Jones SW 

[221]. Given their kinetic scheme of 5 closed channels in ladder formation with 5 open channels, what can be 

deduced from the resultant Q matrix?  This simple scheme offers all the transition rates at two voltages.  These 

project directly into the formation of a 2 page Q matrix.   

The states which are open are captured in the matrix O:

When this channel is instantiated, there are 2 voltage conditions to run:  rest at 0.060 v, and excited, at 0.020 v.   

O= c0 c1 c2 c3 c4 o0 o1 o2 o3 o4

0 0 0 0 0 1 1 1 1 1
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orig c0 c1 c2 c3 c4 o0 o1 o2 o3 o4

Q(:,:,1) c0 0 134 0 0 0 0.0064 0 0 0 0

-0.060 v c1 566 0 1405 0 0 0 0.077 0 0 0

c2 0 177 0 936 0 0 0 0.924 0 0

c3 0 0 266 0 468 0 0 0 1.1 0

c4 0 0 0 355 0 0 0 0 0 1.33

o0 725760 0 0 0 0 0 1604 0 0 0

o1 0 60480 0 0 0 47.2 0 16856 0 0

o2 0 0 5040 0 0 0 14.8 0 802 0

o3 0 0 0 420 0 0 0 141 0 401

o4 0 0 0 0 35 0 0 0 189 0

Q(:,:,2) c0 0 1873 0 0 0 0.0064 0 0 0 0

+0.020 v c1 88.7 0 1405 0 0 0 0.077 0 0 0

c2 0 177 0 936 0 0 0 0.924 0 0

c3 0 0 266 0 468 0 0 0 11.1 0

c4 0 0 0 355 0 0 0 0 0 133

o0 725760 0 0 0 0 0 22475 0 0 0

o1 0 60480 0 0 0 7.39 0 16856 0 0

o2 0 0 5040 0 0 0 14.8 0 11237 0

o3 0 0 0 420 0 0 0 22.2 0 5619

o4 0 0 0 0 35 0 0 0 29.6 0

This maps the original biodata into a Q matrix of state transition probabilities.  This raw Q is then conditioned to a 

uniform scale suitable for an iteratively generated stochastic time series.
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komp

Q(:,:,1) 0 219.081 0 0 0 10 0 0 0 0

169.151 0 392.88 0 0 0 18.5458 0 0 0

0 126.742 0 184.441 0 0 0 34.3726 0 0

0 0 140.232 0 155.278 0 0 0 17.4319 0

0 0 0 150.65 0 0 0 0 0 34.4279

1000 0 0 0 0 10 0 0 0 0

0 539.553 0 0 0 0 18.5458 0 0 0

0 0 291.117 0 0 0 0 34.3726 0 0

0 0 0 157.073 0 0 0 0 63.7228 0

0 0 0 0 84.7493 0 0 0 0 118.059

Q(:,:,2) 0 118.279 0 0 0 0 421.973 0 0 0

169.151 0 211.992 0 0 57.6003 0 392.88 0 0

0 126.742 0 191.654 0 0 68.4413 0 355.249 0

0 0 140.232 0 161.351 0 0 75.6907 0 299.085

0 0 0 150.65 0 0 0 0 81.2953 0

1000 0 0 0 0 0 219.081 0 0 0

0 539.553 0 0 0 91.2818 0 392.88 0 0

0 0 291.117 0 0 0 68.4413 0 184.441 0

0 0 0 157.073 0 0 0 119.784 0 155.278

0 0 0 0 84.7493 0 0 0 128.823 0

The data is mildly compressed on a log scale so as to avoid computationally burdensome small dt's.  That is, 

frequencies higher than, say, 10000 Hz are treated as 10000 Hz, effectively instant in a digital time model.

Then a maximum dt is calculated.  Then Q is proportioned to the dt itself, with residuals calculated.
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dt
Q(:,:,1) 0.98804 0.01188 0 0 0 8.49e-5 0 0 0 0

0.02429 0.93727 0.03815 0 0 0 0.00029 0 0 0

0 0.01364 0.95418 0.03118 0 0 0 0.001 0 0

0 0 0.01669 0.95776 0.0221 0 0 0 0.00345 0

0 0 0 0.01927 0.9689 0 0 0 0 0.01183

0.84885 0 0 0 0 0.11041 0.04074 0 0 0

0 0.24712 0 0 0 0.00707 0.61479 0.13102 0 0

0 0 0.07194 0 0 0 0.00398 0.89521 0.02888 0

0 0 0 0.02094 0 0 0 0.01218 0.94641 0.02047

0 0 0 0 0.0061 0 0 0 0.01409 0.97982

Q(:,:,2) 0.95591 0.044 0 0 0 8.48852297239755e-050 0 0 0

0.00968 0.95188 0.03815 0 0 0 0.00029 0 0 0

0 0.01364 0.95418 0.03118 0 0 0 0.001 0 0

0 0 0.01669 0.95776 0.0221 0 0 0 0.00345 0

0 0 0 0.01927 0.9689 0 0 0 0 0.01183

0.84885 0 0 0 0 0 0.15115 0 0 0

0 0.24712 0 0 0 0.00282 0.61904 0.13102 0 0

0 0 0.07194 0 0 0 0.00398 0.81696 0.10713 0

0 0 0 0.02094 0 0 0 0.00486 0.89826 0.07593

0 0 0 0 0.0061 0 0 0 0.00561 0.98829

These values are then converted to a CDF via integration.
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CDF

Q(:,:,1) 0.98804 0.999915 0.999915 0.999915 0.999915 1 1 1 1 1

0.024287 0.96156 0.999708 0.999708 0.999708 0.999708 1 1 1 1

0 0.013635 0.967818 0.998997 0.998997 0.998997 0.998997 1 1 1

0 0 0.016693 0.974454 0.996553 0.996553 0.996553 0.996553 1 1

0 0 0 0.019265 0.988169 0.988169 0.988169 0.988169 0.988169 1

0.848852 0.848852 0.848852 0.848852 0.848852 0.959258 1 1 1 1

0 0.247116 0.247116 0.247116 0.247116 0.254189 0.868975 1 1 1

0 0 0.07194 0.07194 0.07194 0.07194 0.075916 0.971123 1 1

0 0 0 0.020943 0.020943 0.020943 0.020943 0.033122 0.979533 1

0 0 0 0 0.006097 0.006097 0.006097 0.006097 0.020184 1

0 0 0 0 0 0 0 0 0 0

Q(:,:,2) 0.955912 0.999915 0.999915 0.999915 0.999915 1 1 1 1 1

0.009675 0.96156 0.999708 0.999708 0.999708 0.999708 1 1 1 1

0 0.013635 0.967818 0.998997 0.998997 0.998997 0.998997 1 1 1

0 0 0.016693 0.974454 0.996553 0.996553 0.996553 0.996553 1 1

0 0 0 0.019265 0.988169 0.988169 0.988169 0.988169 0.988169 1

0.848852 0.848852 0.848852 0.848852 0.848852 0.848852 1 1 1 1

0 0.247116 0.247116 0.247116 0.247116 0.249932 0.868975 1 1 1

0 0 0.07194 0.07194 0.07194 0.07194 0.075916 0.892873 1 1

0 0 0 0.020943 0.020943 0.020943 0.020943 0.025806 0.924068 1

0 0 0 0 0.006097 0.006097 0.006097 0.006097 0.011707 1

The CDF can then be instantiated, yielding a time series of states.  The state number can then be mapped through O 

to yield the openings and closings.    The results of biodata simulation follow.  The upper trace pair is at rest voltage 

and the lower trace pair is at depolarization voltage. 
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The x-axis is time in seconds. There are 2 y-axis; the lower trace is the phenostate (openings/closings), and the upper 

trace  is the internal conformational state.  This result indicates that the “resting state is  0.2569 fraction of the time 

open; and the depolarized states is  0.4362 fraction open.   Multiple runs yielded quite similar numbers, so these are 

indeed characteristic of the Q.  While directionally correct, if true to the biology this would be a metabolically 

expensive type of channel.  Much more likely is that the resting state is closed all but 1 or 2% of the time.

Note the dominant pathways through the state space.
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c0 c1 c2 c3 c4 o0 o1 o2 o3 o4 dominant state paths

Q1 c0 0 134 0 0 0 0.0064 0 0 0 0 c0 c1 c2 c3 c4 c3

-0.060 v c1 566 0 1405 0 0 0 0.077 0 0 0 c0 c1 c2 o4 o3 c3

c2 0 177 0 936 0 0 0 0.924 0 0 c4 o4

c3 0 0 266 0 468 0 0 0 11.1 0

c4 0 0 0 355 0 0 0 0 0 133

o0 725760 0 0 0 0 0 1604 0 0 0 o0 c0

o1 0 60480 0 0 0 47.2 0 16856 0 0 o1 c1

o2 0 0 5040 0 0 0 14.8 0 802 0 o2 c2

o3 0 0 0 420 0 0 0 141 0 401 o3 c3

o4 0 0 0 0 35 0 0 0 189 0 o4 o3

c4

c0 c1 c2 c3 c4 o0 o1 o2 o3 o4 dominant state paths

Q2 c0 0 1873 0 0 0 0.0064 0 0 0 0 c0 c1 c2 c3 c4 c3

+0.020 v c1 88.7 0 1405 0 0 0 0.077 0 0 0 o4 c4

c2 0 177 0 936 0 0 0 0.924 0 0 o3 o4

c3 0 0 266 0 468 0 0 0 11.1 0

c4 0 0 0 355 0 0 0 0 0 133

o0 725760 0 0 0 0 0 22475 0 0 0 o0 c1

o1 0 60480 0 0 0 7.39 0 16856 0 0 o1 c1

o2 0 0 5040 0 0 0 14.8 0 11237 0 o2 o3 o4 c4

o3 0 0 0 420 0 0 0 22.2 0 5619 c2 o3 o4

o4 0 0 0 0 35 0 0 0 29.6 0

O c0 c1 c2 c3 c4 o0 o1 o2 o3 o4

0 0 0 0 0 1 1 1 1 1

The high probability paths lead to the attractors of the state space.  In all cases leading to a nest consisting of 

{c3,c4,o3,o4}.  This is not healthy, because it results in too much open time for a quiescent channel.  As channel 

openings are metabolically expensive, most, if not all, neuron types can be expected to perform physiologically with 

less than 25% open time while busy, and less than 1% or 2% while “at rest”.  Ranges of greater than 25% open 

would put the organism into emergency or panic conditions.  That is, while optimal coding hoovers around 50% 

opening time, the energy cost biases that mean downward.

There is much more analysis to do.  The time envelops, as they may change wrt voltage should reveal the delayed 

rectifier behaviors.  This is future work.
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This particular Kdr scheme has an equal number of closed and open states, which  conveniently allows us to split the 

Q into quadrants.

BLOCK02 – color coded

c0 c1 c2 c3 c4 o0 o1 o2 o3 o4

0 134 0 0 0 0.0064 0 0 0 0

566 0 1405 0 0 0 0.077 0 0 0

0 177 0 936 0 0 0 0.924 0 0

0 0 266 0 468 0 0 0 0.06 0

0 0 0 355 0 0 0 0 0 0.93

725760 0 0 0 0 0 1604 0 0 0

0 60480 0 0 0 47.2 0 16856 0 0

0 0 5040 0 0 0 14.8 0 802 0

0 0 0 420 0 0 0 141 0 401

0 0 0 0 35 0 0 0 189 0

0 1873 0 0 0 0.0064 0 0 0 0

88.7 0 1405 0 0 0 0.077 0 0 0

0 177 0 936 0 0 0 0.924 0 0

0 0 266 0 468 0 0 0 11.1 0

0 0 0 355 0 0 0 0 0 133

725760 0 0 0 0 0 22475 0 0 0

0 60480 0 0 0 7.39 0 16856 0 0

0 0 5040 0 0 0 14.8 0 11237 0

0 0 0 420 0 0 0 22.2 0 5619

0 0 0 0 35 0 0 0 29.6 0

         

volts -0.06 0.02

grey closed to closed high mid

green closed to open low high

orange open to open low mod

yellow open to closed high high

Conventional channel behavior would require quadrant weightings similar to above.  To generate behavior typical of 

channels, that is, low firing rates at membrane rest voltages, and moderate to high firing rates during depolarization 

voltages, the quadrants would look something like: 
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BLOCK03 –  quadrants exchanged, color coded

-0.06 0 1604 0 0 0 0.0064 0 0 0 0

566 0 16856 0 0 0 0.077 0 0 0

0 177 0 802 0 0 0 0.924 0 0

0 0 266 0 401 0 0 0 0.06 0

0 0 0 355 0 0 0 0 0 0.93

725760 0 0 0 0 0 0.0064 0 0 0

0 60480 0 0 0 47.2 0 0.077 0 0

0 0 5040 0 0 0 14.8 0 0.924 0

0 0 0 420 0 0 0 141 0 11.1

0 0 0 0 189 133 0 0 35 0

0.02 0 134 0 0 0 0 22475 0 0 0

566 0 1405 0 0 7.39 0 16856 0 0

0 177 0 936 0 0 14.8 0 11237 0

0 0 266 0 468 0 0 22.2 0 5619

0 0 0 355 0 0 0 0 29.6 0

725760 0 0 0 0 0 1604 0 0 0

0 60480 0 0 0 47.2 0 16856 0 0

0 0 5040 0 0 0 14.8 0 802 0

0 0 0 420 0 0 0 141 0 401

0 0 0 0 35 0 0 0 189 0

These fields of values will generate ion channel behaviors such that rest voltage results in low firing rates and 

depolarization voltage results in rapid firing rates.
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This demonstrates open fraction times of  0.0184 while the at rest voltage (-0.060), and 0.6325 while under 

depolarizing voltage (0.020).  The key considerations are what modulates these behaviors, and how complex may be 

the responses to such modulation.

11.2.2 KV SHAKER CHANNEL MODEL ATTEMPT  

Three papers by Zogotta  [173] in 1994 gathered wet lab data on the potassium channel Kv 1.1 (shaker).   The See 

also PMID's: 8189206, 8189207, 8189208.   The data provided yielded a state transition matrix:

% Q construction
a0  =    1010  ;     %  alpha0    k alpha  values at V = 0 mv
b0  =    6.25  ;     %  beta0  k beta  
g0  =    3400  ;     %  gamma0    k gamma 
s0  =    8.5   ;     %  sigma0    k sigma 
d0  =    600   ;     %  OC  k OC 
e0  =    3800  ;     %  CO  k CO 
h0  =    2.00  ;     %  eta      
t0  =    11.8  ;     %  theta    
                  
a1  =    0.32  ;     %  z alpha     
b1  =    2.5   ;     %  z beta      
g1  =    0.32  ;     %  z gamma     
s1  =    1.1   ;     %  z sigma     
d1  =    0  ;        %  z OC     
e1  =    0.17  ;     %  z CO     
                  
a3  =    a1+b1;      %  zx    
b3  =    g1+s1;      %  zy    
                  
a4  =     a0*exp(a1*FRT*V/1000);      %   alpha    % 1000 may be removed for mv
b4  =     b0*exp(b1*FRT*V/1000);      %   beta     % leave it in for units in volts
g4  =     g0*exp(g1*FRT*V/1000);      %   gamma    
s4  =     s0*exp(s1*FRT*V/1000);      %   sigma    
                  
a5  =     exp(-a1*a3*h0*FRT);      %   x alpha     
b5  =     exp(b1*a3*h0*FRT);       %   x beta      
g5  =     exp(-g1*a3*h0*FRT);      %   x gamma     
s5  =     exp(s1*a3*h0*FRT);       %   x sigma     
                  
a6  =     exp(-a1*b3*h0*FRT);      %   y alpha     
b6  =     exp(b1*b3*h0*FRT);       %   y beta      
g6  =     exp(-g1*b3*h0*FRT);      %   y gamma     
s6  =     exp(s1*b3*h0*FRT);       %   y sigma     
 
                  
% Init Q
Q = zeros(qs);
 
% forward reaction rates, per second
% horz links
Q(1,2) = 4*a4*a5^0;
Q(2,3) = 3*a4*a5^1;
Q(3,4) = 2*a4*a5^2;
Q(4,5) = 1*a4*a5^3;
   
Q(6,7) = 3*a4*a5^1*a6;
Q(7,8) = 2*a4*a5^2*a6;
Q(8,9) = 1*a4*a5^3*a6;
   
Q(10,11) =  2*a4*a5^2*a6^2;



757

Q(11,12) =  1*a4*a5^3*a6^2;
   
Q(13,14) =  1*a4*a5^3*a6^3;
 
% vert links   
Q(2,6) =    1*g4*g5^0*g6^0;
Q(3,7) =    2*g4*g5^1*g6^0;
Q(4,8) =    3*g4*g5^2*g6^0;
Q(5,9) =    4*g4*g5^3*g6^0;
   
Q(7,10) =   1*g4*g5^1*g6^1;
Q(8,11) =   2*g4*g5^2*g6^1;
Q(9,12) =   3*g4*g5^3*g6^1;
   
Q(11,13) =  1*g4*g5^2*g6^2;
Q(12,14) =  1*g4*g5^3*g6^2;
   
Q(14,15) =  1*g4*g5^3*g6^3;
Q(15,16) =  d0;
 
% backward reaction rates, per second
% horz  back links      
Q(2,1) = 1*b4*b5^0;
Q(3,2) = 2*b4*b5^1;
Q(4,3) = 3*b4*b5^2;
Q(5,4) = 4*b4^b5^3;
   
Q(7,6) =    1*b4*b5^1*b6;
Q(8,7) =    2*b4*b5^2*b6;
Q(9,8) =    3*b4*b5^3*b6;
   
Q(11,10) =  1*b4*b5^2*b6^2;
Q(12,11) =  2*b4*b5^3*b6^2;
   
Q(14,13) =  (1/t0) *b4*b5^3*b6^3;
   
% vert back links   
Q(6,2) =    1*s4*s5^0*s6^0;
Q(7,3) =    1*s4*s5^1*s6^0;
Q(8,4) =    1*s4*s5^2*s6^0;
Q(9,5) =    1*s4*s5^3*s6^0;
   
Q(10,7) =   2*s4*s5^1*s6^1;
Q(11,8) =   2*s4*s5^2*s6^1;
Q(12,9) =   2*s4*s5^3*s6^1;
   
Q(13,11) =  3*s4^s5^2*s6^2;
Q(14,12) =  3*s4*s5^3*s6^2;
   
Q(15,14) =  4*s4*s5^3*s6^3;
Q(16,15) =  e0;

V = 0.060;  % volts = rest potential
Q(v) = [ ...
   x1  4480    0  0 0 0     0 0 0 0 0 0 0 0 0 0
373 x2   3360    0 0 2800 0 0 0 0 0 0 0 0 0

0;
0 746 x3     2240 0 0 5600 0 0 0 0 0 0 0 0

0;
0 0 1119 x4     1120 0 0 8400 0 0 0 0 0 0 0

0;
0 0 0 1492 x5     0 0 0 11200    0 0 0 0 0 0 0;
0 2800 0 0 0 x6     3360     0 0 0 0 0 0 0 0

0;
0 0 21.2 0 0 373 x7 2240 0 42.2 0 0 0 0

0 0'
0 0 0 21.2 0 0 746 x8 1120 0 5600 0 0 0

0 0;
0 0 0 0 21.2 0 0 1119 x9     0 0 8400 0 0 0

0;
0 0 0 0 0 0 42.2 0 0     x10     2240 0 0 0 0
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0;
0 0 0 0 0 0 0 42.2 0 373 x11 1120 2800 0

0 0;
0 0 0 0 0 0 0 0 42.2 0 746 x12     0 5600 0

0;
0 0 0 0 0 0 0 0 0 0 63.6 0     x13     1120 0

0;
0 0 0 0 0 0 0 0 0 0 0 63.6 373

x14     2800; 0
0 0 0 0 0 0 0 0 0 0 0 0 0

84.8       x15      600;
0 0 0 0 0 0 0 0 0 0 0 0 0 0

3800     x16     ];

R = [ ];    % R  is unnecessary in an analog voltage Q, because modulation does not require bindings.
O = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ];      %  state 15 is the open state; all others are closed.

The results of instantiating this Q for 1000 dt iterations is:

FIGURE 125: Kv1.1 Channel simulation

Repeated trials, of which this plot is typical indicates that no matter what state the actor starts in, the Q will tend 

toward state 15, followed by a flutter between 15 and 16.  At first glance this appears undesirable, similar to a poison 

state – proceeding to just one state and staying there forever.  But this data was collected, indeed can only be 

collected by getting the channel to open.  Thus modulation conditions must be produced in the lab for channel 

openings.  Regardless of how it was accomplished (voltage, neurotransmitters, blocks).  What this represents then is 

1 page of the Q; not the entire Q.  

A minimum of  3 more pages in Q must be constructed:   Hyperpolarized, mildly depolarized, deeply depolarized, as 

a function of voltage modulation.  However, following the formuli provided by Zagotta, the values for Q were not 

suitable for a state transition matrix.    Although one can estimate and speculate what a working Q matrix might 

requires in terms of values, the purpose of this exercise was to locate a most complete set of state transition rates and 

“run” them to disclose their inherent behavior.  This set was not quite viable to do so.
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The necessary characteristics of channel behavior are that they remain largely closed during their “rest” conditions, 

and then respond rather quickly to stimuli such as voltage or neurotransmitter bindings, but never engaging in 

prolonged openings, as this would deplete the cell's membrane potential (usually regarded as lethal).  Variations on 

this theme include delayed responses, and prolonged closed times (refractory periods).   While a depolarizing 

voltage should open the channel, the Q-matrix state transitions should also be such that the channel cannot be held 

open indefinitely during a sustained depolarizing voltage.   State transitions must take place that not only close the 

channel but also delay its opening.  One of the characteristics of  the shaker channel is that the refractory period is 

either missing, short or erratic;  and the “shake” is the result.  But the above performance of  holding open 

indefinitely may not be physiologic, due, again, to its danger to cell viability.  

The larger problem with the published data is that the second block of voltage dependent equations do not produce a 

Q matrix consistent with the first block of constants, provided by the same paper.  

11.2.3 NAK-ATPASE PUMP MODELING ATTEMPT  

In 1994, Heyse [219] published an extensive set of state graphs and transition probabilities on the NaK-ATPase 

pump.  The state graph provided can be rearranged to order which side of the membrane the bind/release sites are 

active one:
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FIGURE 126: State Graph of NaK-ATPase pump

Such a state graph can then be depicted as a duty cycle, with an educated guess as to which would be the dominate 

path.  This exercise reveals a missing state (s7 in red), or rather a complex transition that is better broken down into 

two simple transitions.  State s6 transports across the membrane, but cannot lose a bound Na along the way.  It must 

complete the transport, as one step, and then dissociate the first of three Na's bound to it. 

The numbering and positioning of the states is driven by the highest probabilities of occurrence and the need to 

complete the pumping cycle so as to pump across the membrane many thousands of times per second.  If, in 

modeling it  should be come apparent that the choice of state numbers was not accurate to the actual behavior, then 

these can be re-ordered, for convenience.  Those outside the main loop. But none-the-less, participating as 

alternative paths can be drawn in (as brown links).  And pumps are found to have the occasional “skips” or 

shortcuts, whereby only a partial number of  particles are transported per cycle, or a cycle is completed without an 

energy source (ATP lysis), perhaps while being driven backwards during unusual concentration reversals.  These are 

represented as lavender links.
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FIGURE 127: Duty Cycle of NaK-ATPase pump

This is a combined conformation and bind event depiction, mapping to the following state transition matrix.

Q State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 X q0102 q0110 q0115 q0116
2 q0201 X q0203 q0221
3 q0302 X q0304 q0316
4 q0403 X q0405 q0417
5 q0504 X q0506 q0518
6 q0605 X q0607
7 q0706 X q0708
8 q0807 X q0809 q0822
9 q0908 X q0910

10 q1001 q1009 X q1011
11 q1110 X q1112
12 q1211 X q1213
13 q1312 X q1314 q1319
14 q1413 X q1415 q1420
15 q1501 q1514 X q1521
16 q1603 X q1617
17 q1704 q1716 X q1718 q1722
18 q1805 q1817 X
19 q1913 X q1920
20 q2014 q2019 X q2021
21 q2102 q2115 q2120 X
22 q2208 q2217 X

Many of the rate coefficients were provided by Heyse.
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GREEN forward loop duty cycle
KHAKI alternative forward loop

PURPLE free paths, short cuts, forward bypass
BROWN backward
RUDDY portals to backward motion

TABLE 27: NAK-ATPASE REACTION RATES
According to the Heyse scheme, 59 transition probabilities are needed.  But only 42 were provided, leaving 17 

absent, yet necessary to complete the duty cycle. 

interpretation Value Units Range of Confidence

15000000 M-1*s-1 10000000 .. 100000000 M-1*s-1
ab 1.64 s-1

10 s-1 3 .. 30 s-1
db 25200 M-1*s-1

50 s-1 > 10 (or equal to) s-1
0.1 s-1 < 1   (or equal to) s-1

< 1E4 1.00E+004 s-1 5000 .. ? s-1
1000000 M-1*s-1 M 

g2f < 5E3 5.00E+003 s-1 3000 .. ? s-1
g2b 2680 M-1*s-1 g2f / g2b = 1 .. 2.5 M 
g3f 22 s-1 18 ..  30, & g3f / g3b = 0.12M s-1
g3b 180 M-1*s-1 60 ..  600 M-1*s-1
hf 0.1 s-1 0.005 .. 0.5 s-1

100 s-1 50 .. 500 s-1
22 s-1 15 .. 30 s-1

400 s-1 100 .. 1000 s-1
34000 M-1*s-1 20000 .. 50000 M-1*s-1

10 s-1 5 ..  20 s-1
m2f 5000000 M-1*s-1 > 1000 M-1*s-1
m2b 2000 s-1 M2b / m2f = 1 .. 100
n3f 2000 M-1*s-1 > 1000 M-1*s-1
n3b 800 s-1 n3b / n3f  = 4
of 1000000 M-1*s-1 1000000 .. 4000000 s-1
ob 0.01 s-1 0.005 .. 0.002 s-1
pf 200 s-1 150 .. 300 s-1

3700 M-1*s-1 1000 .. 1000000 M-1*s-1
100000 s-1 >= 1000 s-1

5000000 M-1*s-1 >= 1000 M-1*s-1
0.8 s-1 0.3 .. 1 s-1

3300 M-1*s-1 100 .. 50000 M-1*s-1
sf 500000 M-1*s-1 250000 ..  1000000 M-1*s-1

400 s-1 Sb / sf = 4 .. 10 

Concentration interpretation Value Units symbol as used herein
0.0104 M
0.1090

Ck 0.1240 M
0.0023
0.0100 M
0.0010 M
0.0020 M

Rate Coeff
Units for Range of 
Confidence

af
ab / af  = 50 .. 200 nM

df

ef
eb
gf
gb gf / gb = 0.05 ..  0.2

hb
kf
kb
mf
mb

Ųm – mM

mM

pb
qf
qb
rf
rb

sb Ųm 

Cna conc_in.Na ci.Na
conc_out.Na co.Na
conc_in.K ci.K
conc_out.K co.K

cT conc.ATP ci.ATP
cp conc.ADP ci.ADP
cd conc.Pi ci.Pi
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TABLE 28: EXTENSION OF REACTION RATES TO STATE 
TRANSITION PROBABILITIES

Map coefficients to scheme links
affin  * conc affin conc prod

1 q0102 af ci.atp 15000000 0.01 150000
2 q0110 rb ci.adp 3300 0 3.3
3 q0115  - 1 0
4 q0116  - 1 0
5 q0201 ab 1/af 10 0.61 6.097560976
6 q0203  - 1 0
7 q0221  - 1 0
8 q0302  - 1 0
9 q0304  - 1 0
10 q0316 ab 10 1 10
11 q0403  - 1 0
12 q0405 n3f Cna 800 0.11 87.2
13 q0417 ab 10 1 10
14 q0504 n3b 1000000 1 1000000
15 q0506 pf 3700 1 3700
16 q0518 ab 10 1 10
17 q0605 pb ci.adp 100000 0 200
18 q0607  - 1 0
19 q0706  - 1 0
20 q0708 g3f 180 1 180
21 q0807 g3b co.na 0.1 0.12 0.01
22 q0809 g2f 2680 1 2680
23 q0822 df 25200 1 25200
24 q0908 g2b co.na 22 0.12 2.73
25 q0910 g1f 1000000 1 1000000
26 q1001 rf 3300 1 3300
27 q1009 g1b co.na 5.00E+003 0.12 620
28 q1011 m1f co.k 10 0.01 0.1
29 q1110 m1b 5000000 1 5000000
30 q1112 m2f co.k 2000 0.01 20
31 q1211 m2b 2000 1 2000
32 q1213 qf 1000000 1 1000000
33 q1312 qb ci.adp 5.00E+003 0 10
34 q1314 hf 100 1 100
35 q1319 sf ci.atp 400 0 0.4
36 q1413 hb 1 0
37 q1415  - 1 0
38 q1420 af ci.atp 1.64 0 0
39 q1501  - 1 0
40 q1514  - 1 0
41 q1521 af ci.atp 1.64 0 0
42 q1603 af ci.atp 1.64 0 0
43 q1617  - 1 0
44 q1704 af ci.atp 1.64 0 0
45 q1716  - 1 0
46 q1718 n3f ci.na 800 0.11 87.2
47 q1722 eb 1.00E+004 1 10000
48 q1805 af ci.atp 1.64 0 0
49 q1817 n3b 1000000 1 1000000
50 q1913 ab 10 1 10
51 q1920 kf 400 1 400
52 q2014 ab 10 1 10
53 q2019 kb 34000 1 34000
54 q2021  - 1 0
55 q2102  - 1 0
56 q2115 ab 10 1 10
57 q2120  - 1 0
58 q2208 db ci.adp 50 0
59 q2217 ef 0.1 1 0.1
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TABLE 29: KV CHANNEL Q MATRIX VALUES AND COMPLETIONS

Out of the 22 state provided in the Heyse scheme, only two of them, 5 and 17 are viable, in that they have adequate 

in feed and out feed rates.  The rest display either a lack of input sources or a lack of output sinks.  For a pump to 

complete 10000 cycle per second, and for this pump in particular to execute a minimum of 15 states per cycle – then 

there must be 150 000 states traversed each second.  This implies an average rate of >15000 per state on the 

dominant cycle.  Each and every state on this cycle should be capable of a speed of  150000 input events and 150000 

output events per second.  More exactly, the sum of the time durations of each of the 15 steps around the cycle must 

add up to less than 1/10000th of a second.   The provided data does not even provide for a single cycle, given any 

length of time.  Ergo, there is missing data.

Only 2 out of the 22 states are viable, in that they have a significant input and significant output.  However, they do 

not complete a duty cycle.  There must be additional transition probabilities to complete a cycle.  Because each of 

the binding combinations is likely to result in a unique Q page, there is missing data.  The above Q should be 

representative of only one binding combination, but may be a mix of several.  In either case there remains work to 

do:  To ad, and maybe to separate.  In one sense the Q above is correct:  any given bind state only represents a 

Q State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 X 150000 3.3 0 0
2 0 X 6.1 0
3 0 X 0 0
4 10 X 0 87.2
5 10 X 1000000 3700
6 10 X 200
7 0 X 0
8 180 X 0.01 2680
9 25200 X 2.73
10 1000000 3300 X 620
11 0.1 X 5000000
12 20 X 2000
13 1000000 X 10 100
14 0.4 X 0 0
15 0 0 X 0
16 0 X 0
17 0 0 X 0 87.2
18 10000 0 X
19 1000000 X 10
20 400 10 X 34000
21 0 0 10 X
22 0 0 X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

10 1 16 17 18 5 8 9 10 9 12 11 12 18 13 14 15
8 13 20

1 2 5 4 8 9 10 9 12 13 19 20 21 3 4 5 20 19 17
6 8 11 11 12

events/s
econd
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portion of the cycle; never the entirety.  If we look at the duty cycle as a series of phases, then we can “solve” each 

phase independently, then stitch them together.

Presuming the pump to begin in a rest state with no bound Na, K, nor ATP, then:

Phase 1 spans from the rest state to 1Na bound on the king site.
Phase 2 spans the loading of 2 more Na 
Phase 3 binds an ATP
Phase 4 is transport across the membrane, while lysing an ATP, leaving only Pi bound
Phase 5 unbinds 1,2,3 Na
Phase 6 binds K and sites 2 and 3
Phase 7 return transports the K's across the membrane
Phase 8 releases 2,3 K
Phase 9 releases the Pi

TABLE 30: NAK-ATPASE PUMP CHART OF TRANSITIONS AND EVENTS
The green bars symbolize transport events.  The lowest two blocks contain alternative paths, which probably run 

concurrently with the dominant path.  

This matrix can be separated into a Q matrix of 6 to 9 states, and the rest of the transactions (bindings and 

dissociations) belong to the R matrix.  How many possible permutations to the bind sites d are there?

Q State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 X q0102 q0110 q0115 q0116
2 q0201 X q0203 q0221
3 q0302 X q0304 q0316
4 q0403 X q0405 q0417
5 q0504 X q0506 q0518
6 q0605 X q0607

7 q0706 X q0708
8 q0807 X q0809 q0822
9 q0908 X q0910
10 q1001 q1009 X q1011
11 q1110 X q1112
12 q1211 X q1213
13 q1312 X q1314 q1319

14 q1413 X q1415 q1420
15 q1501 q1514 X q1521
16 q1603 X q1617
17 q1704 q1716 X q1718 q1722
18 q1805 q1817 X
19 q1913 X q1920
20 q2014 q2019 X q2021
21 q2102 q2115 q2120 X
22 q2208 q2217 X
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TABLE 31: NAK-ATPASE PUMP LIST OF BINDING COMBINATIONS

There are in fact 192 permutations, though all may not occur in nature.   Part of the modeling process is to sort out 

the high runners from the rare-to-never events, which might be purged to conserve computational resources.

The R matrix is then extracted from the general state graph above.  In this scheme there must be a minimum of  16 

bind combinations (dc=16), which in turn defines the quantity of pages in Q.  The actor must have a minimum of 4 

bind sites (qd=4) .  There must be 3 Na sites and 1 ATP site.  The ATP site doubles as a P binding site, and 2 of the 3 

Na sites double as K binding sites.  Obviously, the binding kinetics must change drastically to first bind NA, then 

discharge NA, then bind K, then discharge K.   There must be a minimum of 6 states (qs>=6) to accommodate the 

necessary changes in bind kinetics and move the pump mechanisms to and fro.  The alternative path blocks run in 

parallel to the normal blocks, and may or may not require additional affinity sets.

This exercise may be continued, but would move into the realm of conjecture without additional wet lab data to 

guide its choices, and affinity values.  The objective is to produce an R with all the bind and dissociate kinetics for 

each state of the molecule, as would effect the necessary dynamics of the pumping cycle.

State Name by Heyse D =[Na Na Na K K ATP] page in Q O Q
E1 N0K0P0E1 [ 0 0 0 0 0 0 ] 1 1 1
E1*ATP N0K0P1E1 [ 0 0 0 0 0 4 ] 2 1 2
NaE1*ATP N1K0P1E1 [ 1 0 0 0 0 4 ] 3 1 3
Na2E1*ATP N2K0P1E1 [ 1 1 0 0 0 4 ] 4 1 4
Na3E1*ATP N3K0P2E1 [ 1 1 1 0 0 4 ] 5 1 5
(Na3)E1—P N3K0P1E1 [ 1 1 1 0 0 3 ] 6 1 6
missing N3K0P1E2 [ 1 1 1 0 0 3 ] 6 2 7
P—E2(Na2) N2K0P1E2 [ 1 1 0 0 0 3 ] 7 2 8
P—E2(Na) N1K0P1E2 [ 1 0 0 0 0 3 ] 8 2 9
P—E2 N0K0P1E2 [ 0 0 0 0 0 3 ] 9 2 10
P—E2(K) N0K1P2E2 [ 0 0 0 2 0 3 ] 10 2 11
P—E2(K2) N0K2P2E2 [ 0 0 0 2 2 3 ] 11 2 12
E2K2 N0K2P0E2 [ 0 0 0 2 2 0 ] 12 2 13
K2E1 N0K2P0E1 [ 0 0 0 2 2 0 ] 12 1 14
KE1 N0K1P0E1 [ 0 0 0 2 0 0 ] 13 1 15
NaE1 N1K0P0E1 [ 1 0 0 0 0 0 ] 14 1 16
Na2E1 N2K0P0E1 [ 1 1 0 0 0 0 ] 15 1 17
Na3E1 N3K0P0E1 [ 1 1 1 0 0 0 ] 16 1 18
K2E2*ATP N0K2P1E2 [ 0 0 0 2 2 4 ] 17 2 19
K2E1*ATP N0K2P1E1 [ 0 0 0 2 2 4 ] 17 1 20
KE1*ATP N0K1P1E1 [ 0 0 0 2 0 4 ] 18 1 21
missing N1K0P0E2 [ 1 0 0 0 0 0 ] 14 2 22
(Na2)E2 N2K0P0E2 [ 1 1 0 0 0 0 ] 15 2 23
not used N3K0P0E2 [ 1 1 1 0 0 0 ] 16 2 24

Rationalized 
state name
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In the cases of individual actors, and also in the case of an assembly of actors into a model for nervous system 

behavior, it was found that of the wet lab data, though great effort was made by others to derive the transition 

probabilities, none yet has been found with a quantity of states and bindings sufficient to drive a viable duty cycle. 

Evidently, while some states are outwardly measurable, (e.g. via current measurements), there are other states of the 

cycle that are not so easily measured.   They are “the dark side of the moon”, in that they are not visible, with no 

easy way to find a point of observation that can “see” them..  Although I earlier coined the term phenostates for 

those states made obvious by their impacts upon the surround, I neglected to address a converse type of state, the 

unexpressed, hidden states.  States that are not measurable by today's methods will deprive us of the wet lab data 

needed to simulate complete duty cycles, iterating so as to enact the behavioral repertoire of the actor type.  Models 

require information to complete the duty cycles, else no iterative action can take place. Wet lab timing studies may 

serve “bridge over” or provide  “place holder” states that estimate transition probabilities to be inserted to complete 

those cycles for modeling purposes.   These estimates are expected to represent the merge of whatever states happen 

internally during the missing “dark” interval.   Such a strategy breaks down when those internal states are 

sufficiently logical to vary their behaviors with varying conditions, e.g. shift modes.   Then System Identification 

work will need to be performed so as to extract statistically probable internal “mechanisms” so as to explain the 

observed behaviors.   It will probably be through the efforts of future Molecular Modeling projects that the inner 

workings of molecular order and its cycles within actors will be revealed.  Modeling offers the advantage of 

rendering every internal nuance as observable.

It is not within my skills, nor this project's scope, to tackle instrumentation and methods for deriving single unit 

recordings.  So any comments by me as to what  can only be conjecture or quoting earlier workers.  Suffice it to say, 

that membranal proteins definitely work in duty cycles, capable of repeating their function hundreds, and sometimes 

thousands, of cycles per second.  The issue is not “can they do it?”, or indeed “do they do it?”.  The issue is the 

feasibility of mensuration of intra-molecular events.  If it should prove impossible to to measure such events without 

distorting the thing being measured; then science must rely upon modeling from first principles to derive the 

mechanisms of biomolecular function.

It is possible to make reasonable assumptions across missing data.  However the quantities of missing data are not 

tiny.  They represent greater than half of any of the duty cycles to be modeled.  The fiction of making up numbers to 

fill in the missing matrix cells with values only constitutes a hypothetical case, several of which have already been 
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done within the dissertation.  Therefore, continuing to create new such cases does not add anything to the argument 

of the thesis:  That the state transitions of membranal proteins are germane to creating functional behaviors, and hold 

the potential for information processing.   Beyond the estimating across missing bits we enter into the realm of 

engineering new molecules, and new behaviors for definite functions, as would be needed in liquid state 

computational devices.  This is an interesting aspect of the work, but does not fulfill the request to demonstrate a 

biological case.

Though not feasible at this time to map biological data to the complete inner workings of the molecule, this work 

will continue, both from the biological perspective of understanding channel function, and from the computational 

perspective of determining the feasibility of single molecule pattern recognizers. 

11.3 OBJECTIVES MET  

Much of the work of this project has been synthetic, the building of a model to represent the key elements of  an 

information processing system representative of neuronal molecular processes.   The grand objective has been to 

provide a tool useful in the exploration of channelopathies and their therapies.  But to get there a considerable list of 

issues must be resolved.  The main contribution of this project is intended to be the laying of the ground work for 

this greater endeavor via a careful breadth-first search for the perspectives, philosophies, options and strategies that 

map out a sound and reasonable path.  A path to a successful and near-optimal investment of efforts towards 

understanding neuronal function at the molecular level, to such depth and detail as to create predictive models of 

computational function as result from particular actor constellations.  The laying of ground work does not include as 

much analytic science as it does the canvasing of the philosophy of science for applicable ground rules.  It concerns 

characterization of the concept space.   It concerns what is to be measured and how such measurements are to be 

utilized.  And for practical reasons, it involves the means of representation.

Fortunately, all of the elemental objectives were successfully modeled so as to abide by the known applicable 

physics as relevant to information flows.  As the bio-data does not arrive complete and exhaustive on any given cell 

type, there remain a great quantity of biological unknowns.  This ofrces the modeler to engage in a significant 

amount of “reasonable interpolation”merely to complete state transition tables sufficient to be “run”.  The missing 

bits force a contemplation of both the biology and the modeling process.  If its working correctly it will suggest 
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fruitful experiments to the biologist as to what data would complete a predictive model of the cytological process of 

interest .  Once dynamic models are behaving reasonably, then they are amenable to incremental improvements as 

new data become available from the wet lab work and MD work.  

11.4 MODELS ARE NOT SCIENTIFIC EXPERIMENTS  

Models live in a limbo between doing laboratory research and data interpretation.  The art of drawing conclusions 

about the data gleaned from the lab is more akin to hypothesis generation than to analysis.  That is, models are more 

closely aligned to interpretation of the data than they are to the procurement of data.  But models do both, somewhat, 

and do neither completely.  A simulation can generate data that looks like wet lab data, and it can demonstrate the 

current level of understanding of the biology under study.  The model itself is a new beast, in competition with the 

biological specimen it mimics.  It requires someone to collect its data, analyze it and interpret it.  This puts an 

interpretation on top of an interpretation - a scientifically risky stack to be sure.  If models are allowed to displace 

the wet lab work, then science is at risk of honoring fiction, rather than fact.  

In this particular modeling effort, there was no basis to be found upon which to build.  If there had been a geometry 

of shapes with homogeneous skins, a database manager suitable for cytology, a CAD program for constructing 

contour of revolution shapes, including nested shapes; if there had been a particle system toolbox;  if stochastic 

representations of large bio-molecules like proteins and DNA had been available;  Then all investment of time 

would have gone into deriving applicable scientific data, and applying that data to engineering design.  As it turned 

out, the very few usable functions done by others took longer to find, than it takes to write them from scratch.  And 

once found there remained large compatibility issues to recode around.  As a result at least 70% of hours put into 

this project went into platform development.  That is, most of what needed to be done was neither science nor 

engineering.  It was the enablement of science and engineering via a set of mutually compatible tools and methods.  

FIGURE 128: Project effort on Platform exceeded Science and Engineering
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.A cursory view of the Octave/Matlab code that was written reveals a majority of functions to build up a platform 

and toolbox with which to assimilate scientific data, and re-conform it to engineered product.   Such modeling 

would not be cost effective unless it serves well in re-use.  If it can reach wide spread use, then of course, the effort 

was worth whiled.

The attraction of models are as follows.

1. The underlying physics can be made explicit and harnessed as science has claimed it could be. Building up 
from first principles allows one to check and verify how various aspects fit together, work together, and the 
limits of such cooperation.  

2. Scientific findings can be demonstrated.  To claim something as fact leaves one's work in the form of static 
ink in journal articles.  But to build a dynamic model based upon those findings represents a form of proof 
of concept.  It also makes obvious a set of behaviors such that the audience is invited to consider of what 
utility these may be.  

3. As no model is perfect, the gap between the model behavior and the biological behavior is highly 
suggestive of where the model is deficient.  If it should further be found that such deficiencies trace back to 
missing biological information, then the biologists are perhaps incentivized to probe deeper in 
experimentation to uncover and/or resolve such “missing” observations.  

4. Modeling may go where no living thing is allowed to go.  Simulated and hypothetical constructs can 
explore many aspects that to not pay the cost of killing subjects or spreading disease, or other malady. 
Thus, modeling is a “safe playground” for exploring some aspect of life in preparation for more delicate 
handling of live specimens.  

5. Modeling supports the hypothetical case.  Modeling often provides a platform for divergence from what is 
known  into some new arena previously unknown and unexplored.  New fields may better be discovered 
through modeling, because the highest risk aspects can be simulated, and eventually optimized so as to 
reduce risk.  

6. Modeling can to some things much faster than the equivalent wet lab work.  Once a model has been 
verified authentic to biology, then thousands or even millions of experiments can be run, designed by 
algorithmically indexing the parameters, so as to cover the possibilities in a much more thorough manner 
than would be practicable in the wet lab.

11.4.1.1 Model Assumptions  

The models herein and their results are predicated on the following assumptions

1. Every particle is a sphere.  Angular momentum and the complexities of shape factors in binding are 
dismissed, on the grounds that spin does not convey information about when an action potential should 
occur.  Each sphere is modeled with hard body molecular dynamics, dismissing molecular deformation, 
internal bonds, and external force fields such as Debye force, the Keesom force, or the instantaneously 
induced dispersion force.

2. Particle-particle collision is detected by interference, then backed up in time to the hard sphere minimum 
center to center distance, to avoid unrealistic force calculations.
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3. Three body interactions are avoided by keeping the dt small enough that they break down into two two-
body collisions. 

4. This model will only represent whole charges, not partial charges, per molecule. There may be Coulombic 
interactions of partial charges on fixed and hydrated molecules.  This is a complex problem, having much 
to do with the effects of water as a solvent.  

5. Dipoles are not explicitly modeled.  While they produce many fascinating effects, a rationale has not yet 
been found as to their necessary influence of information transmission and processing.  However, dipoles 
are an emergent phenomena in the model.  Charge neutralization occurs without programmers intent 
between oppositely charged particles, and pair cling together until coming into and unbalanced charge 
region.

6. Heat gradients are not expected to be a factor in action potentials and other membranal functions. 
However, temperature does affect diffusion velocities, Nernst voltages, and stochastic conformational 
change rates, and eventually denatures critical proteins.  For specific queries as to the effects of 
temperature, additional features may need be incorporated to mimic denaturing.

7. The effects of water can be summarized as molecular collisions with the particles.  As a polar solvent 
brings about a dissolution of opposite charge attraction so they are free to diffuse.  The total mass of the 
water represents a thermal sink, and thus mediates temperature changes.

8. A further effect of water is to variably increase the mass and radius of ions via solvation.  Solvation can be 
re-evaluated each dt to statistically alter the quantity of water molecules attached to each ion, according to a 
probability density function.

9. The kinetic schemes reported in the literature are physiologically representative of the probabilities of state 
changes in the molecule.  This assumption is occasionally undone by newer claims that an alternative 
scheme better fits the known function of the actor.  

10. The quantities of actors and particles can be gradually scaled down while gauging the loss in confidence in 
so doing; and then setting such down-scaling so as to hold desired levels of confidence.

Some of these assumptions can be replaced with biological facts as they become available.  Some of these 

assumptions can be eliminated with super computers which do not require heavy scaling or heuristics.

Godel's proof is apropos  here.   A good model is an axiomatic system, but it is incomplete until each axiom is 

proven to be based solidly in reality.   The model only applies the logic of the axioms to generate the many theorems 

which fill the space of possibilities (state space).  Only natural facts provide the axioms, and validates the model.  A 

dynamical model extends the notion of a set of theorems into characteristic behaviors.  If such model-generated 

behaviors are predictive of biological behaviors, then the model is said to have utility.  If the model is methodically 

swept across its parametric space and found to be fully consistent with physics and known biology, then the model is 

said to be validated over its intended span. 
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11.5 INFORMATIONAL CONTENT OF ELEMENTS  

To communicate information between any 2 or more actors the information must necessarily be carried by the 

mobile particles.  The two phenomena of particle motion and actor state changes are in series; therefore it is required 

that each have the potential to carry 100% of the information throughput, and do so in a timely manner.  Although 

actor states can fairly easily be rationalized as information, little discussion is found concerning the ions as carriers 

of information.  

11.5.1 INFORMATIONAL CONTENT OF ACTORS  

Information, by definition, is a change in state.  Accordingly, actor state transitions constitute information.  The fact 

that kinetic schemes represent actors with 3 to 30 states is evidence that actors are significant information handlers. 

The quantity of internal states is greater than the quantity of external expressions of state.  This is typical of 

information processors.  It remains to be investigated as to the significance of this information.    

11.5.1.1 Information of Energy Content  

There is a total amount of energy in the system.  This energy is distributed discretely amongst the particles, as a 

division of unity at any given time slice.  Therefore, any particle, as regards energy, may be regarded as a chard of 

the whole, and is therefore, in small part, representative of the whole.   To the extent that energy is not 

homogeneously distributed, the system has some pattern of distribution of energy.   

A large portion of the energy of the system is packetized, as ATP, as chemical potential, and bond torsions in certain 

configurations.  This discrete energy usually is served as a driving force from a few common sources, like glucose 

and ambient light.  Common sources, almost be definition, are of low energy.  They have only one state:  how much 

fuel is available.  Therefore, the energy value of a common energy source concerns depletion rate and depletion 

time. 

Another large portion of energy is on the lose, such as embodied in ion concentrations.  Charge concentration 

represents the differential of position, because it is the primary mover of ions (drift, PE being continuously 

converted into KE).   The voltage topography plus the channel openings are determinant of which way the particles 
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will move next.  Are the patterns of energy moving around the system as the information of the system?  This is not 

likely.  

The detection of these patterns generally need not involve carrier oscillations which are fittingly a quality of the 

energy source.  Studies of metabolism find the living cell to be exceptionally efficient in use of energy.  Biological 

energy is typically cascaded down the chemical train, each reaction “peeling” a very small portion of the total 

available. Such energy usage, aligned to the cascade, would then be independent of any other sequence or set of 

relationships.  Some of the significant information processing steps operate on free thermal energy, which do not 

show up at all in the metabolic cascade maps.  Evolution evidently selects for utilization for what is readily 

available, not for some alignment between energy and information.  The information flows may be completely 

orthogonal to or independent of the points of energy consumption.     An information model may therefore dispense 

with energy bookkeeping, but not at the expense of state transitions and particle positions.   

11.5.2 INFORMATIONAL CONTENT OF PARTICLES  

Because monatomic particles are not believed to have multiple conformations for any purpose of communicating 

between actor molecules21, several other traits are under consideration for their information carrying potential: 

voltage, concentration, position, velocity, binding location patterns.  

Information quantities are supposed to stay constant for the duration of transit time down a propagation line.   But 

such constancy does not apply to an information processor.  Information is often compressed in the process or 

evaluation and making decisions.  Information is often expanded  when short commands are issued that require 

complex behaviors to implement.  We must accept that both compression and expansion may occur in a liquid state 

processor.  However, for purposes of tracing information through such a processors, it is convenient to treat all 

information as remaining constant in quantity at all points along the flow path.   This arrangement merely serves the 

purpose of noting loses and gains as errors.   As with strobe photography, one can trace the flows of information 

from tip to tip, noting its shape and quantity as each sampling time.    Here is a series of such snapshots.  Each item 

answers the question:  

Where's the information?   Answers, over time:  All of the information is in the:

21 Atoms and ions may be “energized” by high frequency bombardment which knocks electron orbits to a higher 
level for a while, but this phenomenon is not found to be present in neural information processing.
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1. Messenger particles in the synapse (or a set of synapses)

2. Receptor states

3. Second messenger particles

4. Channel modulation  combinations

5. Channel states

6. Channel expressions (phenostates)

7. Ion flux through channels

8. Ion radiation waves out from channel openings

9. Ionic voltages impinging on neighboring channels

10. Voltage contortion of (channels and pumps)

11. Calcium channel openings (near the vesicles)

12. Calcium bolus hitting vesicle receptors

13. Vesicle contents release patterns

There are minor variations on this series.  The 4 through 10 step may repeat any number of times to effect 

propagation.  Sometimes step 3 is skipped.  The pumps may play a role in complement to the channels in signal 

shaping.  But the point remains.  Each one of these much carry all of the information that the cell is to process, as 

they are in series.   There is some parallelism, and therefore, some redundancy, in the particles that never impinge 

upon any actor so as to modulate it.  Do they merely dissipate their information, or are there other ways to harness 

it?

One of the more surprising findings concerns the wavelike behavior of ions in aqueous solution.  As the model does 

not take into the considerable complexities of water as a solvent , it remains for physics  to verify empirically ionic 

wave phenomena, robustness and factors, as might determine the extent of dominance of waves over diffusion. 

Water is a complicated solvent, and research continues to be done by others on the characteristics of water.  The 

theory and results presented herein modeling ionic waves do not constitute a scientific proof of how ionic waves 

communicate between actors.  They do provide an intellectually satisfying explanation of how information can pass 

through a medium believed to have offered only diffusion as the means.   Apparently, there is significant information 

contained within ions moving through water due to thermal activity and drift.  This information is passed on via 
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collisions, both particle to particle, and particle to actor.  I hope the field of physics will some day soon verify or 

refute my findings.

11.5.2.1 Information of positions and velocities  

In order to convey information from point A to point B a carrier must, of course, preserve that information about as 

long as it takes to traverse the actor-to-actor distance.  Once arrived at the target this same information must then 

somehow be dissolved so as to avoid that message echoing on through the system in unwanted ways.  In a gas 

system, both direction and velocity are candidates for information carriers, because these two qualities are preserved 

for fairly long distances.  But in a liquid, the collision rate is sufficiently high that the distances between collisions is 

much shorter than the actor to actor distances.  This frustrates any reliable information transfers by position or 

velocity coding.   The Brownian motion of particles in a liquid, by definition, defeats information with entropy. 

Brownian motion is white noise, and white noise is defined as zero information.

None-the-less, because the actors are stationary (in time scales relative to action potentials), the particles must be 

carrying information between those actors.   The two aspects of particles that actors are known to be sensitive to are 

concentrations and voltages.  

A concentration code suggests the simplest of coding schemes:  one particle = one bit of information.  Certainly the 

specificity of the various receptor sites suggests that particle types are the message.   Higher hits rates might 

conceivably cross an actor threshold, or at least increase the probability of actor action.   Particles without charge 

and with charge, particles small and large, trigger or catalyze chemical events all over the cell.  How are these 

particles moved to their targets?  A derivative of position code is arrival code.  It is fairly obvious that it is the 

arrivals of messengers that carry  information, valuable when delivered to the right place and the right time.  The 

timing is going to be “as fast is practicable”; but how to address destinies?   

The specificity of binding sites is one effective method to determine a specific subset of addresses.  This is a rather 

fixed arrangement, not a form of dynamic addressing as is common in a digital computer.   There are as many target 

sub groups as there are messenger-specific binding sites, but these are not necessarily “on” at all times.  Because 

actors proceed along state paths they may greatly influence the binding affinity at each of their binding sites with 

each change in state.  This grants the downstream actor flow control, but does not necessarily grant the upstream 



776

actor any flow control.  To accomplish that, a pre-message would need be sent that biases the downstream actor 

states.  We can think of this as setting up the modalities prior to the execution of a problem solution.  This is 

consistent with intuitive sense concerning problem solving.   When one switches from the hungry mode to the sleepy 

mode, one switches the types of problems to be solved from “what's left in the fridge?” to “go brush your teeth”. 

The dominant reticular neurotransmitters are known to predispose the neurons of the brain towards characteristic 

problems types:  noradrenergics, serotonergics, dopaminergics, cholinergics and histaminergics.  They alone, and in 

combinations, set the modalities of the neurons, which by implication alter the interpretation of inputs and/or how 

signals with be altered, and/or how signals will be routed.  

A question to be investigated is:  How fine of a level does modality control operate?   Given the fact that those 

neurotransmitter bind to receptors and ion channels, it certainly is reasonable to hypothesize that such modal shifts 

may be effected at the molecular level of the actors.  If so, how many modes can 1 actor possess?   There is an 

equivalence between 1 actor that can switch between 3 different modes in response to which of 3 input signals is 

being received; and 3 actors each of which only have only 1 mode, but switch on only when 1 of 3 possible input 

signals is received.

11.5.2.2 Role of Diffusion in information transmission  

Various historical conceptualization of diffusion as the mechanism of messenger delivery is weak when the distance 

to be traversed  is more than a few nm.  Fast communication (say 1 ms)  The assumption of diffusion is a weak one 

for several reasons:  Firstly, diffusion is slow.  It can be calculated using Fick's law of diffusion that for common 

ions to diffuse the length of a meter long neuron (in the human leg) it could take months.  Secondly, in any contest 

between thermal forces and EM forces, EM wins.  Both forces are clearly present in neurons.  Any charged particle 

relying on diffusion to arrive at its target is hugely vulnerable to any charge field or charge stations on radical groups 

passed near,  sure to divert it off its path.  Capacitance, on the other hand, attracts and holds charged particles within 

its grasp by significant attractive force.  This renders most or all unbalanced charges   unavailable to other binding 

opportunities, to diffusion loss, or to interference from any structures away from the membrane.  

Diffusion is a very distant second place performer where ever a strong charge field is available for ions to surf on. 

Besides its slowness, diffusion is the absolute worst choice for conveying information.  Of all the possible choices, 
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diffusion is the one that tends toward white noise via the Gaussian envelope.  Diffusion is in the business of 

destroying information, not of delivering it.  Conclusion:  Diffusion is only a valid communication mechanism over 

very short distances, e.g. the synaptic cleft, or receptor-to-channel messaging within structured protein distances.  

Within the neuron, the second messenger systems are known to be extensively used for receptor to channel 

communication.  They provide a speedy amplification mechanism which generally constrains the messenger flow 

paths to very near the membrane.   Apparently, charge effects are utilized to cause the messenger particles to 

“trolley” along the membrane.  Again, the particle removal system must be just a quick and just as sure as the 

particle release mechanism.  The absence of a particle is information just as is the presence of a particle (just as 0's 

and 1's).  Speed of the path multiplies the information carrying capacity.  Note also that once a messenger has 

arrived at target (or passed beyond target), speedy removal mechanism must be close to avoid polluting the reception 

field.  Such recovery is also part of the economy of the system, for to lose messengers requires replacement 

synthesis.

Because the EM force over-rides all the other available forces in the neuron, it is prudent to investigate the various 

behaviors of particles near the membrane and how they arrive at actors and depart from actors.  This model, as a 

particle system, might be used to investigate the behaviors of particles about the actors, so as to determine the 

transfer of information from particles to actors, and from actors to particles.  

11.5.2.3 Information Content of Voltage   

Electronic technicians are well accustomed to taking voltage readings for diagnostic purposes when attending to 

solid state devices.  In the neuron, voltage spikes must occur which each channel opening so long as their is a net 

gradient across the membrane at that point to produce flux.  The pumps are current sources, and their relatively 

steady pump rates are regarded as maintaining the steady state rather than as creating signals.  To the extent that 

pumps are modulatable, and that those modulation signals are fast changing (say, within 1 ms) then it is possible for 

a group of pumps running in parallel to compete with ion channels in creating significant voltage changes. 

However, being many in quantity means that they will not produce a focal spike, but rather a tsunami like swell.  

Returning to channel pulses, the flux through channels necessarily feeds into the surrounding capacitance of the 

membrane.   Each pulse results in a disturbance to the unbalanced charges held to the membrane by opposite charges 
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on the other side, yet spaced widely by the repulsion of like charges.  The channel pulse forces a redistribution of 

charges on both sides of the membrane.   This disturbance follows second order dynamics, resulting in an outwardly 

radiating wave.  Theoretically, such a wave could be critically damped by sufficient thermal forces.  However the 

EM force is by far the strongest force available, and dominates the action.

Therefore, voltage, which can be defined as charge pressure,  drives the communication between actors via charge 

waves over the capacitance surfaces.   In such an arrangement, voltage is the integral of charge flux and current is 

the differential of voltage.

11.5.2.4 Information content of Charge  

The role of charge in an information system must be considered.  The EM is the strongest force available to the cell, 

and it is harnessed for duties in both power and communications.  Charge force dissolves salt into its constituent 

ions in water.  Charge is what gives large molecules a rather fixed number of somewhat stable conformations. 

Charge is what drives unbalanced pairs into capacitance right near the membrane that holds them apart.  Charge is 

what neutralized pairs of opposite charges and thereby removes them from any significance in wave transmission 

between actors.  Charge does the double duty of causing particles across the membrane to attract, and particles on 

the same side of the membrane to repel. 

For true independence of motion and state, neutrality is essential, as all charges are coupled together by Coulomb's 

law.   Independence increases the information value of a particle, because coupling implies redundancy.   But 

neutrality limits transportation to diffusion and active pumping.; neutral particles cannot surf the charge field 

gradients.    Neutral particles met the criteria for carriers of high information content, but they are underpowered for 

the job of carrier.   This begs the question of how to track and evaluate all the neutral messenger particles for 

information value.   They work best diffusing across very short gaps, like synaptic clefts.  

Charge fields provide the energy for much faster transmission (75 m/s vs 1 m/month).  The repulsion of like charges 

sets up a tense grid such that a disturbance a one end will initiate a traveling wave.  The wave front can travel much 

faster than the individual ion does.  The energy of the wave is being transposed  via momentum transfers at 

collisions.  In an incompressible medium, momentum transfer is fast.  
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In membranal systems, charge possesses the unusual character that when it moves vertically through channels it is 

split into partials according to ion type (per the Nernst EQ).   But when it moves horizontally along the charged 

membrane, all charges are treated alike (per Coulomb's law), and variations in mass are small enough that a 

disturbance proceeds without much distinction between particle types.  The discrepancies in treatment of the same 

particle group give rise to some logistical issues of representation in a model:

1. By what physics does water molecules enable the capacitance of unbalanced charge across the membrane? 
And in what ways do they hinder it?

2. In what ways does solvation hinder the wave phenomena?  Can it serve to enable it?

3. In what ways does variations in mass within the same repulsion grid affect wave formation in response to 
disturbances?

4. Given unequal massed particles in opposition across a capacitance membrane (say Na+ and Cl-), how can 
the wave disturbance on one side reconcile with its compliment on the other?  Given near equal coupling 
strength between attraction and repulsion forces, both must act in an FEM way, as masses and springs. 

5. What realistic scenarios would be able to critically damp the disturbance wave of a liquid sate capacitance? 
How much of a disrupter is thermal motion?

6. Does the charge proceed as a wave front and lead the actors, with the actor response to the charge stimulus 
lagging behind?  

7. At what speed of actor duty cycles could the actors initiate and therefore lead the wave front, driving and 
pushing it along (propagation by actors, not by particles)?    

8. Does increasing the transmembrane voltage increase the horizontal propagation speed of the wave front?

9. What is the damping rate of radiating signals given that all channels and pumps are generating them in 
interference or construction, and given that the membrane is usually of cylindrical topology (allowing spiral 
waves)?

10. Given the orthogonality of horizontal particle movements to the verticality of channel gating and 
modulation thereof, the modulation signal may read as a differential of the flow rate of particles above, or 
as a one-to-one read on the concentration of particles above.  Does this imply a fractional calculus to define 
a functional relationship between particle flow and actor modulation?

11. If genuine signal transformation is to take place, must a transforming channel type be present in complete 
rings around the neural process to intercede all incoming signal, and generate all outgoing signal?

11.5.3 INFORMATION TRANSFER IN ACTOR-PARTICLE INTERACTION  

It is easy to imagine that receptors emit chemicals that stimulate channels that initiate a wave of charged particles. 

But it is less easy to imagine how the subsequent downstream actors can become awash in this wave and respond in 
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such a way as to propagate the wave.  Wouldn't their response be generated too late?  How can such a lag do any 

leading?  The answer might be found not in time but in amplitude.

The signal traffic is shown moving from left to right.  A channel generates a pulse of ions.  Vertical height signifies 

amplitude of signal.  The red tic marks indicate the threshold of responding to an input signal.  If the decay of the 

signal is not so great as to fall below the threshold, then propagation transpires.  The actor output pule radiates 

outward in concentric rings, decaying linearly as it goes.  If upon reaching its nearest neighbors,  its amplitude is 

greater than the response threshold of that channel, then the channel proceeds through a duty cycle or recognizing 

the input pattern and generating an output pattern.  Thus, it responds with a pulse formation of its own.  There is a 

matter of speed of each actor in cycling through its state space.  Is it fast enough to participate in the furtherance of 

the incoming signal?   Or does is lag so far behind that the actor is merely creating another (echo) signal?  There is 

an issue of lag between the stimulus to a wave disturbance and  the response pattern.  Empirical measures will be 

needed to determine the phase relationships between actor input and output, type by type.  The actors none-the-less 

serve to boost the amplitude of the wave that was on a linear decay track.  The incoming, older stimulating wave is 

integrated into the new, outgoing wave create by the gate opening.  The old provides the leading ramp, and a quickly 

generated new boosts the amplitude without much lag.   The new wave, however, has its own center of focus, and it 

therefore cannot sum cleanly into a composite wave.  It must create an interference pattern.  The new wave being the 

strongest, propagates on to wash over the nearest neighbor actors.  

The integrity of the composite wave is determined by the relative speed of the channel opening.  Because channels 

effectively are digital, either open or closed, with an extremely fast flip time (faster than the 10 MHz op amp 

instrumentation that attempts to measure how fast), once opened, a channel will restore the wave front to as crisp a 

leading edge as is possible.  

FIGURE 129: Relationship of actor cycles to particle wave amplitude
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A significant variable is the time between the stimulus crossing actor threshold to opening.  As the wave propagation 

speed is driven by straight forward physics of a mass-spring grid, the ratio between propagation speed and actor 

response speed will determine the continuity of the wave, and also the shape of the leading edge of the wave.

The situation is more complicated when the actor type changes along the signal's course.   The various actor types 

selectively gate different ion types under different time envelopes.  A simple exchange of one ion type for another 

ion type might contain no information.   A patterned field of responders that allow some directions of signal to go 

unchanged and other directions become blocked or altered would constitute a logical switch.  That is switching can 

be temporal and/or spatial.  The ability to set up new wave fronts and terminate portions of old wave fronts creates 

multiple concurrent waves.  These must interact with interference patterns, a form of information processing.   New 

peaks and troughs will appear from such interactions, and these may be exploited for information values, ans the 

min/max solutions to complex equations.  This would be particularly powerful if minimums and maximums 

occurred near axonal branches from the soma, thus selecting which branches would send signal and which would be 

blocked.

Every interactor and every actor is tracked individually for its activities, position, velocity, state, modulation.  The 

differentials on this data provide the clues to information flows and information processing essential to the 

functional role of neurons.  Because the interactors and actors are in series, there must be analogous forms of 

information between them, near equal in quantity, and some means of mapping one into the other.  All the 

information must flow through these two blocks alternately:

Interactors Actors

position state

velocity state transition probabilities

acceleration modulation

binding transporting

gating modulating

integration differentiation

TABLE 32: ACTOR PARTICLE COMPLEMENTARITY
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The Actor Particle Complementarity wrt information, as portrayed in the table above, attempts to draw analogies 

between the motile stateless particles and the stationary stateful actors. Please contemplate the analogies between the 

columns.  The internal world of the molecule in some abstract sense acts as the reciprocal of the outside 

environment.  Position of particle outside is analogous to position of atoms inside the molecule (conformation). 

Velocity external to the actor is of course motion.   Motion internal to the actor is constrained by chemical bonds, 

and results in changing conformations.  Forces outside result in accelerations of particles.  Modulation of an actor 

results in altered state change speed.  A particle impacting an actor may result in a binding.  Actors impact particles 

by effecting a transport.  That particles are gated by actors is analogous to actors being modulated by particles 

(binding).  And finally, particles act as an integrated group, fungible, with no one particle being distinguishable from 

others of its type.  They flow together to form flux and currents.  

Looked at mathematically, when a channel gate opens, the flow is the integral of the gate position (open time). 

When binding and unbinding events occur on an actor they are the differential of the concentrations of particles, and 

more accurately, the differential of the flow of ions washing over the top of the actor.

These many symmetries suggest that it is possible that the particles can carry what the actors can generate.  Particle 

are cheap (an ocean of salt water; but actors are expensive (DNA coding, ribosomal decoding, amino acid assembly, 

folding and shape control, subunit assemblies, insertion,  placement, recalls,  turnover, and more.).    There must 

exist some balance between the quantities of particles and the quantities of certain actors such that the information 

handling capacity is near equal between the two, with a bias toward the cheaper elements..  It is the challenge for the 

modeler to establish by experimentation the details and limits how this alternating series process might work and be 

optimized.

11.5.3.1 Pattern Recognition Potential  

Let the reader consider what would constitute a proper test for information processing by any one of the actors. 

Exceedingly rare in the literature are patch clamp data seeking the information processing potential of the ensemble 

of channels on the patch.  The conventional mathematical operators (addition, subtraction, differentiation, 

integration, lag, and convolution) are man-made abstractions intended for step by step algorithms.  Searching for 

actor performance to duplicate them may be inappropriate criteria for information processing function in living 
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neurons.  In asynchronous stochastic processing systems, a more generic information processing function would be 

pattern mapping, such that various natural input patterns are “recognized” via distinguishable output patterns (two or 

more).  As concerns living cell examples, types most likely to be information rich are those encountering the greatest 

variety of input patterns.  Candidates within the mammalian central nervous system might be neocortex local circuits 

(small granule, stellate and granule cell types).   When the channel types and their distributions are known for each 

such cell type, and rigorous kinetic schemes for each channel type are compiled, this model might explore the 

information processing potential of these cells.  

While the spatial aspects of information can be processed by mere connectivity patterns alone, temporal processing 

requires mechanism.  While space affords three dimensions for connectivity, time restricts to one.  As point 

processes are denied space, this restriction can add a severe constraint on information processing potential.  Touring-

machine-like algorithms are required to parse a temporal pattern, but still state spaces are required for storage while 

processing.  An alternative might be frequency domain processing, if indeed the input consists of frequencies (e.g. 

music or bird calls).   Stochastic processing of temporal information still requires some form of memory or states. 

Within the processor, a present value is compared to, and appended onto, a past value.  A times series of values only 

comprises a pattern to the processor that can hold the entire set at once, or some function of that set.  Else some 

portion of the pattern is missed or discarded.  

Such state space handling of temporal patterns is not a learning process.  Learning processes require seconds, 

minutes, hours, days.  They usually involve structural changes at a much more macro level that the actor molecule. 

The molecular sized temporal processor must be processing “real time” on a millisecond basis, or finer.  

A temporal pattern arriving at a molecule is analogous to a melody.  How does one recognize a melody after only 

say 4 notes?   There must be some form of pattern “receiver”, such that each feature of the temporal pattern moves it 

further along the process of recognition.  One receiver processes one pattern at a time.  Each feature is “tested” for a 

match as it arrives.  Any failures along the way stop the progress of recognition, and the receiver is reset.  Each 

match moves the receiver into the next state, which anticipates the next feature.  In an analog world, tolerance is an 

important consideration.  Too fast, too slow, pitch too high or low, can cause failure of recognition.    

The recognition need not be absolute either.  Graded recognitions are useful.  When many different pattern 

recognition types are in competition, and the highest responder wins, this makes for a very useful device.  Complex 
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receivers may be modulatable so as to switch between several patterns.  This is useful when two or more completely 

different input signals trigger the same output signal.   There is also the possibility of pattern generation.  When one 

pattern as input triggers a different pattern as output, that is genuine information processing.  In a complex receiver, 

various input patterns are able to trigger a unique output pattern.  That we might begin to call a computer.  The 

ability to map input patterns to output patterns can mimic a lot of mathematical functions.

Music provides a well established and formalized space for considering temporal patterns.  Consider the practical 

problem of scalability in time, where a melody is recognized whether it is played fast or slow, or in different keys. 

What sort of processor could be so flexible and robust?  The tempo challenge can theoretically be handled logically, 

with a first note match proceeding to a second note test match, regardless of lag.  But such a mechanism would not 

capture the rhythm at all.  Again theoretically, the frequency scaling of key changes could be neutralized by only 

recording/recognizing the frequency ratios between the notes.  This has several challenges to it.  How does one 

record the first note?  What marks the start and stop of a melody?  Must rhythm be captured by a completely 

separate mechanism?  If so, how do they get back together again, without misalignment?  Frequency can be mapped 

into a place code, but as with notes on sheet music, there must also be sequence and duration information for each 

frequency in the sequence.    In a one-to-one mapping, as with an A2D converter, all three are preserved in unity. 

But the Fourier transform from time domain to frequency domain is not conducive to preserving all the information 

unless there is some time to space mapping to keep the order of things straight.   As channels and pumps have not 

yet been considered for their pattern recognition potential, this is an open field for exploration.

11.5.3.2 Oscillations  

Oscillations are possible and likely in any real particle system.   In gaseous models, e,g, flutes and organ pipes, the 

shape of the container has a resonance frequency,.  Physics views particle systems as a set of oscillators. That invites 

frequency analysis.  But in a particle system with collisions, most or all of the oscillations are disrupted.  There are 

still frequencies of events, but the randomness spreads them out into a power spectra rather than a short set of 

harmonics.  Those oscillations that may persist through collisions are not yet found to be relevant to to the 

information imparted from particle to particle.  For example, a constant ambient temperature (molecular vibrations), 

by definition, is not information.   A basal periodicity may be resetting some downstream receiver to “zero” or a 

“ready” state, (sometimes called  a “heartbeat”), but is not sending a message to be parsed and trigger downstream 
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events.  In most cases a quiescent state can be defined as zero information, such that any other possibility has 

surprise value, and therefore constitutes information.

Charged particles will go into orbit around a fixed charge if there are no collisions along the orbit path.  While 

oscillations may be relevant to the conveyance of energy, they must be less relevant to the conveyance of 

information.  In the field of radio broadcasting, oscillations are regarded as the “carrier” of the signal.  The carrier is 

periodic and therefore deterministic, with no information.  The signal modulating the carrier is arbitrary and chaotic, 

and therefore has high information content potential.  It is concluded that for purposes of processing information in 

an aqueous medium, oscillations may play little or no significant role.    

 In liquid models,  oscillations may occur only if some means of protecting them from the thermal impacts is 

provided.  This might occur very near the membrane  where like-charge concentrations become high enough to over-

ride the thermal forces and literally squeeze them out of the way.  This might be capable of  producing a frictionless 

layer, or near-frictionless conditions.  Such a layer could serve as a carrier for wavelike phenomena. 

There are other forms of carriers.  Consider a rope in tension.  It may “carry” a traveling wave, or be induced into a 

standing wave.   Thus, a tension element may serve as a carrier.  It remains for the model to ascertain whether such 

behaviors are physiologic to the neuron.

Conformational transformations may be slow, soft and continuous in molecules with no charge concentrations, as 

with pure hydrocarbons.  Intramolecular dynamics theoretically could support oscillations if there were no such 

charge concentrations, because it is the charges that drive the very quick staccato conformational transformations. 

The presence of various charge foci within protein molecules, however, put them in a class of discrete 

conformational transitions.  And thus the state transition probability matrices.  These are often found to contain 

values indicating very high speed transitions, faster than 1E-10 s.    This is the behavior of a finite state machine, not 

an oscillator.  Thus the protein actors are state machines, and the lipid membranes are not.

From a mathematical perspective, the information of the membranal system flows along in the ions, then undergoes 

a differentiation when a few of these ions become bound or otherwise modulate the channels.  The channels then 

reprocess this differential, and implement channel openings.  Such openings are integrated into flux, which rejoins 

the ionic flows, but with significant reshaping of that flow.  
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In summary we have:  differentiation, stochastic conversion, integration.  It is quite reminiscent of  the linear algebra 

concept of basis change operators:  s(t+1) = sRQR-1  .  Beyond that, it is a matter of what conversions you want to 

execute.  The physical placement of ion channel types determines the order of operators.

Note that the differentiation function is not the usual deterministic one.  As a stochastic process, it lives in the 

fractional calculus world of some where between first order and zeroth order differentiation.

11.5.3.3 Particle Systems  

 Models only capture a very limited set of aspects of reality.  Chosen for inclusion are mass, radii,  charge and 

mobility.  Not included in this model are: angular momentum, nuclear spin, atomic vibration, and quantum effects. 

These have not  (yet) been found to be of consequent to the mechanism of information processing by neurons. 

Deemed significant are the phenomena of:  the EM force, thermally driven molecular velocities, particle collisions, 

particle momentum, particle capacitance, particle bindings.  

Processes chosen are those well established in the literature.  As the movement of  ions is fundamental to the model, 

the various applicable EQs are mapped to show how they fit together as a framework suggestive of how a particle 

system might be built that is analogous to these EQs.  The exercise of constructing the flowchart is to insure that the 

group output of one is indeed the complete and sufficient input for another.  The exercise of the model is to de-

aggregate the group treatments down to individual particles and to employ the physics first principles to move those 

particles about.  Consider, for example the mapping of Ohm's law as it calculates current into a particle flow rate 

driven by the EM force and mixed with thermal chaos.  The model particle behaviors must be calibrated to the 

known aggregate behaviors.

11.5.3.4 Ionics flowchart  

The distance between pumps for ion type i and the channels which conduct ion type i determine ion flow circuits. 

These flows may be significant determinants in the receptivity of the neuron, as they are current biases  that must be 

overcome.

On the chart below, the right most column lists the transport operations through the membrane.  The resultant 

concentrations of ion types are fed into the Nernst EQ to yield the partial voltage of each.  These are combined into 
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the GHK EQ for the Vm.  That voltage then becomes the modulation value for the voltage gated channels back in 

the right column.

FIGURE 130: DIFFUSION MODEL EQUATION FLOW

Figure above depicts relationships between the EQs of the Diffusion model.  All arrows pointing to right feed to the 

Electronic Model.  This is the Dyer 2007 model of the ion cycle.

11.5.4 PARTICLE-PARTICLE COLLISIONS  

There are at least two ways of modeling particle collisions.  The first method is to negotiate collisions as continuous 

forces that will strongly repel at very close distances.  This is the effect of overlapping electron orbits when particles 

“collide”.  The hyperbolic orbit equation will handle these interactions as smooth continua.  This can be set up to 

closely mimic the natural paths of atomic particles.  The asymptotes of the hyperbola are equal to the straight line 

trajectories of an elastic reflection.  This method is elegant in that every particle trajectory is continuous, and no 
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collision detection algorithm is needed.  It simply sums the forces to yield net accelerations, and those forces are 

greatest when electronic orbits start overlapping.  The down side of this approach is that it requires extremely fine 

resolution to be accurate.  Three to six orders of magnitude smaller dt's than the traditional collision method below. 

It is intractable for any particle system of more than say 10 particles.  Compromises on the dt or the dx result in 

wildly incorrect results.  No matter what shortcuts or heuristics are employed, it will requires hundreds to thousands 

of more flops than the collision calculation.

The second method is to regard a collision as a nonlinear, singular event.  In which case there must be a logical 

collision detection algorithm followed by a physical collision resolution algorithm.  Because only those particle 

pairs identified by the collision detector are “pulled” for the collision resolution calculator, this is a discontinuous 

process, operating digitally, quite unlike nature's way of doing it.    Momentum conserving collisions must carefully 

determine the axes of collisions, reflection angles and impulse transfers.   This approach is computationally very 

expensive, but still much less so than the hyperbolas.  A large scale model may not be able to afford even these 

simpler collisions as a regular feature for each and every particle, each and every dt.  To avoid errors of omission, 

which result in a large percentage of missed eminent collisions, the dt must be set such that the fastest particle 

moves less than one half of the distance of the smallest particle radius per dt.  Such rigor is always advisable for 

short runs, for patch-sized models, and for justification runs of the larger scale heuristics and general algorithms.  

It is collisions at or near the membrane that are most informationally significant.  In particular it is unbalanced 

charges that have proved to be critical to the model objectives.  Accordingly, collisions occurring away from the 

membrane surface, among charge-neutral pairs, can optionally be simplified statistically to reduce the computational 

load.  Various methods will be discussed below.

Particles may collide with each other, with the membrane, with actors, or with water.  Rank ordered by their 

informational significance they are  BA, BC, BB, BW.   where B = interactors (ions); A = actors (e.g. channels); C = 

compartment walls; W = water molecules.  Water-ion collisions are the least significant of the four, but determine 

temperature, mean free path, the diffusion patterns and times, and the disbursed charge effects.  Ion-container 

collisions are more important than water-ion collisions because they present opportunities for capacitance, and 

impacting ion channels, receptor bindings etc..   The membranal surfaces are reflective (fully elastic) so as to 

maintain temperature.  Both ion channel transport and pump transport are highly significant to the model. 



789

Specifically, the ligand bindings to receptors are the most significant, because of the high leverage effects. 

However, there remain many significant collisions that require tracking details of the instantiation to capture the 

informational processes.  

Every dt, there is a need to detect particle collisions:  collisions with other particles, collisions with container walls, 

and collisions with actors (actors are stationary).  

Given that cytosol consists of ions of many 3-dimensional velocities, 5 different radii and masses, the computational 

load of collision detection is significant.

Analysis of a two body collision, conserving momentum.  Note that even when the exact trajectories are known, that 

doesn't tell you anything about the reflected velocity vectors after impact.  Only with the addition of the exact timing 

(phase) can the exact point of contact be determined.  From that the axis of momentum, from that the transfer of 

momentum, and from that the directions and velocities of the resolve can be calculated.

FIGURE 131: 3-D COLLISION BETWEEN DISSIMILAR RADII, MASSES AND VELOCITIES



790

In a particle system of 5000 particles of varying mass, radii and velocity, 268 (134 pairs) were found to be in impact 

within a single dt.  Their momentum-conserving collisions are calculated, and the CPU load  is measured as the 

number of particles increases.  The brown segments are the axes of collision.  They are long (= r1+r2) relative to the 

particle movements (green = v1*dt and purple=v2*dt) because dt was set short to avoid collision detection failures.

Once a collision has been detected, the exact timing and positions of the collision can be determined.  Then a 

collision response may be calculated, including the time remaining on the new paths before the dt expires.  3-D 

collisions require two bases changes, including creation of that basis on the fly.   An impulse of energy is transferred 

between the particles along the axis of collision.   Temperature is conserved when momentum is conserved in this 

system with no molecular spin nor vibration.

The role of collisions within the model has risen over time as they have come to be appreciated for information 

transfers between critical information carriers.  They are the read/write operations of a stochastic system.

FIGURE 132: PARTICLE SYSTEM COLLISIONS WITH AXES OF MOMENTUM 
TRANSFER
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11.5.5 PARTICLE-MEMBRANE COLLISIONS  

To preserve momentum, particles must reflect off the membrane elastically.  But the lipid membrane has a polar 

surface which must interact with the ions that collide with it.   This creates stiction between fluid flow and the 

stationary membrane, thus adding a friction term to the wave equation of ion disturbances,  resulting in resistance to 

shear, resulting in a type of “laminar flow”.  If the collision resulted in a binding that increased the potential energy, 

and released precisely that energy upon unbinding, then momentum would be preserved.  Nature does not work this 

way, but for modeling purposes, mathematical sanity is preserved when the collision velocity is stored, and later 

released upon unbinding, as a reflection of the initial collision. 

A further issue regarding particle-membrane collisions regards the potential to propagate waves through the ion-

dense regions nearest the membrane.  There is a question as to how much the lipid polar heads might damp out ionic 

waves passing by, critically or not?   

11.5.6 SEQUESTRATION  

Regulation of the internal environment of the cell requires more than mere pumping between the extracellular and 

intracellular compartments.  The sequestration of Calcium for example is accomplished by pumping it into 

intracellular vesicles.  A single core compartment can serve the function of providing a place to park ions and 

ligands which are temporarily removed from solution.

The speedy removal of all messenger molecules after accomplishing their informational mission is essential to avoid 

a system of all noise and no signal.  Particles can be recycled by any of three ways:

1. they disintegrate into some other substance.  For example, ATP becomes ADP.

2. they experience high affinity back to their original points of release.  This is the simplest, but may not be 
realistic.

3. they may be pumped into sequestration, some other compartment.
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Within the soma, a smaller sphere is placed.  It serves as a general compartment to store particles out of circulation. 

The core also serves to block out most of the soma volume for organelles, and thus make the intracellular fluid 

diffusion active only near the plasma lemma.  The core size can be adjusted for the desired thickness of intracellular 

saline.  It is expected, due to modeling results, that substantially all of the informationally significant particle 

interactions occur within saline thicknesses of about 5 times the membrane lipid thickness.  This is consistent with 

Weiss calculations that charge imbalance falls to zero within “several” times the space constant of 1 nm.[183]

Forces When ions do flow through channels, it is the result of the summation of 
all forces impinging on the particle.  All of the impinging gradients are 
summed to determine the flux. (mechanical, thermal, concentration, 
voltage).  Note that voltage gradients may push in the opposite direction 

FIGURE 133: CORE COMPARTMENT SEQUESTRATION
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as the concentration gradient  F = S(voltage+conc+heat+mech)

Attractors As opposite charged particles exert attractive EM forces, ligands also are 
described by chemists as though they have “affinities” for certain bind 
sites.   Affinity is a fiction that is actually the result of high collisions 
rates with favorable geometry for binding.  However, in the process of 
simplifying diffusion models, the number of particles is reduced by as 
much as 1E-10.   This reduces the number of collisions and subsequent 
bindings correspondingly.  To avoid very long wait times for bindings, 
attractors are allowed to bias the model toward a collision.  This bias is 
adjustable as a function of attractor strength (affinity), but does not 
contrive a collision where there could not have been one in vivo, as 
particles presence, its momentum and random direction are still in play.

Attractors are particle-type specific.  That is, each binding site has an 
affinity profile across all particle types.  Most values are expected to be 
zero, but any number of types could conceivably have some chance of 
binding. The risk of attractors is that they can speed up the velocities of 
particles in the vicinity.  This warms the liquid temperature.  This must be 
compensated for.

The attractors are one aspect of the actor which they serve.  But because 
their action is rather distinct and requires its own bookkeeping, it exists 
in code as a separate function.

The opposite of attraction is the release of a bound particle.  This does 
not require a repulsion, but does need a velocity assignment in the 
hemisphere on one side of the membrane.  This velocity must be assigned 
the reflection of the approach velocity, or else be reassigned a new 
Boltzmann velocity.  

11.6 PATTERNS ARE A HIGHER ORDER OF INFORMATION  

Pattern is the name we give to behaviors and or results of behaviors of higher than second order systems.  First order 

system we characterize by exponential trajectories. Second order system we characterize by sine waves, plus 

exponentials.  Orders higher than 2 exceed the realm of physics, which holds that all things are made of second 

order oscillators.  Meta to physics is order.  Chemistry exploits the order of atoms  The complexity of the possibility 

space increases dimensionality with the quantity of type of atoms involved. The jargon of chemistry that talks of 

secondary and tertiary structure is grappling with the challenges of higher order patterns.  It names the most 

commonly encountered shapes.   Biology adds dynamics to chemistry.  By organizing cascades of energetic 

processes, very small signals can trigger very elaborate responses.   Therefore, the understanding of the information 

processing by biological entities requires an accounting for the order of grouped atoms so as to elicit emergent 

properties of the group that were not at all obvious nor inherent to any of its elements.   
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While we enjoy very crisp mathematical definitions of sines, patterns have not yet been methodically defined.  

The processing of information can be cast 3 processes: constructive wave interactions; pattern mappings; and a 

convolution between these two.  The particles must be responsible for the processing of spatial information because 

the actors are ignorant of space, and ignorant of direction.  Having established the significance of spatial 

considerations via particle movement and interaction, the temporal pattern is next to be processed, by the actors. 

Only actors can map input patterns to output patterns arbitrarily.   Thus, the evolution of actors and the mechanisms 

which place them, determine which input patterns will be parsed, and what the response to each such input will be. 

Heretofore, pattern recognition was supposed to be accomplished at the poly-cell level of organization.  The neuron 

was often referred to as the transistor of the brain, implying the entire cell was only a simple gate, providing a yes or 

no response to a simple input summed value.  This would implicate dozens if not hundreds of neurons in performing 

each pattern recognition problem.   It also implies that the up to 1 million actors per cell were redundant.  That they 

are spending significant metabolic energy to perform what a single molecule could have done.   Although this 

arrangement of things is possible, it would be highly out of character for living cells, which are known to be 

exquisitely efficient and frugal with resources.  It is far more likely that each genetically produced protein has a 

useful role to play, else it would be selected out of existence over time.  This places the burden on the researcher to 

discover what specific functions of each actor type might be, in constellation with the others.  The varying 

distributions of actors exhibit patterns that suggest varying function along the path of information from dendrite to 

axon.  It is hypothesized here that actor constellations serve to filter and process the various possible input patterns, 

so as to generate a unique or nearly unique output pattern in response to each one.  From an informational point of 

view, a silent response is significant and sometimes useful.  At the least, it demonstrates a filtering function being 

performed.

It is established within this project that pattern recognition can transpire at much smaller scales than the neuron. 

Any molecule that has a sufficient quantity of conformations to express a duty cycle; and can be modified so as to 

alter that duty cycle, has the potential for pattern recognition.   In some sense the actor is better disposed to perform 

pattern recognition than is the whole cell.  This is so because the inner life of the molecule may be delicately 

balanced to tip effortlessly in response to input signals.   The intra-molecular atomic relationships are well 

established, optimized, stable and reliable.  
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Meanwhile, the greater cell requires a large effort to effect the mechanism that maintain viability.   This requires the 

cell to perform the role of resource management (production, maintenance, repair, replacement).  It is at the cellular 

level of organization that metrics of channel performance can be used to decide whether there should be more or less 

of each channel type, and where to place them.  Also, the ratio of pumps to channels must be gauged and 

maintained.  Perhaps most critically, learning is predominantly a function of cell growth, though the triggers for 

specialized growth often originate extra-cellularly.

11.7 ONE MOLECULE CAN RECOGNIZE & GENERATE PATTERNS    

It is of the essence that patterns are  frequencies of a higher order.  As the Fourier transform proved, any signal (time 

series of information) can be deconstructed into finite set of frequencies.  Humans are not generally accustomed to 

thinking of patterns as frequencies, but it is a fruitful exercise.  Every repeating event can be thought of as having 

one or more frequencies.  A molecule sufficiently complex to express many configurations experiences many 

internal events, each with it characteristic frequency.  Frequencies directly translate to probabilities, and vice versa. 

Therefore, a molecule of many possible events, each with corresponding probabilities, is expressing patterns of 

behavior, albeit internally.  The question is whether there is some coupling between the external and these internal 

“behaviors”.  

When these internal events are set up in delicate balance such that the slightest perturbation from outside cause a 

jump in conformation, then we may say that the molecule receives inputs.  Conversely, when the outside world is 

placed into delicately balanced relationships to the actor, such as lightly bound particles, then an internal change in 

conformation can result in a change in these relationships, which are detectable remotely.  Thus an internal pattern 

expresses itself externally.    In principle, these facts and observations establish that single molecules may act as 

pattern recognizers and/or as pattern generators.   

How would such a delicate balance be built?  A delicate balance  of numerous configurations would require many 

subunits that are identical save the slightest variation between them.  They would each need to be equidistant to, or 

at least close to, the stimulus.  This suggests a spherical arrangement, or cylindrical arrangement of “sensors” .  The 

repeating backbone with variable ornamentation seems to fit this requirement.  Proteins and nucleic acid are rich in 
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information because they provide a steady reliable backbone with variable ornamentation.  The more closely 

matched are the radicals, the less energy required to transfer between them and shift conformations.

11.7.1 MODALITY  REQUIRES PATTERN RECOGNITION  

Variations in voltage and concentrations may be deemed as signals if they in any way alter the actor state transition 

probabilities.  Using the action potential as a benchmark of convenience, one may distinguish between those effects 

upon actors which are of lower frequency than the action potential and those which are of equal or higher frequency 

than the action potential.  Lower frequency effects we may properly call modulators.  They may switch the actor to 

various modes.  Each mode is a fixed, inherent quality of the actor.  These modal changes may be quite pronounced 

as between random spikes, bursts, and periodic spikes, but the modulatory only gets to switch between them, not 

participate in the construction of a novel response.  The higher frequency effects, e.g. voltage and second messenger 

arrivals, because they are faster, may and do modify the response during the response cycle; not merely switching 

modes, but actually participating in the generation of the output pattern.  Fast signals are not modulators - they are 

the signal.  We should not dismiss allosteric bindings as merely modulation effects whenever their frequencies are 

the equal of the action potential.  Any actor that is receiving two  (or more) “high frequency” signals is acting as a 

binary (or n-ary) operator, in the mathematical sense.  This strongly implies information processing.  And as the 

actors are not capable of directional sensitivity nor spatial pattern generation, all information processing by actors 

must be done temporally.  It is therefore promising to pursue the intricacies of such temporal processing.

The strong potential for pattern recognition emerges from the measured state transition probabilities, replete with 

allosteric and voltage modulation of those probabilities. The detail of information required to completely specify a 

biological actor type is typically greater than wet lab work can currently deliver.  For example, with each different 

combination of allosteric bindings and transport bindings, the entire transition probability matrix is expected to be 

altered.   However, once garnered, demonstrating its potential pattern recognizer requires only a finite state machine 

rendition of its kinetic scheme.   To further this line of thinking, several plausible state transition tables are 

developed fully and they easily demonstrate pattern recognition.  

When ever the changes in modulation of a molecule take place at rates of change slower (of lower frequency) than 

the ionic traffic patterns which the actor both responds to and produces, then necessarily, modulation does not 
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participate in switching or shaping those patterns.  When ever the modulation frequencies, especially voltage 

modulation, take place at high enough frequencies to alter the kinetics during a reception pattern or generation 

pattern, then, of course, there is ample opportunity for that modulation to alter, and shape, that pattern.  Second 

messengers are already known to be of sufficient frequency to directly cause action potentials through their 

modulatory effects upon actors, and so are as likely as voltage to participate in switching and shaping actor output 

patterns.

For example, let us consider a channel type with 2 binding sites for neurotransmitters on the extracellular side,  1 

allosteric modulator site and 5 phosphorylation sites on the intracellular side, and ten found states in the derived 

kinetic scheme.  There are at least 2^8 binding combinations, but there are likely more, as one binding site 

occasionally binds more than one type of ligand (such as Mg substituting for Ca).   In the simple case of only 1 type 

of ligand per site there needs to be 2^8 * 10 state transition vectors for each possible state and binding combination ( 

which require 2560 vectors, each ten elements long = 25600 measurements).   

The wet lab work would necessarily be much greater than the 25600  because of the uncertainly of how many ligand 

types can bind to each site or be transported.  Furthermore, the often numerous glycosylation and phosphorylation 

sites accelerate the quantity of binding combinations to be measured.  Mensuration is further complicated by the 

need to catch the molecule in particular states to determine the changes in binding site affinity.  When state life is 

short, sometimes only nanoseconds, measuring affinities, binding and dissociation constants to repeatable accuracy 

is daunting.  Only simulations done as  Molecular Dynamics experiments can hope to provide such intimate detail of 

molecular behaviors.

Actors may be custom designed to specified needs.  If a specific medical or computational need were characterized, 

then the kinetics developed to meet that need, then a search through available membranal protein types might (or 

might not) come close enough to fill that need.  Biochemistry may be able to modify available proteins to achieve an 

ever closer match. 

Because of the large extant family of proteins, they may serve as a pool of possibilities.  It remains for the biologists 

and chemists to determine which types of channels (and pumps, receptors, vesicles) in nature qualify, if any, for 

temporal pattern recognition functions demonstrated below.   
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11.7.1.1 Test for Pattern Recognition  

Suppose there exists a channel that opens only when the impinging voltage sequence is:  -60,-40,-60,-20,-60, over a 

period of 5E-3 s.  This is an arbitrary pattern for demonstration purposes.  Any such pattern will suffice.  Real 

patterns will vary both the cadence and amplitude.

What would be the necessary kinetics to accomplish this?

We need only consider three voltages: -60, -40, -20 mv, although finer steps would result in less grainy results. 

If the only modulator is voltage, then 3 pages in the transition matrix are necessary, one for the modulation state 

resulting from each of these voltages, expressed as ranges:   -100..-50;   -49..-30;   -29..0

For purposes of determining what actor transition probabilities would be necessary to recognize this pattern, the 

voltage signal is converted into a state-wise procedure.  We start with a generic actor duty cycle.  If the actor is a 

channel, then there is a rest state, a modulation trigger, and opening, a closing, a refractory period, and then back to 

rest state.  In order to respond to a pattern “match”, we add a 5 msec time slot into the duty cycle of the actor prior to 

opening.  Within this 5 msec, there must be a series of states that serves as receptive to one input pattern but not to 

others.  Also during this period of reception, the output of the actor should be silent, as it has not yet been 

determined whether the input pattern or lack thereof indicates a silent output, nor what pattern the output will be.  

Given a minimum of 5 states, and replace 1 of those states (the modulation trigger) with the 5-step series of input 

pattern recognition, we have a requirement of a minimum of 9 states.   

FIGURE 134: INPUT PATTERN HYPOTHESIZED TO OPEN CHANNEL
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Notice in the sparse matrix below, that the rest state of -60 mv holds the actor in state 1, and that depolarization 

to -20 mv also holds it in state one.  Only the -40 mv reading causes the actor to advance forward to state 2.  

36. While in state 1 if v=-60, then state=2

37. While in state 2 if v=-20, then state=3

38. While in state 3 if v=-60, then state=4

39. While in state 4 if v=-40, then state=5

40. While in state 5 if v=-60, then state=6

41. While in state 6 then OPEN

42. If state=6, then OPEN and goto state 7

43. If state=7, then OPEN and goto state 8

44. If state=8, then OPEN and goto state 9

1 While in state 1 if v=60, then state=2 t=1
60 1 2 3 4 5 6 7 8 9 OPEN
1 1
2
3
4
5
6
7
8
9

40 1 2 3 4 5 6 7 8 9 OPEN
1 1
2
3
4
5
6
7
8
9

20 1 2 3 4 5 6 7 8 9 OPEN
1 1
2
3
4
5
6
7
8
9
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45. If state=9, then OPEN and goto state1

The populated state transition matrices then look like:

First, biological systems do not employ synchronized clocks which would divide time up into even timesteps, like 

dt.  The choice of even msec steps is only for digital computer convenience; as varying timesteps would be more 

realistic.  

Second, in biological molecules, transitions never enjoy a probability =1, nor 0.  Thermal noise continuously jostles 

the molecule, and these bombardments arrive from random directions, each tending to bias the next state transition. 

Although wet lab data is strongly preferred, in its absence we can add some white noise as a first approximation of 

this effect.    QQ=

60 1 2 3 4 5 6 7 8 9 OPEN
1 1
2 1
3 1
4 1
5 1
6 0.5 0.5 1
7 0.5 0.5 1
8 0.5 0.5 1
9 1 1

40 1 2 3 4 5 6 7 8 9 OPEN
1 1
2 1
3 1
4 1
5 1
6 0.5 0.5 1
7 0.5 0.5 1
8 0.5 0.5 1
9 1 1

20 1 2 3 4 5 6 7 8 9 OPEN
1 1
2 1
3 1
4 1
5 1
6 0.5 0.5 1
7 0.5 0.5 1
8 0.5 0.5 1
9 1 1

60 1 2 3 4 5 6 7 8 9 OPEN
1 1
2 1
3 1
4 1
5 1
6 0.5 0.5 1
7 0.5 0.5 1
8 0.5 0.5 1
9 1 1

40 1 2 3 4 5 6 7 8 9 OPEN
1 1
2 1
3 1
4 1
5 1
6 0.5 0.5 1
7 0.5 0.5 1
8 0.5 0.5 1
9 1 1

20 1 2 3 4 5 6 7 8 9 OPEN
1 1
2 1
3 1
4 1
5 1
6 0.5 0.5 1
7 0.5 0.5 1
8 0.5 0.5 1
9 1 1
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Column = current state, row = next state, page = current voltage.

A function  is provided, page = volt2page(currentvoltage,pagevoltranges), which reads the current voltage and 

determines which page of the transition matrix shall apply for this timestep.  The current state plus the current 

voltage determine which probability vector shall determine the next state.  For the above, each page must have a 

range of voltages for which it applies.  

pagevoltranges = [-70 -50; -50 -30; -30 -10];     % where row number indicates page number
EX   If currentvoltage = -37 and currentstate = 1, 
then page = 2;  
Q = QQ(:,:,page);  
P = Q(currentstate,:); 
P(1,-37)  =  [0.73 0.07 0.01 0.05 0.06 0.03 0.03 0.01 0.002]; 
indicating a 73% chance of remaining in state=1.    

EX   suppose the voltage had been -61 mv, then  
page =1; 
P(1,-61) = [0.07 0.69 0.03 0.03 0.01 0.07 0.02 0.02 0.06];   

-60 1 2 3 4 5 6 7 8 9
1 0.07 0.69 0.03 0.03 0.01 0.07 0.02 0.02 0.06
2 0.76 0.05 0.01 0.01 0.06 0.07 0.01 0.03 0.01
3 0.04 0.06 0.04 0.68 0.04 0.01 0.07 0.06 0
4 0.72 0 0.01 0.01 0.04 0.02 0.06 0.06 0.07
5 0.64 0.04 0.05 0.06 0.05 0.02 0.07 0.02 0.04
6 0.06 0.05 0.06 0.06 0.01 0.31 0.32 0.05 0.06
7 0.05 0.03 0.01 0.02 0.06 0.05 0.37 0.34 0.07
8 0.06 0.07 0.02 0.02 0.02 0.01 0 0.4 0.4 check
9 0.67 0.03 0.06 0.06 0.06 0.05 0.04 0.02 0.03 1

-40 1 2 3 4 5 6 7 8 9
1 0.73 0.07 0.01 0.05 0.06 0.03 0.03 0.01 0.02
2 0.65 0.02 0.04 0.06 0.01 0.05 0.06 0.06 0.04
3 0.76 0.01 0.05 0.01 0 0.07 0.03 0 0.05
4 0.04 0.05 0.07 0 0.71 0.01 0.06 0.01 0.04
5 0.73 0.02 0.08 0 0 0.01 0.08 0.04 0.03
6 0.06 0 0.08 0 0.08 0.39 0.33 0.03 0.03
7 0.04 0.02 0.07 0.07 0.01 0.01 0.43 0.36 0.01
8 0.05 0.06 0.01 0.07 0.04 0.01 0.04 0.37 0.35 check
9 0.75 0.06 0 0.04 0.02 0 0.03 0.02 0.07 1

-20 1 2 3 4 5 6 7 8 9
1 0.74 0.07 0.06 0.02 0.02 0.02 0.01 0.02 0.04
2 0.01 0.03 0.73 0.06 0.02 0.02 0.07 0.04 0.02
3 0.66 0.03 0.05 0.06 0.01 0.04 0.06 0.06 0.04
4 0.68 0.06 0.07 0.03 0 0.03 0.01 0.05 0.06
5 0.69 0.06 0.05 0.05 0.03 0.03 0.03 0.01 0.05
6 0 0.02 0.08 0.07 0.05 0.36 0.34 0.03 0.06
7 0.06 0.08 0 0.03 0.04 0.05 0.35 0.34 0.03
8 0 0.01 0.05 0.04 0.06 0.06 0.07 0.35 0.36 check
9 0.72 0.03 0.02 0.01 0 0.07 0.07 0.01 0.07 1
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indicating a 69 % chance of moving to state=2.  

By means of voltage, steering the transition probabilities, a course through the state space is defined.  Such a course 

may be difficult, rare or impossible to traverse without the voltage temporal pattern to drive it through a cycle.  It is 

therefore reasonable that voltage-gated channels may be involved in pattern driven duty cycles.  This notion 

supports the often discussed “phase information” of the neural signal.  The only requirement for pattern-driven duty 

cycles is that the pattern be presented at a speed faster than the length of the duty cycle.  Obviously, a duty cycle of 1 

msec, with a pattern recognition portion of that cycle being s fraction thereof, say 0.5 msec, and a pattern of 5 

significantly distinct levels in series, would require a pattern generation frequency of at least 10000 cps.   I use units 

of cps rather than Hz because Hz refers to sine wave cycles, and I am referring to pattern steps.   A realistic pattern 

frequency would necessarily be higher because biological patterns do not follow strict metronome timesteps but 

rather vary in the duration of each step.  The shortest step would determine the minimum frequency.

Because ion channels and ion pumps are not one-time-use devices, they must complete cycles through the state 

graph, repeating them millions of times during the service life before they are enzymatically subjected to “turn-

over”.  The state of lowest Gibbs energy (most relaxed) is deemed to be the “rest state” in the cycle, whether it 

spends a lot of time in that state or not.  Every other state requires some amount of energy increase and therefore a 

little nudge to get it there.  This energy is usually provided by thermal energy.  But for the one greatest energetic hill 

climb, the molecule may receive a boost from an ATP binding (or other energy-transferring molecule) and 

subsequent release of chemical energy.  It is conceivable that a molecule spends more time in a high energy state 

than in its rest state if the escape walls are steep enough.  If the release of such energy awaits some external 

triggering event  (think of the duty cycle of a mouse trap), then such energy storage may be put to practical use.   For 

information processing, the most straightforward strategy is likely to be a rest state, followed by an energetic 

“trigger” state that lifts the molecule to its highest Gibbs potential, and then all states thereafter are a gentle downhill 

run all the way back to the rest state.  And along the way, they happen to perform useful services to the cell.  The 

“trigger” could be an energetic impact, or a chemical reaction.  Modulation is expected to distort the energetics 

topography s as to enable the initiation of the sequence.  Or else alter the state path by switching at a probable 

bifurcation point.
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Most (or all) of the steps in a duty cycle may be driven by thermal energy, a free ambient source.  Usually, only one 

step (or none) in a duty cycle requires metabolic energy.   Such a boost is necessary in pumps for two reasons:  First, 

to cause the cycle to be directed.  That is, a pump cannot be effective if allowed to run both forward and backward. 

It needs a directed state path to be an effective pump, not undoing its work by running backwards;  Second, a pump 

does work, to overcome the forces of concentration gradients and charge gradients against which it “pushes”.   

In the case of channels it is possible, and indeed common, to operate the entire mechanism on thermal energy alone, 

while concentration and charge gradients provide the energy of transport through the open pore.  Because the pores 

are ion-species selective, an opening event is not a pure entropic event.  Rather gradients are harnessed to drive a 

long list of molecular operations, including exchangers, cotransporters, and other metabolic processes.  This allows a 

single type of pump, the Na pump (an ATPase), to drive a lengthy cascade of processes, which independently 

transport K+, Cl-, Na+, and others across the membrane (in either direction).

For any given Q matrix, from each state certain other states are most reachable, most likely to serve as the next state 

in the cycle.  Cycles are not fixed, but rather are probabilistic.  There are alternative paths, partial reverse paths, 

holding pattern paths, and rare disruptive paths.  With so many possibilities, how can an actor fulfill its role without 

wasting energy or being unreliable?   Despite the statistical nature of membranal molecules, a small group of like 

channels (say, eight) can sharpen the processing cycle, average out the noise, and steepen up the nonlinearities - so a 

to perform reliable service.   Where reliability standards are established, and redundancy factors calculated, then a 

“minimal cell” may be determined as to actor types, quantities and placements.  Any gap between these calculations 

and the biodata begs the question:  what more is the cell doing than we are taking into account?  

The next concern is: What happens after the pattern has been matched?  Presumably the channel opens.  This is not 

an instantaneous event, but rather must have some duration to be effective.  How are hold states accomplished? 

They may consist of a single state with a high probability of remaining in the same state, or the the state path may 

cascade through several states in a rather predictable manner.    A series of states, cascading down the Gibbs curve, 

can produce a more reliable open duration than can a single state. 

The standard mathematical treatment of transition probabilities through time is: 

P = P0*Q^t;   % where P0 = initial state;  t = the quantity of time steps.
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This is handy for when the timesteps are smaller than the modulation events spacings.  However the instantiation of 

the state requires that P be resolved into s each dt. 

A cascade of steps is superior to a single hold step in a stochastic system because of the sharpening effect of multiple 

steps, as opposed to a single longer step.   Referring to the above state transition matrix QQ, we note that once the 

pattern as been parsed successfully, the following states 6,7,8,9 probabilities do not vary from page to page.  This 

indicates that they are voltage invariant.  While the pattern recognition states are necessarily sensitive to the outside 

environment (to “read” it), the molecular output function, that which characterizes the actor type, must be robust, 

and therefore not sensitive.  This is the refractive period of the actor.  During the time of its output performance, and 

perhaps somewhat beyond, the actor does not respond to incoming signals in the physiologic range.    This makes 

sense if the actor is a pattern recognizer, as there must be an end to the recognized pattern, after which the actor 

shifts to some action to be performed.  After that action is completed, the molecule returns to the rest state where it 

becomes receptive to the next input pattern.  

Follows is a table of probabilities for a sequence of 3 open states.  A single open state with the composite probability 

will not perform the same as the 3, as a single state is more chaotic.  Multiple states can tame the chaos via 

averaging.
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This results in the following state probabilities wrt time. The time sequence from through the open states 6..10 

proceeds as follows:

OPEN OPEN OPEN OPEN CLOSED
6 7 8 9 1

0.50000 0.50000

0.25000 0.25000
0.25000 0.25000

0.25000 0.50000 0.25000

0.12500 0.12500
0.25000 0.25000

0.12500 0.12500
0.12500 0.37500 0.37500 0.12500

0.06250 0.06250
0.18750 0.18750

0.18750 0.18750
0.00000 0.00000

0.06250 0.25000 0.37500 0.18750 0.00000

0.03125 0.03125
0.12500 0.12500

0.18750 0.18750
0.00000 0.00000

0.00000
0.03125 0.15625 0.31250 0.18750 0.00000

0.01563 0.01563
0.07813 0.07813

0.15625 0.15625
0.00000 0.18750

0.00000
0.01563 0.09375 0.23438 0.15625 0.18750

0.00781 0.00781
0.04688 0.04688

0.11719 0.11719
0.00000 0.18750

0.18750
0.00781 0.05469 0.16406 0.11719 0.37500

0.00391 0.00391
0.02734 0.02734

0.08203 0.08203
0.00000 0.15625

0.37500
0.00391 0.03125 0.10938 0.08203 0.53125

0.00195 0.00195
0.01563 0.01563

0.05469 0.05469
0.00000 0.11719

0.53125
0.00195 0.01758 0.07031 0.05469 0.64844

0.00098 0.00098
0.00879 0.00879

0.03516 0.03516
0.00000 0.08203

0.64844
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 There is a cascade of time windows for each state in the dominant sequence.  The above open states sum to:

This provides a means of causing a phenostate hold state, either open or closed, in the case of channels.  Due to the 

rather gradual probability slope, its reliability is rather poor.   Note the length of time open can vary from 5..10 

msec.  This can be sharpened via  sequence of shorter states.

FIGURE 136: HOLD-OPEN TIME PROBABILITY FOR 1 SUBUNIT
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FIGURE 135: STATE DURATION PROBABILITIES
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The sequence of 3 states reduces the duration to 5..7 msec.  More intermediate state could sharpen the response time 

(make it more deterministic).

One can see that a small cluster of such actors say 10, would constitute a reliable 5 msec opening in response to a 

voltage temporal pattern of  -60 -40 -60 -20 -60 mv.    

Although the EX presumed 1 msec steps in the voltage pattern for the sake of a digital simulation, a true voltage 

pattern match would align to the modal probabilities of each state's duration, which, of course, do not keep cadence 

but vary over continuous time.  This in no way limits the precision of the pattern.  Thus, a voltage pattern of any 

tempo, rhythm or chromatics is feasible; to the extent of the various kinetic probabilities (frequencies) of transitions 

between possible molecular configurations.    

Limit cycles are always implied in the actor transition probabilities.   Transition probabilities offer opportunities for 

extremely large quantities of state paths through the 3-dimensional table.  Such complexity infers a pattern space.  It 

is not yet known what variety actors traverse in vivo. Usually, there is more than one circuit possible.  Each different 

limit cycle may be a different modality of response.   These have utility if they can each be elicited by a unique 

modulation combination.  Each of these limit cycles may be altered by external pressures like voltage, pH, 

concentration., and the torsional effects of bindings, e.g. phosphorylation and glycosylation.  As the rate of change 

of modulation signals speeds up it may reach a point where it participates in creating a uniquely-shaped response. 

At that point, the actor is serving as an information processor.

FIGURE 137: HOLD-ON TIME PROBABILITY FOR MULTIPLE SUBUNITS
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The case above demonstrated the feasibility of employing stochastic processors in parallel to generate reliable 

computation.  Hundreds of trials suggest that with certain Q matrices, a redundancy (parallelism) of 8 identical ion 

channels will yield 99% accuracy over widely varying conditions.   It my be engineered that for a desired duty 

function, the tolerance of the transition probabilities may be plotted against the resultant reliability of the actor. 

Because of the phenostate mapping to exterior impact, and some impacts being more desirable than others, each type 

must be investigated for reliability as a separate case.

11.7.2 PATTERN GENERATION  

Characteristic of an information processor is that some portion of it responds to the input conditions with changes in 

state, and some portion responds to the internal state conditions with a generated output.  Whatever a membranal 

protein does to process its inputs, the successful input triggers a characteristic response of that actor type.  Indeed 

each actor type is functionally distinguished by its input to output map.   Systems engineers will recognize this 

necessity immediately.   A dead system, a mere function, requires  only 1 matrix to represent it. This is the o/i 

matrix.  It is a zeroth order system in the sense that it has no states (to be mathematically precise: it has only 1 state). 

But the introduction of actors with kinetic schemes implies 2 or more states in each.  These comprise first order 

stochastic systems, in the sense that the transition probabilities are the differentials of the state probabilities.  When 

ever these transition probabilities are modulatable by say, hormone bindings, then such actors comprise second order 

stochastic systems.   Modulation alters the transition probabilities, which in turn alter the states.  Thus, modulation 

acts as an acceleration factor, a second order effect.  As the states, via phenostates, alter particle flux via gating, the 

modulatable actor particle system is necessarily a third order stochastic system.  This places us out of the reach of 

Fourier analysis; and we must therefore embrace pattern processing to appreciated the functioning of the membranal 

system.  The input-state-output process is represented by two matrices: state/input, and output/state. 

So far, it has not been reported that a single molecule can perform pattern recognition and pattern generation 

concurrently, as though 2 parallel processes within the molecule.  Doing so is theoretically possible if the molecule 

were large enough to carry on 2 mostly isolated processes, yet supported the signaling of the pattern recognition 

portion over to the pattern generation portion.  Further complications include the possible asynchronicity between 

the 2 processes.  In the digital world, this problem is solved with buffer memory, but it is already established that the 

molecule has no memory  other than its present state.  Therefore, parallel processing is much more difficult than 
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serial processing.  Within a single molecule, serial processing makes a lot of sense and solves most or all problems 

of functional logic.   Indeed, a duty cycle, almost by definition, is a serial process.   However, there remains the 

matter of subunits.   If they act independently, with minimal coupling of their state transition probabilities, then the 

problems of design and modeling are straight forward.   With coupling, a long list of asynchronicity problems arise. 

This greatly increases the state space, which may expand the pattern recognition and generation capabilities, add a 

lot of noise to the system, or impede the ability of the actor to perform its function.   Most likely, the subunits are 

minimally coupled wrt information,  as the biodata, all the way back to Hodgkin and Huxley experiments of 1951, is 

consistent with  independence.  Had they been coupled, the  n^4 term and h*n^3 term of the HH EQs would have 

resulted in fractional exponents.

The question has been raised as to whether an actor type is capable of more than one characteristic response.   If 

each actor type produced one response type, then merely shutting one type off and turning another on would 

accomplish shifts in cell performance without expecting molecules to do such herculean tasks as multiple pattern 

mappings; so the argument goes.  Well, there must be multiple response types, or else we would not be able to talk 

of modulation.  Messenger molecules can only work on actors one-on-one.   Coordinating 1 actor type to  up 

regulate, and another type to down-regulate in response to the same messenger is feasible and reported.  But the 

simulation of the Q matrices demonstrate that there are always more than one possible paths through the state space, 

each with a characteristic probability of occurrence, and each with those probabilities is typically altered by 

modulation. Modulation, by definition, alters the relationship between inputs and outputs.  If it could only turn on 

and turn off, then it would be called “blocking”, not modulation (more completely: antagonist or agonist). 

Conceivably, modulation could switch effective input triggers for the actor, but it could just as easily be that 

modulation alters which output will be elicited from the same input.  Kinetically speaking, these are both much the 

same thing, and have quite equal chances of mutating into existence in nature.  The question then becomes:  is there 

a selective advantage to actors that recognize multiple temporal input patterns and generate multiple temporal output 

patterns?  

Much literature on ion channel gating concerns itself with channel openings as % open time, or dwell open times, 

but  so far, no literature has been found seeking to detect temporal output patterns.  The strong tendency of kinetic 

schemes to generate characteristic patterns, emergent directly as a result of the state paths, suggests that temporal 

patterns are likely present in vivo.  And if they are present, what functions may they serve?  
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In artificial finite state machines (FSMs) by design the duty cycle is customarily placed along the upper first 

diagonal band of the state transitional matrix  This defines state 1 as being the highest energy state, that state=1 most 

often transitions to state=2, then state=2 most often transitions to state=3, and so forth.  State N then is the rest state 

as it has no where left to go.   State N may be escaped from when energy is added to the system.  It can bump state 

N back up to state 1 via the probability in the lower left hand corner of the matrix.  If there are 2 or more open pore 

states, and if these open states are separated by 1 or more closed states, then necessarily a temporal pattern emerges 

along the course of the most probable state path. 

11.7.3 PATTERN RECOGNITION  

The following QQ matrix recognizes an input pattern and then generates a temporal output pattern.  

  fsm02(:,:,1) = ...
  [ 0.0200    0.9576    0.0210    0.0096    0.0014    0.0027    0.0041    0.0027    0.0041
    0.0500    0.9400    0.0013    0.0040    0.0066    0.0066    0.0026    0.0026    0.0066
    0.0027    0.0053    0.0040    0.9626    0.0013    0.0040    0.0094    0.0094    0.0013
    0.9595    0.0068    0.0041    0.0014    0.0054    0.0054    0.0068    0.0054    0.0054
    0.0025    0.0076    0.0063    0.0038    0.0013    0.9722    0.0038    0.0025         0
    0.0300    0.0600    0.0500    0.0600    0.0400    0.3900    0.3100    0.0200    0.0400
    0.0600    0.0800    0.0100    0.0500    0.0300    0.0100    0.3800    0.3800         0
    0.0300    0.0400    0.0700    0.0600    0.0300    0.0600    0.0500    0.3500    0.3100
    0.9375    0.0094    0.0078    0.0094    0.0063    0.0078    0.0078    0.0047    0.0094 ];

fsm02(:,:,2) = ...
  [ 0.9551    0.0070    0.0084    0.0042    0.0028    0.0070    0.0028    0.0070    0.0056
    0.9648    0.0026    0.0026    0.0052    0.0065    0.0026    0.0052    0.0091    0.0013
    0.9544    0.0071    0.0043    0.0043    0.0100    0.0014    0.0085    0.0028    0.0071
    0.0013    0.0026    0.0064    0.0013    0.9665    0.0077    0.0039    0.0064    0.0039
    0.9643         0    0.0013    0.0066    0.0092    0.0066    0.0026    0.0026    0.0066
    0.0500    0.0400    0.0700    0.0200    0.0600    0.3000    0.3400    0.0600    0.0600
    0.0396    0.0792         0    0.0396    0.0099    0.0297    0.3861    0.3465    0.0693
         0    0.0500    0.0100    0.0200    0.0500    0.0500    0.0100    0.4000    0.4100
    0.9544    0.0071    0.0071    0.0100    0.0014    0.0028    0.0071    0.0071    0.0028 ];

fsm02(:,:,3) = ...
 [  0.0210    0.0084    0.0014    0.0070    0.0028    0.0084    0.0084    0.0056    0.0042
    0.0043    0.0085    0.9517    0.0099    0.0071    0.0014    0.0028    0.0085    0.0057
    0.9690    0.0065    0.0078    0.0013    0.0039    0.0052    0.0013    0.0013    0.0039
    0.9597    0.0083    0.0056    0.0014    0.0070    0.0014    0.0083    0.0070    0.0014
    0.9489    0.0029    0.0088         0    0.0102    0.0015    0.0102    0.0088    0.0088
    0.0300    0.0400    0.0700    0.0100         0    0.3800    0.3800    0.0700    0.0200
    0.0198    0.0792    0.0297    0.0099    0.0297    0.0792    0.3663    0.3861         0
    0.0303    0.0202    0.0707    0.0202         0    0.0505    0.0505    0.4141    0.3434
    0.9489    0.0044    0.0073    0.0058    0.0088    0.0058    0.0015    0.0088    0.0088 ];
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This is a state transition probabilities matrix that does pattern recognition, because any failures to match the required 

input pattern result in energetic blocking of the duty cycle, and the state path reverses back to rest state without 

completion.

 Stimulated with a voltage pattern = [ -60 -20 -60 -40 -60];  % mv    the following time line results

The traces from bottom to top:  input signal; modulation effect within actor (Q page);  concurrent plots of actor 

states; composite phenostates; threshold line above which propagation takes place.   If upon each input stimuli, the 

molecule responds with a particular state sequence (appears like a staircase), then the molecule is responding to a 

pattern.  Being a stochastic processor, the output for a solo actor may not be very impressive.  In the plot above, 

there is no noise in the input signal, but internal thermal noise continues to drive the molecule through its states. 

This may be chaotic, but  most often follows a characteristic state path.

11.7.3.1 Signal Noise  

The noise level of a signal may be measured as the root mean square of the series of sample values.  A uniform 

distribution of 1 million random numbers from 0 .. 1 has an rms = 0.5773 ( = sqrt(1/3);   But how is the test pattern 

to be measured for rms?  A pattern of [0.0 0.5 0.0 1.0 0.0] has an rms of 0.5.  But this value changes markedly with 

the quantity of zero padding, arbitrary though it be.  One could argue that given a uniform distribution from 0..1 

with its rms = 0.5773, and given any pattern created by ordering a sequence of samples taken from that distribution, 

then the rms of both the white noise and the pattern are equal.  And from there, the noise could be scaled up or down 

to effect a known signal to noise ratio.  This does not quite hold up, however, because if one of those patterns to be 

recognized happened to be comprised of a series of small values, then the noise would be proportionately larger 

FIGURE 138: At 0% noise, 1 unit detected the Pattern poorly



812

despite that the rms values were supposed to be the same.   One solution is to select the complete family of patterns 

to be recognized, and to solve for the rms of them as a group.  This would not take into account that some patterns 

may be heavily used while others are seldom or never used.  This problem can be corrected via a weighted 

concatenation of patterns, each repeated proportionate to usage.  

Confusion may arise from interchanging signal strength with information value.  Demonstrations of patterns 

recognized despite a back ground of noise of various amplitudes, stands as a verification of pattern recognition 

capacity.  From an information perspective, one can define a physiological range of signal values, above which some 

denaturing occurs.  Then that range can be divvied up into some maximal quantity of distinguishable values.  For 

example, suppose there are found to be 21 voltage values for which differences in consequent state transition 

probabilities can be discerned. Then, using only those 21 values, there are a finite number of patterns that are 

feasible for a given series length.  A few of these patterns are declared significant stimuli, and the rest are defined as 

“noise”.  The information value of low numbers within the pattern may be equal to or greater than the value of high 

numbers,  irrespective of the noise level.    

The rms is merely a convenient metric on the noise and signal levels; it more heavily weights the high values, which 

may not be appropriate in information coding. The choice of using the squares was motivated by the need to treat 

negative and imaginary components on equal footing.  However, taking the squares of bits (information) is probably 

inappropriate.  Noise could be measured as a ratio between the rms of the noise signal and the rms of the maximum 

signal that is physiologically sustainable.  The noise level of neuronal inputs can be measured as a fraction of the 

physiological range.  Due to the nonlinearities of the living system, this approach may be complicated by unequal 

responses to various frequencies, and to frequency combinations.  Accordingly, frequency response curves may be 

plotted, and a signal expressed as a plot under the maximal response curve.  

While the rms may be of interest to those concerned with power and energetics, the pattern recognition function is 

concerned with reliability given certain conditions.  Various encountered conditions (patterns) may be cataloged and 

the reliability of useful patterns measured and noted.  For demonstration purposes, the maximum value of the test 

pattern is compared to the maximum value of 100% noise, given that the noise is generated as a uniform distribution 

of values 0..1, then scaled to the physiological range.  It is somewhat more realistic to create a uniform distribution 

of frequencies, then perform a Fourier transform to the time domain to get white noise. However, given the 
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constraints and aliasing of digital sampling, this method of generating randomness matters little to a molecule that 

only responses to a few certain patterns.  The larger concern is that within the noise signal must be a few patterns 

capable of causing the molecule to change state.  This is reminiscent of the 2-step voltage clamp, wherein the 

purpose of the first value was to change molecular state prior to the test voltage.  Prior perturbations may be useful 

or detrimental, and their uncertainty contributes to the stochastic nature of the molecular mechanisms.  They are 

“filtered out” via signal averaging across parallel actors.

11.7.3.2 Stochastic Noise Filters  

Let us consider if there were 8 stochastic actors operating in parallel, responding to the same stimulus (in phase).

In this case, despite the noise, the output spikes correlated to the 4 stimulus events.  In this case, the threshold is 

established by the downstream neighbors which, as Hodgkin and Huxley determined, propagate a signal only when 

channel thresholds are exceeded. 

When the output appears one-to-one with the stimulus, the actor does not constitute much of an information 

processor, as this is mere transduction/transmission.  So lets make it more challenging.  What about high noise 

environments; wouldn't the chaos of thermal state transitions disrupt the pattern recognition function?

FIGURE 139: At 5% noise levels, 4 units detected the pattern 88% of trials

FIGURE 140: At 25% Noise levels, 4 units detected the pattern 79% of trials
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What if the stimulus were modified to a similar but different pattern?  Would not other stimuli elicit the same 

response?  The stimulus voltage pattern is modified to [ -60 -40 -60 -20 -60];  % mv ,   whereby the 2 voltage dips 

are reversed in order.  The result is that there is no correlation between stimulus and output, as the pattern did not 

match.  No threshold crossings occurred.  This establishes that it is the temporal pattern that matters, not the energy 

of the stimulus.

And finally, let's resume the original pattern and increase the noise to be of equal amplitude to the signal pattern 

itself.  

Even under such noisy conditions as 1:1 signal to noise ratio, given 4 identical input patterns embedded in back 

ground noise, there results 4 threshold crossings as output; aligned perfectly in time to the patterned stimulus. 

Repeated trials (in simulation) attest that arbitrary precision may be obtained via a) particular kinetic rate values in 

FIGURE 141: same as above, but reversed input pattern

FIGURE 142: Stimulating 8 Q matrices with pattern + 100% noise
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the Q, or b) multiple units operating in parallel.   The Q matrix becomes more deterministic as alternative paths are 

zeroed out.  Such kinetic rate values increase reliability as the probability of subsequent states approach 1 along the 

duty cycle.   This is not the easy solution, because soft matter molecules are stochastic, not deterministic.  The 

biological solution to reliability needs is increasing the quantity of actors in parallel.

The next challenge undertaken is to cause the actor molecule to respond with its characteristic output pattern.  Can 

these be made reliable in small parallel groups, as above?  Pattern generation has the characteristic of being 

unresponsive to the environment.  Regardless of modulation or voltage, once the pattern commences, it ideally 

continues to completion.  Thus all the Q pages are identical, or nearly identical, in the regions of pattern generation. 

The second trait is that during this sequence there must be some expression to the outside world.  This could be a 

channel opening, a trans-membrane transport, a release of messengers, activation of a catalyst, etc..  I call this 

expression the phenostate.  In the case of channels, the phenostate map is a list of those conformational states which 

result in an open channel.  In the case of pumps, the phenostate maps lists those states which result in a transport 

event from side A to side B, and those states which result in a transport from side B to side A.  In the case of 

receptors, the phenostate map is a list of states which result in the release of messengers, and how many.  In the case 

of vesicles, the phenostate map is a list of states that result in a partial or full discharge of contents into the synaptic 

cleft.  

Returning to biological actors, they almost always are modulated by one or more environmental variables.  As the 

modulation points increase, the size of the state transition matrix increases geometrically.  Modulation may alter the 

dominant limit cycle by speeding up some steps and slowing others down. This constitutes a  change in the pattern 

of response.  You can hear it in the rhythm of the openings.  It is the nonlinearities of state transitions that may cause 

a slight change in modulation to result in a switch to an alternative state pathway, with a completely different 

temporal sequence expressing itself.  Modulation may increase uncertainty by bringing two or more paths into 

nearly equal probabilities, or conversely decrease uncertainty by reducing the probabilities of alternatives to near 

zero.  Modulation might result in skipping a step, by short circuiting to a subsequent step.  Modulation might allow 

running backwards, to some extent.  Modulation might also increase or decrease the selectivity of particles to be 

transported, or alter the affinity at other modulation sites.   This latter effect should properly be referred to as meta-

modulation or second order modulation, as it modulates the modulator.   This adds yet another order to our 

membranal system, bringing it to  minimum of being a forth order stochastic system.
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This project defines several primitive tools for exploring these phenomena.  There remains much work to be done to 

characterize the biological uses of such potential and to develop artificial applications for the information processing 

potentials of these molecules.

11.8 COMPUTATION WITH PATTERN PROCESSORS  

The discipline of computation is biased towards step by step procedures, a/k/a logic.  Much of this originates with 

Alan Turing, who defined the computer as a digital step-by-step procedural processor.  Though he explicitly 

addressed analog computers in several of his papers, digital machines act logically, while analog act via continuous 

functions.  Some work in formalizing what analog systems can compute is written, but mostly as a conversion of the 

theories from the digital realm.  Stochastic processors are distinctly different in that they do not require 

programming, as do all digital computers.  Stochastic processors begin naive but are self motivated to derive 

information from the environment and develop patterns that resonate with it.  They derive operating energy from 

both the thermal surround and from specialized molecules like ATP.   A network of paths is possible through the state 

graph, and which path is taken is a function of modulating particles which may impinge on it.

What is often interpreted as “uncertainty” in stochastic processors is in reality an extensive exploration of the 

possibility space so as to maximize harmony (viability) with the many variables of the environment.  It is also the 

means of deriving energy from the thermal surround.   Rather than being severely constrained - as digital computers 

are intentionally designed - organic systems presumably evolved with wide responsivity to relevant variables of the 

environment.  For example, each living cell must adjust to temperature, pH, tonicities, light, and available energy 

sources - and still serve in its role to the greater organism.  This implies that the living cell possesses far more 

intelligence than the inorganic transistor.  Indeed it gives a single membranal protein molecule far more intelligence 

than the transistor.

Is it reasonable to impose man's notion of computation upon neurons as a metric of their information processing 

potential?  Are not addition, subtraction, multiplication, division, integration differentiation, lag and convolution 

creatures of step-by-step procedures?    Yes they are, and as such may not apply to stochastic systems.  However 

some aspects of them do carry over.  
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Consistent to conventions of 1 page per input combination, the AND, OR, XOR, NAND and NOR gates have the 

following QQs, each having their size = 2x2x4:

From these data, it is obvious that transistors do not have true transition probabilities.  They are deterministic, as the 

state is solely determined by the two current inputs.  They are not Markov processes because they do not change 

state as a function of the current state.  Although Markov processes are regarded as the simplest of stochastic 

processes because they “have no memory” beyond the current state, transistors don't even have that.  Concerning 

systems with memory, transistors are zeroth order and Markov processes are first order.  It is the state memory that 

enables actors to process temporal information.  Without it they could not be pattern recognizers.  A second order 

process would retain memory of its prior and current states (as is necessary for differentiation and for integration). 

In silicon computational systems, the capacitors provide memory of the prior state.  In neural systems, the ion 

positions (and resultant charge densities) provide memory of the prior state.  Much of this memory resides in the 

capacitance of the membrane.  Some of it resides in sequestered messenger particles, staged for triggered release.

AND page page page page
input1 0 1 0 1
input2 0 0 1 1

states 0 1 state 0 1 state 0 1 state 0 1
0 1 0 0 1 0 0 1 0 0 0 1
1 1 0 1 1 0 1 1 0 1 0 1

OR page page page page
input1 0 1 0 1
input2 0 0 1 1

states 0 1 state 0 1 state 0 1 state 0 1
0 1 0 0 0 1 0 0 1 0 0 1
1 1 0 1 0 1 1 0 1 1 0 1

XOR page page page page
input1 0 1 0 1
input2 0 0 1 1

states 0 1 state 0 1 state 0 1 state 0 1
0 1 0 0 0 1 0 0 1 0 1 0
1 1 0 1 0 1 1 0 1 1 1 0

NAND page page page page
input1 0 1 0 1
input2 0 0 1 1

states 0 1 state 0 1 state 0 1 state 0 1
0 0 1 0 1 0 0 1 0 0 1 0
1 0 1 1 1 0 1 1 0 1 1 0

NOR page page page page
input1 0 1 0 1
input2 0 0 1 1

states 0 1 state 0 1 state 0 1 state 0 1
0 0 1 0 0 1 0 0 1 0 1 0
1 0 1 1 0 1 1 0 1 1 1 0
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Silicon transistors are binary operators, in that they receive two inputs to determine one output.  Membranal proteins 

are N-ary operators, where N = quantity of allosteric binding sites + voltage + state.  As the state transition response 

to inputs is the essence of computation, it is reasonable to conclude that membranal proteins perform greater 

computation than do transistors.  The question confronting investigators is: What are the operators?   

In all cases of state transitions in response to various inputs (including prior state), what characterizes a given type 

of processor is the pattern of responses.  In response to the same set of input patterns: [ 0 0; 0 1; 1 0; 1 1]; the above 

types of transistor respond with characteristic patterns in the next state (taken as output): 1112, 1222, 1221, 2111, 

2221.  This short list of patterns is responsible for everything that a digital computer can do, attesting to the power of 

primitives in combination.  Two such gates in series may determine or recognize a two-step temporal pattern, and N 

gates in series may determine an N-step temporal pattern.  That membranal proteins can easily determine 2- and 3-

step patterns is manifest in the kinetic schemes observed.  The practical question is how might patterns deeper than 

2-steps be harnessed in an aqueous environment, presumably where “cross-talk” between channels is rife.  

 A mathematician may be concerned as to whether or not the set of patterns available within a neuron constitute an 

“algebraically complete” set of operators.  But in living forms, the question is only whether or not a sufficient set of 

operators is available to attain viability.  A methodical pursuit of the question of viability are expected to suggest 

which patterns will be present.  For example, homeostasis will require patterns that contribute to negative feedback 

loops, and “startle” will require patterns that participate in positive feedback loops.  

Excitation and inhibition receive a lot of attention. Differentiation is also essential for such operations as acoustic 

source location determination.  Integration is implied in the “integrate and fire” behavior of some neurons.  The 

presence of both inhibitory and excitatory neurotransmitters is a single dendritic arbor suggests that the presence of 

some inputs AND the absence of certain other inputs is necessary to generate a signal.  This combination constitutes 

are spatial pattern.  Similarly, distal excitation must get started earlier than proximal excitation if the two are to sum 

to an above- threshold response.  This constitutes a temporal pattern.   Inhibitory surround is prevalent both spatially 

and temporally, suggesting the need to isolate the dominant signal from the background clatter.   A vague input 

pattern is often sharpened into one or another canonical output pattern, as a form of “classification” of inputs.  Such 

sharpening can be accomplished by a single ion channel, and successive stages of the same type of channel can 

result in increasing that sharpness.  In this sense, signal filtering is merely a subset of pattern recognition.  Pattern 
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recognition can perform blocking, filtering, smoothing, sharpening, amplifying, addition, subtraction, AND, OR, 

NAND, NOR, XOR, comparison, classification, and decision.

There are two fruitful approaches to discover the computational potential of membranal proteins.   The first is to 

perform molecular dynamics simulation experiments until the complete state transition data set is exercised and 

valued. The second is to write requirements for biocomputation and then engineer kinetics that will fulfill those 

requirements.  Chemists are then tasked with scanning the molecular possibilities to choose from the extent 

molecule of the closest matches to needs.  A third method might be direct observation of in vitro ion channels, but 

instrumentation is not yet available to complete the task.  The first approach is useful for understanding biology and 

the second for engineering new forms of liquid state computers.

It has become apparent that large protein molecules are capable of pattern handling, and that addition and 

subtraction may be too simple for them, in that the Q matrices must be shrunk down to a small number of states to 

do such tasks.  One ion channel has a lot more computational horsepower than a solid state transistor.  

A great challenge in harnessing the pattern processing power of molecules concerns reversible processes.  Energy-

less systems are almost always reversible processes; while systems with energy injected are usually directed 

processes that proceed only 1 way around the duty cycle.  It is possible however to design stochastic ratchets.  On 

ambient temperature alone, a timed sequence of state changes and modulation changes can effect a directed flow. 

Channels must somehow enforce directed flow around their duty cycles for all patterns except palindromes.  

11.8.1 PATTERN CONVERGENCE FOR CLASSIFICATION AND DECISIONS  

Each of the possible state paths can be mapped into input implications and output implications.  The input is 

expressed as that modulation pattern(s) which will have this state path as its highest probability.  The output is 

defined as the transport pattern that results from this state path.  This sets up a mapping between input pattern and 

output pattern.  

It is expected that an actor will either express as one-to-one mapping of input pattern to output pattern, or a several-

to-one. There is utility for a processing device that can take several different inputs and classify them into a reduced 
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set of output possibilities.  The goal of many computational problems is to digest a lot of data down to a decision. 

This requires a successive reduction in data via several-to-one mappings.  

After all, actors are parametrically swept for patterns recognized, then a grand library of input patterns can list which 

actors recognize it and what their responses are.  This information can be organized into a conversion table, working 

much like logical tables do.  

11.8.2 COMPUTATIONAL FLOW CONTROL  

The distinction between an adding machine and a computer is the capability of conditional branching.  A calculator 

follows instructions set forth before the initiation of the calculation steps.  But if during the course of those 

calculations conditions can be detected that would cause (dynamically) a switch to a different sequence of steps, 

then we call that a programmable computer.  Observing the human players in any fast sports, such as soccer or 

basketball, makes it obvious that humans can respond quite dynamically to changing conditions, even mid-

maneuver.  The question is, at what level of nervous system organization does flow control effect switching to 

alternative actions?  For purposes of this model, the question is reduced to:  Can a constellation of ion channels 

implement flow control, so as to switch the modality or the path of streaming data to alternate processing?   

As a starter, we know modalities exist, down to the level of individual channel molecules (expressed as bursts, 

rhythmic pulsing, chaotic firing).  What remains to be investigated are the pathways of information that trigger those 

modal shifts.  Are the triggers patterns of input?  Or is there feedback from some down stream point that gauges the 

output?  In the former case, we have channels that are definitely pattern recognizers.  In the latter case, whatever is 

generating the feedback signal must be the pattern recognizer.  We must find it.  

Feedback is certainly plausible, as antidromic communication can take place across synapses, and messenger 

molecules are not bound to diffuse only dromically.  While the charged particle waves are energetic, forceful and 

fast, the neutral particles may serve as supplemental messengers diffusion in the gray zones, the non charged 

volumes 5+ nm away from the membrane. Is it possible that some may surf the charged particle waves?
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11.9 AQUEOUS ION WAVE TRANSMISSION    

The force that creates such waves is the EM force, the strongest available to the cell.  Therefore it has the potential 

to over ride  all other forces, including diffusion, inertia, and water molecules acting as a solvent.  However, it 

remains for physics to verify the degree of dominance and ascertain the facts of the phenomenon. 

First is considered the static charge case for capacitation by a membrane given unbalanced charges across that 

membrane.  The packing density on either side of the membrane is not well represented by a square grid, but rather 

by an equilateral triangular grid.  

A significant consideration is that Coulomb's law of forces due to inhomogeneous charge densities does not support 

independent action by the various ion types.  According to Coulomb's law, charge is fungible.  The channel pore 

selectivity of charge is a chemical feat, not a physical one. Which ever ion types are caught up in the charge 

attractions across the membrane are also going to participate in disturbance waves.  Variations in mass, especially 

due to hydration, are expected to leave some ions more sluggish than others, due both to inertia and viscosity 

increases.   It remains to be studied by physicists what might be the effects of mixed mass particle systems in 

radiating surface waves.   It remains to be studied whether some one species of ion has advantage over the others 

and is able to crowd other types out into neutral zones via the surrender of oppositely charged particles.  It is 

contemplated that the lightest mass is the fastest to occupy near-membrane positions.  That would be Na+, or 

possibly H+ if sufficient quantities were available.  The effects of dynamic hydration are not yet adequately taken 

into account.   If there is any competitive effects between the ion types for capacitation, then that would tend to 

render the charge fields more homogeneous, and therefore more prone to waves than chaotic dampening.  

Another effect in need of further study is the differential in mass between the ions on one side of the membrane 

verses the other side.  With Na+ at 23 Dalton and Cl- at 34.5 Dalton, and with near even matches in quantities, the 

two  wave-like movements are coupled by great force and may  act as one body.  To what degree does such a mass 

differential hinder a smooth sinusoidal wave?  Are there two resonance frequencies, or are they joined into one?   Is 

the coupling between them sufficiently strong to cause them to reach a compromise action; or do they each tend to 

smear the other type's movements?
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The packing density of charges on either side of a charge barrier results in the capacitation of the unbalanced 

charges.  The first layer is against the membrane.  The closest like charges can come to each other is equal to the the 

thickness of the membrane.  If they come any closer than that the repulsive forces will exceed the attractive forces 

from across the membrane, with the result that one of the overpacked particle will be expelled into the outer regions, 

at least a membrane thickness away.    The repulsive forces equilibriate in layers, each one sparser than layers closer 

to the membrane.  The first layer contains 81.77% of all charge of the capacitor.  Thus the contributions of 

subsequent layers diminish rapidly, with the fifth layer contributing only 1%.  The fifth layer is located 9*thk away 

from its counterpart layer on the other side of the membrane.

lay = layer; d = multiple of membrane thickness;  D = angstroms apart; N = quantity B in the layer; frac = fraction of 

the first layer capacity that this layer contributes;  % = percentage of the whole;  density = charge density of this 

layer;  cdens = cumulative density.  

TABLE 33: MAXIMUM CHARGE DENSITY WRT MEMBRANE THICKNESS

B2C B2B
lay d D spaces force N N cum frac cfrac % cum % density cdens

1 1 100 1000000.0 1.00 1.00E+012 1000000000000 1.00000 1.00 0.81771 0.8177 100000000 100000000
2 3 300 333333.3 0.33 1.11E+011 1111111111111 0.11111 1.11 0.09086 0.9086 11111111 111111111
3 5 500 200000.0 0.20 4.00E+010 1151111111111 0.04000 1.15 0.03271 0.9413 4000000 115111111
4 7 700 142857.1 0.14 2.04E+010 1171519274376 0.02041 1.17 0.01669 0.9580 2040816 117151927
5 9 900 111111.1 0.11 1.23E+010 1183864953389 0.01235 1.18 0.01010 0.9681 1234568 118386495
6 11 1100 90909.1 0.09 8.26E+009 1192129416199 0.00826 1.19 0.00676 0.9748 826446 119212942
7 13 1300 76923.1 0.08 5.92E+009 1198046575962 0.00592 1.20 0.00484 0.9797 591716 119804658
8 15 1500 66666.7 0.07 4.44E+009 1202491020406 0.00444 1.20 0.00363 0.9833 444444 120249102
9 17 1700 58823.5 0.06 3.46E+009 1205951228019 0.00346 1.21 0.00283 0.9861 346021 120595123

10 19 1900 52631.6 0.05 2.77E+009 1208721311121 0.00277 1.21 0.00227 0.9884 277008 120872131
11 21 2100 47619.0 0.05 2.27E+009 1210988884818 0.00227 1.21 0.00185 0.9902 226757 121098888
12 23 2300 43478.3 0.04 1.89E+009 1212879243986 0.00189 1.21 0.00155 0.9918 189036 121287924
13 25 2500 40000.0 0.04 1.60E+009 1214479243986 0.00160 1.21 0.00131 0.9931 160000 121447924
14 27 2700 37037.0 0.04 1.37E+009 1215850986098 0.00137 1.22 0.00112 0.9942 137174 121585099
15 29 2900 34482.8 0.03 1.19E+009 1217040046740 0.00119 1.22 0.00097 0.9952 118906 121704005
16 31 3100 32258.1 0.03 1.04E+009 1218080629467 0.00104 1.22 0.00085 0.9960 104058 121808063
17 33 3300 30303.0 0.03 9.18E+008 1218998903112 0.00092 1.22 0.00075 0.9968 91827 121899890
18 35 3500 28571.4 0.03 8.16E+008 1219815229643 0.00082 1.22 0.00067 0.9975 81633 121981523
19 37 3700 27027.0 0.03 7.30E+008 1220545689833 0.00073 1.22 0.00060 0.9980 73046 122054569
20 39 3900 25641.0 0.03 6.57E+008 1221203152029 0.00066 1.22 0.00054 0.9986 65746 122120315
21 41 4100 24390.2 0.02 5.95E+008 1221798036026 0.00059 1.22 0.00049 0.9991 59488 122179804
22 43 4300 23255.8 0.02 5.41E+008 1222338868909 0.00054 1.22 0.00044 0.9995 54083 122233887
23 45 4500 22222.2 0.02 4.94E+008 1222832696069 0.00049 1.22 0.00040 0.9999 49383 122283270
50 101 10100 9901.0 0.01 9.80E+007 1222930725674 0.00010 1.22 0.00008 1.0000 9803 122293073

500 1001 100100 999.0 0.00 9.98E+005 1222931723677 0.00000 1.22 0.00000 1.0000 100 122293172
100001 10000100 10.0 0.00 1.00E+002 1222931723777 0.00000 1.22 0.00000 1.0000 0 122293172

10000001 1000000100 0.1 0.00 1.00E-002 1222931723777 0.00000 1.22 0.00000 1.0000 0 122293172
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These stratifications only appear at kelv=0;  As temperature rises, the layer boundaries grow fuzzy.  At full 

destratification, the charge density is are found to follow an exponential decay curve away from the membrane, with 

95% of the charge located within 3 membrane thicknesses.  

This implies that  substantially all of the charge effects, including disturbance waves, are taking place within 25 nm 

of an 8 nm thick membrane. 

11.9.1 INFORMATION IS DESTROYED BY DIFFUSION  

 
As previously discussed, earlier models of communication between ion channels via diffusion is quite unlikely.  The 

EM force will not allow it.  Diffusion is defined mathematically by the Gaussian curve.  The Gaussian curve is 

found to be synonymous with the distribution of white noise.  White noise is defined as zero information.  This is 

corroborated by the Fourier transform, which only passed the Gaussian curve unscathed, as zero.  That is, the zero 

point shared by both the time domain and the frequency domain is white noise.  Events are information.  Events per 

unit time is information per unit time.  Events per unit time is frequency.  Therefore frequency is information.    This 

is an informal proof that diffusion is not a carrier of information.  

In contrast, all information transmitted though space is accomplished via waves, or by transport of solid objects with 

information marked upon them.  That is, information is sent via radio or the letter carrier.  The physical arrival of a 

messenger molecule is analogous to the letter carrier, and the disturbance waves of the capacitated ions is analogous 

to the radio waves.  

Diffusion does have utility as an echo cancellation mechanism.  The many disturbance waves meld into back ground 

ripples of too low an amplitude to trigger ion channel action.  Motions that diffuse join into the background noise, 

which may be tapped as energy, but not as information.  

The information value of diffusion is its likely delivery times between actors via random walks.  All other effects 

need not be calculated, though the patterns of spread may be of academic interest.
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11.9.2 THE EM FORCE AND ION MASS INTERACT TO FORM WAVES  

Physics defines a second order mechanical system as having inertia and spring.  Electrical analogs have capacitance 

and inductance.  In general, oscillation requires two forces opposing each other in a non-linear fashion.  Saline, per 

se, does not lend itself to oscillations or waves.  It is resistive and diffusive.  These are first order effects that lead 

directly to Gaussian distributions, and end in white noise - the total lack of information.  

11.9.3 INFORMATION IS PRESERVED AND MADE PORTABLE BY WAVES  

One of the quirks of waves is their strong temporal asymmetry.  They radiate outward from point sources, but are 

never seen to radiate inwardly to point sinks.  Because waves are not so reversible, they impose a directionality upon 

the information they transmit.  This can be a great asset in the milieu of saline as a conduction medium.  Ion channel 

intercommunication is more analogous to a nation of radio stations than it  is to a nation of telephones with copper 

wires conducting between them.  That does not imply radio frequencies at all.  Frequencies are determined by  a) 

what is available to resonate, and b) which frequencies the medium is most transparent to.  

11.10 POSITIONAL ORGANIZATION FOR COMPUTATION    

The membrane, as the static 3-d structure, imposes an organizational layout upon the actors.  This spatial pattern 

structures the connectivity relationships between the actors.  These are informal, as there are no “wires” acting as 

definite conductors. As an open forum, ions must gather into waves to communicate between actors, and always 

tend to radiate outward in concentric circles from the points of perturbation.  Despite such perfect radial symmetry, 

the neuron manages to process information directionally, as though channels had distinct input and output ports and 

distinct directionality of signal propagation.  

11.10.1 OPEN SALINE CONNECTIVITY  

Given a pool of saline above the membrane and another complimentary pool below, how can some hundreds of 

actors communicate with each other without it being simply a mass effect or a muddle.  The fact that there are 

multiple types of ions present helps the actors act independently, due to selective conductivities, and selective 

allosteric binding sites.  But once the ions are on the lose in the saline, their role is determined by charge.  The 
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waves of disturbance are determined by Coulomb's law, which is agnostic to types of ion.  They all contribute to a 

single voltage wave that radiates outward from each point of channel flux.  They may sum or subtract from each 

other as interference patterns when they cross.  

The issue is not so much which actors the wave will strike, as it will strike all within reach.  The issue is which 

actors will respond to each wave.  And the answer to that is dependent upon the shape of the wave.  The wave is a 

signal, and the signal expresses a temporal pattern, and each actor type responds to only certain patterns.  It is 

therefore possible that in a field of actors, only a certain few will respond at all to a given wave, while a different set 

will respond to a different pattern.   Thus, a singular input signal can stimulate completely different sets of actors, 

merely based upon the pattern of that signal.

The membranal system is only about 56 nm thick, is equally busy on both sides, and is the essential 'works' of the 

neuron.  There is so much fragile activity on the outside of the cell, that support is needed; thus the critical glial 

cells, and the blood brain barrier.  

FIGURE 143: Membrane charge and communication between actors
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11.10.2 SPATIAL ORGANIZATION MAPS TO TEMPORAL INFORMATION  

1. particles move by diffusion 

2. there is an N-body charge force accelerating each charged particle  

3. there is water viscosity which sublimes acceleration into mere velocity

4. the membrane dielectric coefficient determines the capacitance involving the polar heads of fatty acids

5. such immobile charges result in membrane stiction of the closest layer of ions

6. stiction and ion mass determine the charging curves in electrolytic solutions 

7. all of the above determine the rates of ionic waves spreading across the field of actors

8. actor fields are characterized by actor types, densities, type interactions, and membrane capacitance

9. lose actor field densities can process sequential steps of information 

10. tight actor field densities tend to act en masse to reinforce and amplify a characteristic output signal

11. Wave fronts may be passive (when channels do not modify it) or active (when channels modify or amplify 
it)

12. Channels produce Inactivation Fronts, the spatial effect of fields of channels going into refraction (dark 
bands)

13. Channels imply Escapement mechanisms, that release energy conditionally (Wave front + Inactivation 
front)

14. Escapements organize random data into wavefronts (Propagation  = Chain reaction of Escapements) 

15. the Temporal separation of waves by Escapements keeps information  from overlapping into ambiguities

11.10.3 FAN IN AND FAN OUT IMPLICATIONS  

Most neural networks are architected for a fan out during the first half and a fan in during the second half.  Indeed, 

biological neural nets follow this organizational pattern.  Studies of the retina find that the earliest of layers are 

sorting out features.  The raw data is filtered in edges, motion, direction, differentials, etc.  Presumably, evolutionary 

selection favored detection of certain features over others.  Though not proven, most attempts at processing 

information involve a separation process, such as solving for eigenvectors, an uncoupling process.  Indeed the whole 

of systems theory is based upon this action.  Such uncoupling yields a set of independent, or near independent 

variables, which can then be manipulated.

The manipulation is based upon 3 large factors.  First, is the incoming signal itself.  Second, memory serves to 

suggest what previous outcomes were, and becomes a gauge for suggesting which action is appropriate in this 
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instance.  Third, it must be geared toward mapping into available resources, like arms and legs.  That is, urges to act 

must be based upon what is feasible. 

The fan in half implies convergence.  It implies parsimony.  It implies decisions.  After the raw data has been 

exploited for every useful feature, these features are interpreted in light of recorded history, then a progressive set of 

classifications and decisions are made until a linear stream of action is chosen and committed to.  

Data can be sorted into several features very fast:  temporal differential, temporal acceleration, spatial differential, 

spatial acceleration, comparisons, integration, selective integration, temporal frequencies, spatial frequencies.  There 

are third and fourth order extensions of these as well.  

11.10.4 HIGHER ORDERS OF ORGANIZATION  

After each actor type is well characterized, and understood as to the stimulus set and the response set, and the 

sufficient set of redundancies to achieve the desired levels of confidence, then the raw computation of each of these 

processes becomes redundant.  For purposes of modeling larger scales of elements, especially for modeling multiple 

whole cells, the standard actor behaviors can be stored in lookup tables.

We begin by characterizing patches.  Given a list of the actors present and their pattern transforms, we can organize 

this list into a lookup table.   It does not matter what the pattern is.  It only matters which actor types recognize a 

particular pattern and how they respond to it.  

EX   Given a set of 5 processor types, with the following pattern recognition and pattern generation capabilities.

pattern in pattern out actor type

A C 1
B D 1
A G 2
B D 2
C E 3
D F 3
E G 3
F H 4
G H 5
H H 5
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In the system above with possible input patterns  IN = { A B C D }.  What constellations serve any purpose?  (Most 

constellation dead end. It is a sparse map).  What are the possible output patterns?  There are usually fewer output 

patterns than input patterns.  Classifications are reductive.  Decisions are reductive.

This is all the system possibilities up to through the fourth stage.  It shows that there is only 1 output pattern (H) 

after the fourth stage, although it is possible to produce   { C D E F G} after the first stage;   { E F G H } after 

second; and {G H } after third.         A successive classification process takes place.  

A   1   C   3    E   3   G  5   H
      2   G   5   H

B   1    D   3   F   4   H

C  3   E  3  G  5   H

D  3   F  4   H        

For completeness,  H   5   H can serve in amplification.

Each of these conversions is dependent upon the availability of the appropriate actor type near by.    Each molecule 

is a pattern recognizer, but the order in which they are placed is critical to the membranal system behaviors.    This 

biological arrangement of pattern processors is immensely more complex than an artificial parser machine handling 

the same data stream.  Selective tuning takes place in an environment rich in overlapping patterns, and therefore, 

multiplexing is possible.   Communication between channels takes place analogous to radio stations sharing the 

airwaves, rather than as a solid state transistors employ a conductive copper wires to direct signals.  Using tunable 

waves  is more flexible than hard wiring, and thus allows modal shifts without physical switching. 

These Turing machine like rules may be combined thusly:

A B C D E F G H
SET 1 1 2 3 4 5 6 7 8 input#

1 3 4
2 7 4
3 5 6 7
4 8
5 8 8

actor#

Digest, input interface Digest, secondary patterns Digest, tertiary patterns Digest, quaternary patterns
A 1 C C 3 E E 3 G G 5 H
B 1 D D 3 F F 4 H H 5 H
A 2 G E 3 G G 5 H
B 2 D F 4 H H 5 H
C 3 E G 5 H
D 3 F
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This would allow the timely superposition of output patterns as a function of propagation time to each actor.  One 

could set up a “wiring diagram” to determine the arrival times between actors, and from that build a patch transfer 

function (nonlinear).  It would be made more realistic by considering the actor refractory periods and the phase 

relationships which predispose the prior states.  A multi-dimensional model could be made to address the various 

degrees of freedom of the input set.

Signals arrive as ligands and impact receptors.  Receptor states impact channels via messengers.  This is a flow map 

for information, but does not depict what the processing is.  The upper half of the flowchart serves as the I/O unit 

(input output  handler).  The bottom half of the flowchart is the engine, driven by the EM force, and conducting 

multiple convolutions.  

FIGURE 144: Information Types and interactions in Neurons
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The primary processing function that occurs in the transfers between particles and actors is a convolution.  A 

convolution is defined as one function integrated into a second function to yield a third function.  But in this case, 

both function are convolved by the other, yielding two new functions.  These convolutions are streaming data, so not 

capsulized unless artificially snipped by the recording mechanism.  

There are yet two other forms of information processing transpiring.  The second is the pattern to pattern mapping of 

the actor state transitions.  And the third is the summing of wave functions of the charge layer disturbances,similar to 

the commingling of ocean patterns.    

11.10.4.1 Actors as Finite State Machines  

Actors are proteins.  Proteins have hydrocarbon backbones with charged radical groups at each monomer along that 

backbone.  The side chains may be uncharged hydrocarbons, or charged termini (e.g. serine, glutamine, lysine, 

arginine).  Each is prone to attractions and repulsions  with its immediate charged neighbors.  Some of these 

attractions predispose the shape of the molecule, endowing it with secondary and tertiary structure.   Some are prone 

FIGURE 145: Duplex Convolution in Neurons
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to attach subunits, which add to the molecular mass and order.  To the extent that neighboring charges are similar 

they are exchangeable.  The more similar they are, the more probable that ambient thermal energy is sufficient to 

loosen one and set another.  Thermal energy alone is often sufficient to cause protein molecules to change 

configurations many hundreds or thousand of times per second.  Because of the strength of the EM force, a broken 

bond results in the making of a new bond in extremely fast time frames, usually less than 1E-15 s.   Relative to the 

millisecond action potential, such speed appears as instantaneous.  There are no practical processes taking place 

within these brief transition times, and so they may be treated as discrete state transitions.  That is, the protein acts 

through finite states without intermediary positions.  The significance of each state depends upon its interaction with 

the outside world, or its interaction with subsequent states that will interact with the outside world.  For example, 

states that result in the opening of a pore through the membrane tend to be of high impact when ever there is a 

gradient across that membrane to drive particles through that pore.  Finite state machines are of great potential with 

regard to information processing.   The Channels can act as finite state machines that recognize temporal input 

patterns and can generate specific temporal output patterns in response to specific input patterns.   Pattern mappings 

can always be arranged so as to provide useful computational services.  This concept was originally embodied as the 

“Turing machine”.

Actors can be custom engineered for specific input patterns and specific output patterns (arbitrarily different from 

each other).

Define:

Inpat (sic) = input pattern to be recognized.

Outpat (sic) = output pattern to be generated.

EX  Suppose a hypothetical channel to which the following is its strongest input pattern :  

inpat = [ 0 1 1 0 0 0 1 0 ] ;

a more faithful analog version of such a pattern would accompany the above with a list of duration times; And better 

still with a third vector of duration tolerance times.

EX
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inpat = [ 0        1         1          0              0              0              1            0 ; 
1.23E-3  0.93E-3  0.66E-3  0.09E-3  1.01E-3  0.29E-3  0.95E-3  0.81E-3 ; 
0.02E-3  0.043E-3  0.1E-3  0.06E-3  0.07E-3  0.02E-3  0.05E-3  0.032E-3] 
* [ open  s  ds ]';

FIGURE 146: Input Pattern Required for Chan04

   

(this pattern in time is the triggering input)

This input pattern represents the binding/unbinding pattern of a modulator site on the channel molecule.

Our hypothetical channel type, when receiving inpat, generates this output pattern:     

outpat  = [ 0 1 0 0 0 1 1 1 0 ] :

FIGURE 147: Resultant Output Pattern from Chan04

  

( what state graph would generate this pattern? )

Then it is a straight forward design problem to graph states that would accomplish this.

To test the Q matrix we need to ascertain that the channel can pick out inpat from a wide variety of other patterns. A 

realistic scenario would be a random pulse train of back ground activity.  Then certain sections replaced with the 

desired pattern to be recognized.
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 A test for the ability of a neuron to extract a signal from random back ground spikes requires an input signal of 

random spikes with a selected pattern imposed.

The second plot looks almost identical but has the sought-after pattern inserted 5 times, at 50,150,250,350,450. 

Automatically constructed inputs such as this one can be used to test the ability of a given Q matrix to detect a 

pattern out of back ground noise.  With such a test set, one can begin to reverse engineer molecules with the desired 

behaviors.  

The results of parallel pattern recognizers, in these two trials, only 4 actors in parallel,  are shown below. The 

function Qgen proceeds by defining the input pattern states in sequence, followed by the desired out put states in 

sequence.  Added to this are alternative paths, back paths, an hold states.   Then the transition probabilities are 

calculated as a function of hold probabilities.  Often the thermal dynamics are such that the Gibbs is building during 

the input pattern and relaxing during the output pattern.  This expresses as gradients in the transition probabilities. 

Extremely unlikely transitions may be zeroed out, and non-zero probabilities may be filled in with appropriately 

sized noise.  

Q matrices from the biodata need only be reordered along the most frequent paths.  In some cases the duty cycle is 

incomplete or else unlikely.  This indicates missing data within the kinetic schemes published.  Most often what is 

lacking is adequate transition probabilities under modulation conditions.  The fact that modulation is quite dynamic, 

complete transition tables are needed for each possible modulation state.  The total quantity of modulation states 

equals the total combinations of bindings to the binding sites.  That would included all particle types that may bind 

FIGURE 148: Random Pulses (duty cycle = 0.2)

FIGURE 149: Random Pulses with Pattern Imposed at t = 50,150,250,350,450
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there and the vacancy condition as well.  It would also include all significantly distinct voltage ranges.  Voltage 

could be imposed upon the Q matrix as a function, but may not be necessary to do more than 3 to 6 discrete range 

segments, each prescribing a page within Q. 

11.11 FUTURE WORK  

The project of defining and developing liquid state information processors has grown to far beyond what one student 

can complete in the course of school years.  It will continue for the equivalent of many lifetimes across many 

people's efforts to bring to fruition liquid state computers.  The difficult decision was where to cut it, to make it of 

dissertation length.   The current state is such that each of the software pieces has been prototyped and tested against 

design function.  Many new concepts and phenomena have been produced for review and scrutiny.  The validation 

via wet lab experimentation is future work for others.  

In particular, there are two phenomena that beg wet lab verification.  It is hoped that one or more physicists will take 

an interest is ionic waves along saline bathed capacitance membranes, and measure the trade-offs between diffusion 

and drift motion at various temperatures, degrees of solvation, etc.   It is hoped that one or more biochemists will 

pass judgment on the feasibility of working from various kinetic state graphs back molecules that come close to 

implementing those graphs.   Of all possible state graphs that can be designed, some will be feasible and others not. 

Atomic interference, and limited action of  the various bond types will rule out kinetics that may look good on paper. 

An investigation, perhaps with the aid of Molecular Dynamics principles, might identify the boundary within which 

lie the feasible set of synthetic actors.    

11.11.1.1 Designing new channel types  

One begins with an ideal duty cycle.  What conditions indicate actions?  This is the modulation setting.  How many 

distinct settings are detectable?  What changes in function should each setting indicate?  This determines the number 

of duty cycles, and what each one of them should do, step by step.  The number of steps determines the minimum 

quantity of states.  Additional states may come into existence as a result of the chemist attempting to build such a 

molecule.  
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Next is the timing of each state and the transitions between states.  As transitions are determined by thermal energy, 

which is largely random, a distribution of momenta allows the prediction of events by how much energy is required 

to effect a state transition.  

1. convert the Boltzmann velocity distribution curve to momentum by multiplying by mass.

2. as one slides a vertical bar along the Boltzmann momentum distribution curve, the area under the curve to 
the right of the bar equals the probability of transition.  Stronger bonds, of course, reduce the probability.

3. the timing of each of the states is prolonged either by a hold pattern, looping around a few nonsense states, 
or by strengthening the bond that awaits the rarer high energy impact sufficient to dislodge it. 

4. each act of binding or unbinding necessarily alters the state transition probabilities.  Use this to advantage. 
Each such event switches pages in the Q matrix, so that page must be designed to pick up where the last 
page left off and continue the cycle.

5. modulators may be slower than the duty cycle, or faster than the duty cycle.  The slow ones set the 
modality.  The fast ones are data patterns to which the actor must respond mid cycle.

6. in most cases, there is a rest state, where the actor is in its most relaxed conformation.  This should be 
designed as the “stand by” state,  positioning the actor ready to be stimulated into action.  

7. the first action state is the trigger which initiates a complete cycle.  To accomplish this one of two things 
must happen.  Either the first state absorbs an inordinately high energy from impact, putting the molecule 
into its highest Gibbs energy, and running downhill through all the remaining states.  Or, the cycle must 
pick up an energy booster, such as through ATP cleavage, so as to give the cycle impetus and direction.

8. there may be a number of auxiliary states, such as the refractory period.  This does not benefit the duty 
cycle directly, but rather benefits the waves of particles so as to thwart antidromic conduction.  Thus 
reminding the designer, to consider the impact of actor actions upon the surround in the design of the duty 
cycle.

9. it is the nature of stochastic systems to provide multiple paths.  The designer must decide if these paths are 
to be equivalent and parallel, or in some way complimentary, adding timbre to the melody of the cycle.  A 
transporter might be performing an extra service if every 10th ion was a Mg++ instead of a Ca++.  Or that 
some channels linger open a little longer to reshape the aggregate curve.  Or that a small percentage 
respond more sensitively and earlier, on the chance that if the stimulus is a “go” then a little head start is 
provided.

10.  next is analyzing the performance of stochastic  processors.  The reliability of each unit can be calculated 
by traversing the probabilities along each state path.  This yields a distribution of performances.  The 
desired performance will show up somewhere between 60% and 99.99% of the time.  If the number is too 
low, then parallel actors must be run to determine the sharpening effects of multiples.  Generally, a small 
number, like 8, actors in parallel can perform with very high reliability.  Thus such parallelism is 
commonplace in nature. 

11.   the interactions between subunits may be simple, as when all subunits are identical, or complex, as when 
each subunit performs a unique task.  The interplay between the subunits must be cooperative across the 
permutations.  There can be no poison states that would lock up the works.  We call this denatured. 
Molecules must be robust by resistance to deviations from the duty cycle, and a strong tendency to 
complete each duty cycle commenced.

12.  switched catalysis is a valuable function.  The binding of a modulator on one side of the membrane that 
causes the unveiling of a catalyst on the other side serve both as a transducer and a broadcaster.
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13. mechanical actions are perhaps the more difficult of features to implement.  They require getting molecules 
to do what are normally thought of as macro machine tasks.  Pumping ions across a membrane, one by one 
is perhaps the most sophisticated action of a single molecule.  

14.  pumping logic, whereby ratiometric transport  is the norm, and single species transport is rare, suggests 
some interesting aspects of ion concentration maintenance.  Are these designs necessary, or merely 
convenient?  Do they convey any information, or are they merely tricks to arrive at target ion 
concentrations?  Are they fast enough and voluminous enough to play as peers to the ion channels in 
determining ion waves?  When answered, then the design process can begin.  Before then, it is not clear 
what our design criteria for pumps is, except to imitate.

15. finally, a careful assessment must be made of tragedies.   Channels that get stuck open,  pumps that quit, 
receptors that lock the catalytic function wide open, vesicles that burst inside the cell - are examples are 
catastrophic design.  Probabilities are an asset when designs carefully set the probabilities of such events to 
near zero.  Certainly evolved nature actors have such qualities.  Both the inherent design, and the rigorous 
testing, are necessary to avoid life threatening failures.

The ideal channel possesses several rest states, because holding a single state in a noisy thermal environment 

required too much stiction.  However, getting knocked out of the rest state ensemble requires a relatively high 

thermal energy or a catalytic effect facilitated by modulation.  This begins the sequence of recognition.  There will 

be an ensemble of states involved in input pattern recognition, but only the correct order will allow the state path to 

exit this ensemble.  Having completed a pattern match, a new threshold is passed, usually at high energy state, and a 

cascade of states are negotiated which express as phenostates.  The sequence of phenostates may exhibit a temporal 

pattern.  

The figure above depicts a low platform of rest states (aqua colored).  The only reason the path lie straight down the 

diagonal is the states were renumbered so as to force that arrangement, just for convenience and clarity.  Escape 

from the rest states requires sufficient energy (voltage,  modulator binding, or rare thermal event)  to initiate 

FIGURE 150: Idealized Channel state transition probabilities
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attempts at pattern matching by jumping from state 1 to state 14 (to the yellow orange red sequence).  This long 

jump is an artifact of state ordering within the matrix.  If the match fails, the state returns to the rest state ensemble. 

If it succeeds, it has achieved maximal Gibbs energy, sufficient to launch the pattern cascade as a downhill run (the 

green sequence).  Traversing the output sequence results in a time series through phenostates that express as an 

opening/closing pattern.  The downhill outcome always tends towards the rest state ensemble.  The probability of a 

particular state occurrence is inversely proportionate to the energy required to achieve that state from its adjacent 

state levels of energy.  Therefore, it is possible to climb incrementally what is not at all likely as one jump (a single 

transition from a low state to a high state).  

During the pattern recognition phase, it is feasible to be driving up the energy hill, processing along a plateau, 

running downhill, or some combination of these.  For practical reasons, an ambient thermal processor must 

accumulate sufficient energy to insure a regular pattern of output.  The more strictly timed, and the more intricately 

patterned, the more energy must be expended to enforce it.  A critical output pattern would show as a steeper slope, 

while a short variable timed pattern needs only a shallow sequence. The flatter the ensemble, the greater the chances 

of back stepping, which is not desirable when  a pattern is to be generated.   Even though forwardly directed, the 

duration of each open and each close interval increases variance with the leveling of energy differentials.   This 

cumulative variance can render pattern generation too sloppy for any practical utility.   A build up of Gibbs energy 

over the first half of the cycle is desirable, and is possible incrementally.  

In the simplest of mechanisms, a build up of Gibbs energy would require a sequence of increasingly energetic pulses 

to make it to “the top”.  But a latching mechanism, whereby little force is require to restrain and later to release, a 

molecule could accumulate energy disproportionately large in comparison to the energy of the collisions it receives. 

Consider a cascade of mousetraps arranged so that the release of one would trigger the release of the next, incurring 

a chain reaction.  Therefore the slight trigger energy could release many times the energy of one trap spring.  Yet, no 

one trap would require any more energy to set than any other.  Given the hydrocarbon backbone of proteins, it is 

possible to imagine repeating mechanisms where a charged arm is shifted to a higher energy state, to be released by 

a disturbance from its neighboring monomer.  Then a series of like monomers might result in a similar chain 

reaction.
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Single purpose is defined as a maximum of one pattern recognition, followed by a maximum of one pattern 

generation.  There is a Gibbs boost to initiate the cycle which is entangled with pattern recognition steps (orange 

yellow), and then a subsequent down hill run through the output pattern (cyan) to the rest state (blue).  The high 

plateau  covers all unreachable state transitions.   Energy barrier = 1/exp(int(probability)).    What is not accurately 

depicted is that state 14 and state 1 are contiguous.    

 - log( Gibbs energy) = k*probability(reaction);   %  other sources/sinks of energy holding equal
Energy barrier = 1/exp(int(probability));   % integration across a kinetic scheme is not valid 
                                                                 % because it skips many states

A multi-pattern channel would have multiple valleys.  In a state graph they would radiate out from the rest state, and 

in a transition matrix they appear as separate sub-matrices along the diagonal of a larger matrix.

Future research efforts will include mapping hypothetical Q matrices back to known and feasible chemistry.  It is 

expected that a portion of hypothetical cases are physically impossible, and that those resembling the kinetics of 

known molecules are achievable by selection from extant molecules.  Not yet determined is whether one can predict 

new molecules based upon a hypothetical kinetics scheme, mapped back to implied kinetics, mapped back to atomic 

configurations.

Given that ions most directly harness the electromotive force via Coulomb's law, and the EM force is the strongest 

force available to the neuron, and that this force is being applied to the smallest particles in the neuron (ions), it is 

FIGURE 151: Energy Well depiction of a single purpose Channel
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ionic movement that represents the fastest information path through the neuron.  The known actors that participate in 

this path are the receptors, channels, vessels and pumps, with optional catalytic boost from the G-protein systems. 

The particle systems embodies both drift (information) and thermal diffusion (noise).  The actor kinetics also also 

embody both modulation (information) and thermal conformational changes (noise).   This suggests that the 

representation is informationally complete, in that having drilled all the way down to white noise, there is no more 

information that can be gleaned from the system.  We cans say it is depth-complete, though the breadth of variety 

and variability be wide and yet unexplored.   It is possible that this modeling approach will be found to be complete, 

in that it offers a straight forward method of capturing all neuronal membrane information processing.  It does not 

include off-membrane processes, such as learning, which would require additional mechanisms.

11.11.2 MANUFACTURING  

The task remains to assemble all software routines into a software application that will gracefully accept patch or 

whole cell experimental designs and run multiple CPU's for as long as it takes to simulate all the actions implicated 

in the experiment.   Much progress has bee made towards this end , about 4 man years worth, but it will take 

approximately 2 more man years to complete a user friendly package.    There also remains the continuation of the 

large task of taking in thousands of scholarly articles of raw data, and normalizing it to model standards, so as to 

build a library of ready-to-use parametric values for cell types, actor types and realistic physiological conditions.

As theory establishes feasibility of constructing liquid state processors, then follows is the development of 

production techniques.   Each of the elements must be manufactured in economic quantity and tested for longevity in 

the environment of their duty.   As elements are to be installed in particular micro-array lipid-embedded 

configurations, there is work to be done in assembly, materials compatibility, stability and “learning mechanisms”. 

An exploration of variety of types will discover which are optimal to certain utilities:  membrane shape, actor 

placement, interfacing planes, sealing liquid compartments, and unit protection.  Some of the specific tasks are:

1. Lipid Membrane synthesis

2. Pattern recognizing Ion gate synthesis

3. Ion pump synthesis, novel power sources

4. Switchable catalysts, to serve as receptor/transducers, synthesis
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5. Microarray technologies employed to embed actors into membrane

6. synthetic hormone pumps

7. synthetic neurotransmitter pumps

8. actor location fixatives

9. peroxide driven pumps, light driven pumps, ATP driven pumps

10. ADP phosphorylator

11. quick release mechanisms for output particles

12. quick recovery of output particles

13. staging mechanisms for particles to be released

14. programming stochastic processors

15. learning mechanisms for stochastic processors

16. membrane edge interfaces and intercoupling

17. protein lifespan studies and longevity enhancers

Ultimately, product architecture is made significant by the ordering of tasks and priorities it yields.  In particular, 

such ordering of actors that effect flow control.  However, all chemical relationships within the cell contribute to 

order, and only a systems approach will optimize the designs.  

 The human nervous system is thus engaged in producing yet another nervous system.  Solving problems in an 

environment of streaming data channels forces the consideration of abandoning batch processing and its subroutine 

calls, for “continuous flow” computation.   Real time designs have advanced toward this goal, as has parallel 

processing.   The HAD computers are necessary to carry “continuous flow” processing to fruition.   And, of course, 

the Liquid State Information Processor is a molecular-scaled HAD.

The Liquid State Information Processor receives secondary information relayed in from sensors, processes the flows 

of such information; intermingles these flows with other flows being generated by “neurons” exhibiting “memory” 

of past patterns; and by convolving these two streams to generate a third stream of information that feeds to motor, 

chemical and/or electrical outputs.  These outputs may conspire to build houses, bridges and space ships. 
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Information processing may be encapsulated as the conversion of available sensible input data into such actions 

determined to be of benefit.  Determining what is to be deemed beneficial is a task meta to the processor and may 

prove to be the more difficult design challenge. 

One of the essentials of biology is the nano-management of resources, organized to the end of striving and thriving. 

The promise of biomimetics is to reach near-ultimate finesse of the process in the middle;  between the “read” on the 

environment and the “write” on the environment, with a happy individual in the middle.



12 CONCLUSIONS

12.1.1 NEURONS ARE HAD  s  (reaffirming earlier conclusions by others)  

In contrast to the analog nature of the particle positions and velocities, particle bindings to actors are discrete 

events and therefore constitute asynchronous digital operations.  The conformational changes in  membranal 

proteins take place when the charged termini of the arms of radical groups of amino acids jump from one 

neighboring opposing charge to another nearby opposite charge.  This occurs many orders of magnitude faster than 

the neuron generates action potentials, and so may be considered as instantaneous for purposes of modeling 

information.  These very discrete-state objects none-the-less open channels which allow the flux of  ions through 

them, varying in quantity as a function of concentration gradient and charge gradient.  Thus the digital device yields 

an analog output.  This output directly alters the analog nature of particle positions and velocities, which brings us 

full circle.  All of this implies that membranal systems are Hybrid Analog Digital (HAD) systems.  

Note that the actors carry systemic information in its differential form, and the particles carry that information in 

the integral form.  The channel opens a valve (a discrete process) which allows the passage of ions through its pore. 

The amount of ions passing is not determined by the channel, but by the sum of two pressures: local voltage gradient 

and local concentration gradient, the sum of these two times the open time.   One may argue that the change in 

voltage gradient is determined by a discrete number of charges passing through the ion channel, but their positions 

are continuously changing, and their acceleration is continuously changing.   A faithful representation of the 

information flow, once again, requires the HAD perspective.  

The analog portion presents the options, and the digital portion makes the decisions.  Recall that decision means 

“to cut down”.   Iteratively paring down large numbers of input streams into fewer and fewer decisions, typically 

leads to a singular decision of the cell, i.e. the presence and timing of the action potential.

842
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12.1.2 ACTOR STATES CONTAIN COMPLETE INFORMATION OF THE SYSTEM  

Actors include Receptors, Channels, Vesicles and Pumps. The set of conformation States across the entire Pool of 

Actors, stationary to the membrane, is the Full Information of the system.  The particle positional system and the 

actor state system are in series.  The entire information of the system throughput must pass from free moving 

particles to the actors.  Therefore whatever passes through one must pass through the other.   It if does not, the 

information dissipates and is lost into the background noise. There may be losses along the way, but such losses 

cannot be considered as part of the throughput.  There may be redundancies along the way, but redundancies neither 

add to, nor subtract from, the information of the system.  (That certain parallel elements increase precision and 

reliability, and therefore are not truly redundant, is acknowledged.)   Therefore, the throughput information passed 

by the particles is equal to that passed by the actors.  This is especially true during propagation.  It is less so for pre-

axonal processing, where each iteration may filter, or otherwise condition, the information.  A more general 

statement is:  Given an iterative series of steps, consisting of alternate particle movements and actor state changes, 

each prior step must contain an equal or greater amount of information than its next downstream step.  The 

modification to this rule would be at the merge points, where two streams of information are processed into one: The 

set of prior steps must contain an equal or greater amount of information than the subsequent step.

12.1.3 PARTICLE POSITIONS CONTAIN COMPLETE INFORMATION OF THE   
SYSTEM

The Positional Pattern of the Pool of Free-Moving Particles in the System is the Full Information of the System.  To 

capture a snapshot in time of the neuron information processing system might predispose one to argue that the sum 

of the actor states, plus the sum of the particle states, equals the total information of the system.  However, the 

information of the particles is in series with the information processing role of the actors.  All of the information of 

the particles must be transduced into the conformational state of the actors, or else be lost in dissipation.  Thus one is 

redundant to the other.   

  Three-dimensional closed compartments can be simulated to contain any quantity of particles with mass, radii, and 

charge.  They may be initialized with random positions and realistic velocity distribution.  They may collide with 

each other and with the container walls.  Momentum-conserving collisions self-maintain the Boltzmann velocity 

distributions if care is taken to eliminate the aliasing error of digitization.  Particles may be caused to become bound 
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and unbound stochastically.  They may be transported from one compartment to another.  The positional patterns of 

all of the particles at any one instant in time is the informational state of the particle system. This information is 

crucial to the neuronal information processing function.   

There are two types of particle information relevant to this model:  Concentration and charge field.  Accurate 

renditions of conditions local to each channel and pump determine the requisite model resolution.  The charge 

information is nullified for the vast majority of particles located away from the membrane, beyond the zeta distance 

in the volumetric regions of “space charge neutrality”.  There, they may still contribute information of value on 

concentration levels, albeit at frequencies lower than relevant to action potentials, and they may also participate as a 

buffer to absorb excess particles and provide particles in shortage, as they come about resulting from membranal 

processes.  The vast majority of charge information, if not all of it, lies within the zeta potential zone on either side 

of the membrane.  Therefore the critical ionic information may be modeled by merely identifying the charged 

particles within zeta distance of the membrane.   

Because ions have mass but no internal state changes, position plus velocity constitute the informational state. 

Charge and mass determine the accelerations.  Radius and density determine the collisions rates.  As these latter four 

values are constants, they may characterize systemic behavior, but they are not information.

Particles, de facto, represent an image, internal to the cell, of the space-time continuity of the external world.  To 

act as an analog to the environment, there need only be a one-to-one mapping of external events to internal events. 

Take for example, the retina receiving light that is arranged by a lens as a one-to-one mapping from environment to 

internal states.    The particle release pattern, created as a space-time image, then flows along membranes between 

actors.  This movement is an analog process in the sequence of information flow, determining lag time and strength 

of signal to ever more distant actors.  Ion flux may be considered as an analog process in its creation of voltage and 

concentration pressures, and as a digital process upon any ions binds to or dissociates from an actor.  The particular 

directions and confluences of ion flux are determined by sources, shapes and sinks.  Although this is antithetic to the 

thermodynamics of the cell, the sources of information are typically the channels, and the sinks are the pumps.  Ion 

channel flux rates may vary from 1E1 to 1E8 ions transported per opening.  At the small end, the analog nature of 

the flux may quite distinctly grainy, but the fact of their immediate commingling with the ion pool within the lasma22 

22 lasma = defined as a state of matter, liquid except acting as a plasma, with a flux of like-charged particles that 
due to their repulsion and mass, produce wave-like phenomenon rather than diffusion.  Lasma is only known to 
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reinforces their analog nature.   Particle pools integrate information, while the actors differentiate it.  It is the nature 

of pools of particles to act integratively to the addition and subtraction of particles.  

Because of the temporal nature of the information, and because analog time is mapped in space over the length of 

the neuron, there is no convenient way to get a “snapshot” in time, that captures an input pattern going to resolution. 

The perspective of “solving a problem to get an answer” understates what neurons do, as the accommodate a 

continuous flow of input streams from thousands of neighbors and process it into a single decision stream that gets 

distributed, albeit somewhat out of phase, to thousands of neighbors. 

The use of the word “complete” is weak in the following sense:  In a serial process all of the information in one 

stage must have been passed on to it from the previous stage.  But there may be loss, modification, and/or creation 

of new information within each stage.  To the extend of these changes, each stage is not a true and complete 

representation of each of the stages upstream of it.  However, to the extent that there are no parallel alternative paths 

for information to pass that support the splitting of information into partials, then that stage is receiving as complete 

of information as is possible within the constraints of function of the cell.

12.1.4 PARTICLE SYSTEMS EXHIBIT EMERGENT BEHAVIORS  

Free-moving Charged Particles will exhibit Emergent Behaviors.  A particle system can accurately represent 

diffusion patterns and rates, flow through channels, capacitance along the membrane and “resistance” due to ion 

collisions with water.  When particles possess charge, capacitance is emergent from the N-body electrostatic 

problem about any charge barrier.  Because charged particles drift within a diffusing solvent, 3-dimensional current 

and flux are emergent.    

The original intent of this project was to create a hybrid model of diffusion, actor kinetics and the electrical grid of 

the capacitance and resistance effects of membrane and saline.  However, development of the model has resulted in 

the diffusion portion of the model subsuming the electrical grid aspects as emergent properties, with no computer 

programming to induce them.   The electrical grid concept is useful in verification work, but no longer necessary to 

the models ability to replicate the information processing capabilities of living cells.  

exist in symmetry on either side of a charge barrier membrane, and thus is a surface effect, not volumetric.
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Furthermore the lasma state of matter (capacitated ions in solution behaving as a plasma) has subsumed all of the 

charged particle diffusion, as the EM force does not allow unbalanced ions to diffuse.  Only charge-balanced ions in 

Space Charge Neutrality can diffuse.  Unbalanced ions accelerate towards the charge barrier, then organize into a 

mass-spring grid that behaves as a second order system.  The interactions between the EM force and thermal force 

depend upon charge concentrations, with higher concentrations tending towards lasma and away from diffusion. 

Increases in temperature make the lasma layer thicker but weaker, tending towards diffusion.  However, be reminded 

that the EM force is immensely greater than the thermal forces, and will dominate charged particles.

Wave propagation around the channel openings is emergent due to the EM force and charged particle mass, which 

together produce an oscillatory system.   Because of these effects, signal propagation, per se, is emergent.  Such 

signals will decay per the standard RC filtering effects unless active processes along the path renew the signal 

strength.  Certain ion channel and pump distributions serve to accomplish such signal boosting, and may also 

reinforce the directionality of signal propagation (e.g. dromic opposed to antidromic action potentials).  In such a 

system the primary determinant of signal propagation velocity is the ion mass.  The lightest ions available, sodium, 

will propagate the fastest.  This poses a phase problem for the chloride ions on the opposite side of the membrane. 

As chloride has twice the mass, they will lag the sodium.  This will result in a lateral “stretch” of the distances 

between the charge pairs which in turn can weaken their organization.

Voltage gradients are emergent as the differential in charge densities across a barrier, and express as a net force 

of acceleration on all charged particles.  Current is emergent as the net velocity of charge.  Resistance is emergent as 

particle collisions which disrupt drift.   Flux is emergent as average particle movements per type.  Ion species move 

in spatial-cycles (loops).  These are emergent  as a function of ions being moved against their gradient by pumps, 

then moving down gradient along the membrane until arriving at channels, which sporadically open and allow down 

gradient flux across the membrane, followed by further down gradient lateral motion along the membrane from 

channels to pumps.  Ionic loops are sustainable so long as the model is constrained to conserve mass and the pumps 

are within their physiologic range of operation.

“Space Charge Neutrality” within liquid volumes is emergent.  Completing electrical circuits is accomplished 

piecemeal by the various sporadic channel openings, the relatively steady transport by pumps, and by the many 

temporal discontinuities being buffered by membrane capacitance.  In electrical circuits, we speak of “completing 
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the circuit”, failing which no electrons flow.  Without the capacitance of the membrane, the pumps could not pump 

except during the sporadic nature of channel openings, and the quantity of ions through the channel would be limited 

to the precise number pumped during that interval.  Such is the mandate of “completing the circuit”.   Thus, 

capacitance is crucial as a source and sink for channels and pumps alike, allowing each to function out of synch with 

the other.  This same membranal capacitance buffers the timing information of channel openings such that very little 

if any of it is “observable” by the pumps.  This suggests that the pumps may not be participating in the fast time 

constant information processing of the channels.

The ionic valance values that express as acceleration in the N-body problem, do not justify the treating of the EM 

force acting upon the K+ ion any differently from the EM force acting upon the Na+ ion.  The origins of the voltage 

effects on channel flux lie in the drift velocities of certain ion types.   The concentration effects on channel flux lie in 

the higher probability of being at or near the pore when the gate opens.   

Molecular Dynamics is the natural compliment to Particle Systems, in that its conformations are as specific as 

the Particle System positions and velocities are specific.  However, the computational load of Molecular Dynamics 

in a model of this compass in this model would be enormously intractable.  The choice to represent actors as kinetic 

schemes is an abstraction that is not capable of emergent behaviors. If actors were modeled in Molecular Dynamics, 

then emergent behaviors could be revealed.  Indeed Because to the simplifying of internal molecular states to kinetic 

schemes in this model, the instantiated state number must be mapped through a phenostate table to determine its 

impact upon its surround.  Phenostates are artifacts of this particular method of abstraction of molecules.  The 

current complexities of channel pore energy barriers and elaborate ion selectivity mechanisms imply that the kinetic 

modeler will not be able to do Molecular Dynamics sufficient to see flux through ion channel pores as emergent. 

Rather, a compromise is struck that calculates the ion flux through the pore via conductivity tables times the sum of 

the two forces (concentration and voltage).  Partial voltages are not emergent, and so must be calculated.  Although 

channel current could be emergent as a perforation,  it must be filtered by ion type according to the conductivity 

profile, and so in this model it is not emergent.     The selectivity filters in the channel pores are executed via the 

conductance profiles.  This insures that the proper number of the proper types of ions pass through an open channel. 

Then the local concentrations above and below that channel, taken one type and a time, are employed to calculate 

the Nernst voltages.  Taking into account particle velocities, particularly gradients, may help to see voltage as 

emergent, via the drift it induces.
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In summary, emergent properties are pronounced and clear in a particle system model.  Without any 

programming to elicit such,  all of the above phenomena occur.  The only forces are thermal and EM, particles only 

move, and actors only change state.

12.1.5 CAPACITANCE IS CONTINUOUS BUT NOT MONOTONIC  

Modelers that tessellate the membrane capacitance into discrete units disrupt the wave signals between channels. 

The capacitance must be left as a continuous sheet enclosing the neuron to support the mass-spring grid effects of 

concentrated like charges near the membrane.  

The original modeling plan included an RC-grid to handle the electrical aspects of the neuronal function.  To 

accomplish this the membrane was to be divided up into areas surrounding each channel and pump, similar to a 

Voronoi tessellation.  The electrical conductors were to connect each actor to its nearest neighbors via saline above 

and below, represented by resistors determined by tonicity and distance.  Thus, the capacitors and resistors were 

discreet, consistent with a finite element approach.  Finite Element Method approaches are superior to the aggregate 

analytical equations, but fragment the continuity of capacitance that is crucial to its wave transmission role.

The modeled particle system displayed behaviors that suggested the above plan incorrectly represented what 

particles in solution actually do.  Neither the capacitance of the membrane, nor the conductivity of the saline behave 

as electron conductors.  Ions a more massive, and much larger.  These two traits conspire to slow down ionic drift to 

a much more chaotic and local phenomenon.  Very little if any current commuted via the saline.  The saline only 

acted as a store for spare ions whenever they were needed.   The current actually commuted along the membrane as 

capacitated ion.  The repulsion between like charges is the force that drives a wave of ions along the membrane, 

radiating outward from the source very much like those resulting from a stone dropped into still water.  There is a 

certain amount of thermal noise concurrent to this activity, and at distance the various ripples tend to cancel each 

other out and blend into the background chaos.  

All charge imbalances were strongly driven by the EM force towards a membrane, or through a pore towards 

opposite charges.  Thermal noise was sufficient to produce a layer of bouncing charges with an exponential decay of 

charge density with distance from the membrane.  As there was no charge imbalance within the saline, there was no 
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force to move current through it. Whenever like charges pile up more than one layer deep in capacitance, there is a 

strong EM force squeezing some charges laterally outward, just as a swell on water would do.  

The inertial effects of ion mass are significant.  Combined with the repulsive forces between them and the 

attractive forces from across the membrane, the ions form a mass-spring grid.  This grid then oscillates when 

perturbed, tending to produce rather sharp wave fronts (steep rise followed quickly be a steep fall) which expand 

radially.  The particle collisions that are not contributing to the wave front tend to randomize the wave components. 

At some distance, depending upon voltage, charge quantity, and temperature, the wave will dissipate into the thermal 

noise.  The key to a successful propagation is that the signal shall arrive at nearest neighbors with sufficient strength 

to trigger them to act.  There are a number of ways to prevent this from happening.   Weak initial strength; high 

noise levels; multiple competing waves out of synch the sum of which lose the sharp rise and fall necessary to 

trigger certain channels; destructive waves from other sources that cancel the wave of interest;  increasing the 

distance between available actors so that the signal is too weak by then; arranging the neighbors to be in refractory 

periods just prior to the wave transmission; chemical modulators at the receiving channels which reduce their 

receptivity; etc.  are some of the ways to thwart propagation.

Models which interpret the conductivity between channels as resistance of the saline baths may be incorrect. 

Models which treat capacitance as discrete electronic capacitors, one per ion channel, may be incorrect.  Models 

which ignore the mass of ions, treating them the same as though electrons may be incorrect.  Models which assume 

that the means of communication of ions from channel to channel is by diffusion may be incorrect.

Capacitance is the conductor from channel to channel.  The saline is not.  Capacitated ions make a unique 

conductor, in that they are not resistive and dissipative, but rather act as a loss-less wave transmission medium.

12.1.6 IONIC WAVES, NOT DIFFUSION, COMMUNICATE BETWEEN ACTORS  

Ions Communicate Between Channels via Waves.  Consider that a function in most computer programs consists of 

input arguments, internal command functions, then output results.  We write:   [args_out] = function_name(args_in); 

In such a command syntax what is inside the function is hidden.  To observe that we must “open up” the code.  This 

arrangement is suggestive of concepts of “self”, wherein there is boundary, inside of which is self and outside of 

which is other (or environment).   It can be argued that to make a decision, some nonlinearity must be employed. 
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There are nonlinearities in space (e.g. cell membranes) and nonlinearities in time (e.g. action potentials).   A 

nonlinearity, by definition, is a disruption from the smooth flow of continuous space and time.  Although there are 

many forms of, and uses of, nonlinearities, for purposes of making a decision, it is usually a pulse or a step.  

The neuron easily fits the pattern depicted above for a function.  It has input args (receptor bindings of 

neurotransmitter particles).  It has an internal set of operations that are enclosed within an object (the 

channel/membrane/pump ensemble).  It has output args (vesicular release of neurotransmitter particles).  Of course, 

any system could be framed by such a simple scheme.  The main concern is: what processing operators are active 

within the function?  We want to open up the code.  

Let's take that concept and drop down in scale to the individual actor.  So far we know that receptors often feed 

signal into some amplification mechanism.  The amplified signal modulates some number of channels of a particular 

type.  These channels, so modulated, change their open/close patterns.   Although the channel conformational 

changes are internal to the molecules, they may have a phenotypical effect upon their surroundings, depending upon 

the available energy potentials adjacent to the channels.   If a channel moves to the OPEN state AND there is a 

pressure differential across the channel pore such that the channel can allow particles to pass through, THEN the 

passing of particles is an INTEGRATION of the channel OPEN time.  Thus time was converted to quantity, just as 

an hourglass sand clock does.  These new quantities are information, because their movement alters the pressure 

across the membrane.  Such altered pressures can be “read” as modulator function values by other types of channels. 

Modulation implies that those altered pressures will alter the open/close patterns of certain other channel types.  If 

there is a non-zero pressure gradient across the channels, once again there will result in flows of particles through 

the pore of these channels.  Quantities flowed are the integral of channel open time. Perhaps more subtle, the peeling 

off from the pool of particles of a single particle to bind and modulate an ion channel is an act of differentiation. 

There is a symmetry involved.  That which is integrated must be differentiated to complete the cycle.  The 

differentiation here is a peculiar one.  Out of a pool of particles, one is selected to bind.  This binding removes it 

from the pool of many types.  What information does it contain?  It contains two types of information.  First it is the 

answer to the question:  What is the difference between the pool before binding and the pool after binding?  Second 

it is a sample from the probability distribution function of the pool.   If repeated (and indeed it is repeated 

voluminously), then the samples construct an accurate and complete probability distribution function of the pool.
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Then there is the matter of  integration.  In simple integration, information is lost.  An individual known entity is 

added to and mixed into the bucket of other entities. The many become the one.  Information is diluted and 

diminished.  If the particles spewing out of an ion channel simply diffused three-dimensionally then this would 

constitute an integration resulting in lost information.  The neuron cannot afford this.  It is clear that the ion 

concentrations above and below the membrane contain crucial information that is in series with the channel 

responses to that information.  Therefore it would be inefficient in the extreme to allow that information to diffuse 

away and become lost.  

What actually happens  at the membrane is that ions proceed like a fountain to spew outward from the membrane 

surface then immediately become drawn back to the membrane by the EM force, where their opposite charges are 

capacitated.  Then opposite charges are neutralized by those recent admits.  Once neutralized, indeed three-

dimensional diffusion takes place, and in so doing serves to remove them from the membrane.  But the information 

remains as the “hole” or absence of a charged particle that was previously capacitated.  Information is preserved as 

the remaining voltage across the membrane.  

Next there is a matter of spatial information.   If ions had no inertia, then the change in charge distribution would be 

a Gaussian distribution around the ion channel, as calculated by Green's function.  It can be set up to proceed from a 

cylindrical pulse through a series of progressively flattening two-dimensional Gaussian “hills”.   However, ions do 

have significant mass, 23,000 to 40,000 times that of an electron for the main monatomic ones.  Unlike modeling 

electrons, a model of ions must account for mass effects.  When mass is added the response is not an exponential in 

time, nor a Gaussian in space.  Rather, the response follows the wave equation, like dropping a pebble onto a still 

pond.  The charge effects covering the surface of the membrane are disturbed, and a wave radiates outward in 

concentric rings, eventually “washing”  across its neighboring channels.  The information is contained in a temporal 

pulse, much like a radio transmitter radiating out a signal.  Though the information is being radiated outward, 

information is not being diffused.  Most of its temporal significance is preserved.  The shape is preserved though the 

energy is being spread over an increasing circumference, thus reducing the amplitude in space and time.   The decay 

curve is linear for the wave equation, not exponential.
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FIGURE 152: INFORMATION FLOW THROUGH AN ACTOR

  The strength of the ion signal degrades linearly with distance (not an exponential decay).  Ion channels have 

nonlinear response curves to these waves.  There are regions where there is little response and other regions where 

the response is strong.  As numerous signals radiate and commingle with each other, the net result is a mid-range, 

low amplitude “noise” to which most channels do not respond.  It is only those strong signal amplitudes from nearby 

processes that elicit a response, and therefore informationally significant.   Thus, the system acts as a filter, such that 

single distant channels can have no effect upon a given channel, but multiple synchronized distant channels that sum 

to a higher amplitude wave will radiate a taller crest reaching further actors with significant events.  This ergodicity 

comprises a type of analog computer, where heavy weighting will influence other operations over a longer distance 

(radius).  It should also be noted that the more distant responders are both weaker in amplitude and later in time. 

They cannot serve in the leading edge of the signal wave front.  They only serve to bolster, widen and prolong the 

signal.

  We can now assemble several of these operators into mechanisms that propagate an action potential or other signal 

through a neuron. 

 

FIGURE 153: CHANNELS SPACED FOR ITERATIVE PROCESSING

The x-axis is intended to convey time, not space.  Spatial signal propagation would be shaped as (looking from 

above) concentric circles radiating outward around each channel.  There is a delay in the iteration process as the 

channel undergoes a sequence of conformational changes.  If the iteration time is greater than the radiation time, 

then a neighboring channel will respond to the more distant channel that signaled at and earlier time, rather than the 
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nearest neighbor. In a highly repetitive arrangement, the sequence of events is iterative.  This may effect such 

phenomena as  oscillations, spiral trajectories, or tuning of the input signal into one of several possible output forms.

FIGURE 154: DENSELY CLUSTERED CHANNELS OF SAME TYPE

Under these conditions, it is expected that dense clusters of channels would need to be all of the same type, (or a few 

types so tightly coupled they act as one type) else the characteristic patterns of signal processing would be muddied 

by the overlaps.  In such a homogenous group, they act more as one large channel, though the signal may be 

somewhat smeared spatially and temporally.  It has leading thresholds the energize its forward movement, and 

lagging refractory periods that close up the rear.

Integrating for a composite wave front is trivial, but how are we to access its information value?    If we accept one 

wave front as one bit, then we have returned to the simple solution of the early integrate and fire models.  But the 

fact that a neuron must on average have as many outputs as inputs, and that these outputs cannot be in perfect 

synchrony nor co-located the same spatially, indicate there must be a spatial-temporal output pattern for each 

neuron.  Apparently this pattern is not fixed, but may vary with the mechanisms by which the signal was initiated 

and modulated along the way.  The ability to direct which regions of the output field are sent a signal is a strong 

form of information processing.  It differs from digital machines in that every synapse would not be individually 

addressable.  

At its essence, a placement pattern of actors embodies information 2-dimensionally, as a spatial pattern, and as an 

implicit temporal pattern, the response curves of each of these actors.  These actors comprise the fixed set.  Then 

there is the dynamic set, the ions.  The interaction between these two is a spatiotemporal convolution.  We then may 

speak of convolutional coding in regards to the information processing function.  

Spatially, the ion concentration ratios by type across the membrane leverage channel opening flux.  Temporally, they 

will stimulate, compete with, and ultimately respond to the response grid of the fixed structure as they wash over. 
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The interactive result must be a new pattern.   If the responses were only positive (excitatory) then two patterns 

convolving would produce a smoothed version.  However, if the patterns are mixed positive and negative, then the 

convolved pattern may be arbitrarily different from either of the originals, perhaps without loss of detail (no 

smoothing).   To generalize, one spatial-temporal pattern convolves with another spatial-temporal pattern and in so 

doing creates a third spatial-temporal pattern.  This certainly qualifies as computation.  

The membranal system is a “neural network” in the small; a sub-neural network.  To sharpen or otherwise process 

the input signal, both positive and negative effects must be present.  This predicts the presence of complimentary 

pairs of actor types (e.g. Na and K channels).  This also explains the ubiquitous presence of the sharp excitatory 

response followed by the duller, elongated negative response, both temporally (e.g. action potential) and spatially 

(e.g. surround inhibition), in the neurophysiological literature.

12.1.7 PARTICLES PROFILE THEIR SURROUND VIA RAPID COLLISIONS  

Particles develop relationships with their environment equivalent to decision making.  Particles in the liquids of a 

living cell are moving sufficiently fast to negotiate billions of collisions per second.  Each collision is an opportunity 

to do some chemistry.  In a rich environment of biologic systems, there may be thousands, or even hundreds of 

thousands of types of molecules accessible for collisions.  At these high collision rates, a probability distribution 

emerges which will display the large number of types interacted with proportionate to time spent there.  All those 

collisions that were nothing more than elastic will show as zero values on the probability distribution.    Of all the 

possibilities, some collisions are more prone to binding than others, and each binding has a life span.  Therefore, the 

particle will have a life history of fractions of time spent with one or another binding relationship.  When all of the 

data is recorded, a given particle type will have a “preference” profile as to how it spends its time in a given 

environment.   Metaphysical though it may sound, the particle's ability to sample and move on to sample all the 

others is in some way equivalent to “deciding” where to spend one's time, or setting one's priorities.  This is not to 

elevate the particle to some high state of intelligence, but rather to question whether or not the supposed higher 

intelligence of the mammalian nervous system might not be acting out what is merely lower level mechanisms of 

particle explorations and bindings.   So long as there is a one-to-one mapping between outside entities and internal 

entities, outside movement and inside movement, then nervous tissue can simulate reality, run scenarios, and choose 

among them.  The one-to-one mapping need not be perfect.  The mapping arrangement may be chaotic looking.  But 
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so long as the linkages come to be weighted in a fashion that reflects useful aspects of reality, then such an 

arrangement can display intelligent behavior.

12.1.8 PARTICLES HAVE “SCHEMES” TOO  

Just as the actors (large stationary molecules with significant conformational states) can be abstracted into so called 

“kinetic schemes” so to can the modalities of particle flux patterns of movement between actors be characterized 

into common patterns of heavy re-use.  Just as actor conformational state paths form duty cycles, so to each particle 

type has its duty cycles.  A particle typically goes through cycles of  drift below, transport, drift above and re-

transport.  If particles should become sequestered or otherwise bound or delayed along the route, then those 

constitute additional states in the path.  Because most of the observable  actions of particles have been in the analog 

mode (diffusion and drift), it is likely that any information processing being performed is literally analog processing. 

presumably because there are too many variables, and because the needed mensuration is not yet developed. 

Contrast this with the actor state changes which are known to be very much digital events.  The requirements for 

such include that the ionic system be of a type, stable in form and predictable in behavior.  The kinetic scheme of 

actors is justified by the extremely fast jumps from conformation to conformation, allowing these events to be 

treated as digital.  The initiation of such transitions is the result of thermal collisions, breaking bonds which are 

defining the current conformation.  The speed of conformational change is driven by intra-molecular charges, which 

exert  superordinate force until a new configuration is achieved.  This allows the molecule to be treated as being in 

only one of the several possible states (as found experimentally).   There are presumably many conformations which 

are either improbable or insignificant that can be ignored in the model, so as to conserve computational load.

With ions in solution, there are no such jumps to discrete formations.  Rather, flux is continuous in time and space. 

However, there are recurrent patterns of ionic flux, some more probable than others, and others quite improbable. 

This is a form of logical fluidics, with switching effected by actor behaviors.  From these patterns it must be possible 

to calculate the likely outcomes and assign probabilities across the set of particles.   The system of particles is driven 

by digital events, and the resultant behavior (flux) is deterministic (Ohm's Law).  Therefore it is reasonable to 

characterize the resultant flux patterns for any given neuron type as a discrete set with one-to-one correspondence 

with the actor state set.  This is complicated by the presence of more than one actor type, and by the plaiding pattern 
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of actor distribution, but the concept holds.  There is a further matter of time constants to respond to actor events, 

but thanks to the strength of the EM force, this is adequately fast to treat particle modes as discrete.

Although the ionic flows are continuous, the actual binding events at the actors are discrete.  Each actor may be 

modulated  or transport a fixed number of particles each event (e.g. pump cycle, or channel opening).   One ionic 

flux pattern will result (statistically) in certain (discrete) actor impacts.  These impacts are justifiably the phenostate 

of the discrete “kinetic state” of the particles.  Each such abstraction is only valid for a particular neuron type, shape, 

actor placements and tonicity-pair.  Accordingly, particle kinetic schemes would not be as portable as actor kinetic 

schemes.  However, they do offer the potential for a great reduction in computational load if they can be pre-

calculated at build time, then simulated as a lookup table or PDF instantiation during the run.

In the realm of digital modeling, types are a given.  With a concrete quantity of types, there must be a finite number 

of modalities which particle systems will exhibit when exercised across their parametric domain.  Each of these 

modes is originally created by the full simulation of ballistic particles and their interactions (collisions and binding). 

For each type of neuron, within a range of shape variations, these modes should be abstractable for their information 

value in the same way that only a few high runner conformations are abstracted as significant for the actors. 

Getting all aspects into the same data structure and functional procedure realizes even greater computational 

efficiency by avoiding the conversions of bases between Newtonian and Kolmogorov representations.  Then the 

model can be computed in bulk so as to fully utilize the computational horsepower of super computers vastly 

reduced administrative swapping of tasks and major portions of the logical fabric in wait states.

  Such an approach realizes a huge reduction in computational load for the repetitive aspects of modeling intra-

neuron events.   It furthermore brings the model to a condition of higher consistency, whereby all elements are 

abstracted to the same level (state transition matrices), rather than the hybridization of several levels.   This has the 

advantage of allowing a given computer to simulate a much larger (more complex) neuron than otherwise it would 

be capable of.  It also has the advantage of rendering the complete model as a singular manner of representing 

physical phenomena. 

Metrics for the utility of such an approach are yet to be developed.  
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12.1.9 CHANNELS QUENCH AN INSTABILITY WITH ANOTHER INSTABILITY  

Dangerous Positive Feedback Loops may be Managed with Instabilities. The ability of a neuron to “make 

decisions”, to integrate many inputs into a single output pulse train, the ability to effect signal repeater stations (e.g. 

the nodes of Ranvier), and the ability to create refractory periods after each pulse, all employ positive feedback 

loops.   Positive feedback loops that allow the in-rush or out-rush of ions are potentially lethal to any living cell. 

That they should evolve at all is both awesome and scary.  How can any living cell insure against the mistake of 

leaving an ion channel open too long, enough to bleed to death?   A mechanism of instability (internal 

conformational instability) is the cure for external instability (explosive influx of Na into the cell).  No engineer was 

ever trained to cure an instability problem by adding yet another instability!  From the point of view of engineering, 

setting up such processes is as awkward as trying to propel a boat forward by opening leak holes below the water 

line through the hull at the front of the boat!  Theoretically, at least, this would convert the force due to gravity into 

some small lateral motion due to inertia of the water rushing in.  The small lateral gain would seem to be far out-

weighed by the large loss of gradually sinking the boat.  And so pumps must be added to bail the dredge overboard. 

The neuron is doing something just as peculiar when it punches holes in its hull to allow leaks, just to gain some 

horizontal movement of the ions along the membrane.  Pumps are definitely required to avoid death by such “leaks”. 

The ion pumps are known to cycle up to 1000 times per second.  The highest known capacity pump moves 3 Na+ 

and 2 K+, giving us up to 5000 ions per second transport.  But ion channels are known to admit millions of ions in a 

single brief (0.1 second) opening.  Thus, either the pumps must outnumber the channels thousands to one, or else the 

ion channels must be restricted to very low duty cycles, less than 0.1% open time.  This may explain the evolution of 

the refractory period, which prevents the channel from opening for several tenths of a second.   Preventing the 

channels from prolonged openings is an absolute prerequisite to staying alive.

Nonlinearities are essential for making “decisions”.  Perhaps the ancient Greeks understood this because the 

word means “to down cut”  (or in English syntax “to cut down”).  Cutting is certainly a form of nonlinearity; an act 

of reducing many possibilities down to fewer (or one) possibilities.  It is a “management” activity, a type of 

information processing function.  Nonlinearities may be achieved by many different mechanisms, but neurons create 

them via positive feedback loops involving voltage.  A voltage sensitive sodium channel (as is typical in the 

Hodgkin Huxley model) may become perturbed enough to begin opening the channel.  But such openings allow the 

in-rush of Na ions into the cell, which alter the voltage across the channel, which in turn further perturb the channel 
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to open even more.   This must be stopped.  And how is this dangerous instability terminated in a 100% reliable 

manner, this crucial closing of the leak?  By adding yet another instability!   The inherent stochastics of the actor 

conformational changes that open the channel are very unstable.  Statistically, they can only stay open for several 

milliseconds before the molecule transitions into a more stable state.  The solution, therefore, has been to design the 

open state as a very unstable state, and the closed state as very stable.   This implies that biology has “invented” a 

cure for instability: by added yet another instability - in series.  The extrinsic particle inrush which creates an 

instability for the whole cell is checked by the intrinsic instability of the actor conformations that cannot maintain 

the open state more than a millisecond or so.  

12.1.10  ACTORS RECOGNIZE PATTERNS AND GENERATE PATTERNS  

Single molecules of protein are capable of Temporal Pattern Recognizers and Temporal Pattern Generators.  The 

stochastic nature of the various kinetic schemes being submitted to modelers as abstractions of the in vivo actors 

lead inevitably to the conclusion that channels and pumps are not merely exponential response curves due to first 

order differential equations.   The Hodgkin Huxley approach of fitting one exponential curve fit per channel subunit, 

for a number of reasons, falls significantly short of capturing the information processing capacity of the channel.

1) the Hodgkin Huxley equations only represent aggregates of large quantities of channels.  They cannot imitate 

a single channel.  This is roughly analogous to insisting on representing a silicon CPU chip by averaging all the 

transistor flips into one smooth response curve.  Surely the information processing has been sacrificed in order to 

collapse the response via integration into the much simpler calculation of an average activity.  Quantitatively, 

200,000,000 bits corresponding to 200,000,000 transistors (gates) are collapsed to say a 100 point response curve. 

That is but a tiny portion of the original information (0.00000050).  This ratio of information collapse depends upon 

the quantity of types of channels, the ratios in quantities of each type, and the number of states in the kinetic 

schemes for each type.  It may well be that living neurons employ a high degree of redundancy in channel function, 

especially in transmission, where signal propagation and preservation are presumed paramount.  But we cannot say 

the same for the upstream soma and dendritic arbor are processing information.  Please be reminded that 

transmission, by definition, means that no information processing may take place.  That is, no modification of the 

signal.
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2) the Hodgkin Huxley equations are silent on the conformational states that are not expressed as changes in gate 

position.  The kinetic schemes, culminating from two-step voltage clamps, reveal that there may be many closed 

states, several open states, and several refractory states.  The distinction between these is significant because they 

each have distinct frequencies resulting from their transition probabilities.  These transition probabilities determine 

the response patterns of the actor to varying conditions. Multiple states imply multiple responses.

3)  The Hodgkin Huxley equations are deterministic.  They do not support, nor allow, any variability in response. 

Therefore, they reduce the nerve to an automaton.   It is known, however, that the actors are not deterministic, and 

that stochastic processes are necessary to mimic the behaviors of individual actors.  Actors are necessarily stochastic 

because of the thermal energy bombardments to which they are continuously exposed.  Stochastic behavior is 

informationally significant for a number of reasons.  It allows actors to exploit timing patterns and group gradations 

that would not be possible using deterministic processes. 

4)  It is the nature of the kinetic schemes of actors (and indeed the biological actors) to exhibit patterned 

behaviors that serve the cell and the organism in some useful function.  To provide a service, the kinetics may not be 

reversible.  A simple reversible process would simply undo what it did each cycle, with a net zero progress.  To 

provide a service, there must be some directional bias to the state transitions.   Transition probabilities can be found 

that predispose the actor toward progressing through states in a cycle.  

5) Thermodynamics requires that to repeat actor cycles in a non-reversible manner some energy or escapement 

must be provided that “resets” the Gibbs free energy of the actor from its entropic resting state back to energized 

starting plateau.  Then the sequence of states thereafter can be a cascade down in energy content.   This energy 

source may, however, arrive as an ATP, a thermal collision or some other extrinsic event.  It is also possible that 

energy be injected into the cycle at more than one node around the loop.   These energetics are expressed in the 

kinetic schemes as probabilities to go down hill are far larger than the probabilities to go up hill (energetically 

speaking).

6)  state transition cycles need not be fixed in their nodal makeup.  There may be alternative pathways, back 

slippage, hold states and other forms of path variance.
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7)  The totality of a set of transitions that constitute a irreversible cycle implies that the first half of a cycle is by 

a path through states different from the second half of that cycle.  This is significant., because it implies that the first 

half of the cycle will have some optimal resonance pattern; and that the second half will have some different optimal 

resonance pattern.  This is profound for three reasons.  First, it implies that every actor is a pattern recognition 

device.  This is so because there is some optimal input pattern which maximizes its response, state transition by state 

transition.  Second, it implies that the “second half” of the cycle always generates a pattern in time.   The 

transitioning from state to state according to probabilities also determines the likely speed of transition.  A series of 

various intervals constitutes a rhythm.  They will not precisely repeat, but there is a dominant theme.  And the 

summation of a few such dominant themes can present arbitrarily precise and repeatable results.  

We have already established that for each actor there exists a phenostate table which maps the states to their 

impact on the surround.  The existence of any one or more dominant patterns of state change sequences (rhythms) 

implies that the series of phenostates will be driven by that rhythm, and therefore also have a rhythm, though usually 

simpler.  Thus actors are pattern generators.  

Thirdly, because the input resonance is on a different state transition path from the output resonance, each actor 

is a pattern processor (mapping device).  While most people are familiar with the phenomena of resonance, fewer 

are comfortable with higher order resonances, which might be easier conceptualized as pattern matches.  It is 

significant to the capacity of bio-computation that individual molecules can respond to one or more input patterns by 

emitting one or more corresponding output patterns.  Such pattern conversion constitutes information processing of 

a fairly high order.  Each actor, therefore, is unto itself a computer.  It is measured that state transition probabilities 

may change with changing environmental conditions.   This may serve useful in mechanisms of homeostasis.  The 

question is: for each actor type, how many distinct input:output pairs are there within physiological range?  

If a 3-note pattern is found in a naturally occurring actor type,  it would be comparable to a minimum of 200 

transistors and 200 memory bits to match that digitally (in practice quite a bit more, as this number only allows 

distinguishing 5 input values over 10 timesteps in and 10 timesteps out, with 2 possible modes, when in continuous 

time many more are possible).  That constitutes an IC chip within a single molecule!
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12.1.11 SYMMETRY IS FOUND BETWEEN ACTOR EXTRINSICS AND INTRINSICS  

The many complexities of biology can cause an investigator to “loose sight of the forest for all the trees”. 

Attempts at systematizing biological chemistry quickly grow to include hundreds of species of molecules and 

elaborate conversion and transport mechanisms.  To model these many-fold phenomena within a singular model 

often results in a “spaghetti bowl” of relationships that require large-scale bookkeeping actions that may rise in 

quantity as the square of the number of elements.  

It therefore came as some surprise that the many concepts of the model, after years of attempts to organize their 

various relationships, led to a simple symmetry between the actions of freely moving monatomic particles (e.g. ions) 

and stationary complex molecules (e.g. channels and pumps).  

While there are many downsides to the forced digitization of phenomenon that occur in continuous space and 

time, there is also one distinct upside.  Every thing done within a digital computer is information.  Information is 

defined as a change in state.  Every possible action in a digital computer requires to move/set one or more bits 

(change their states).  In continuous space-time, a ballistic motion can be thought of as one state.  Momentum holds 

the velocity constant until impinged upon by an outside force.  Throwing a ball in continuous space time is easy 

because there is only one state to initiate (velocity).  But throwing a ball in a digital computer requires a lot of 

calculations.  Every dt and dx is truly a change in state and each one must be calculated.    All of this is information, 

which we use as a substitute for simple momentum effects.  Digitization is equivalent to making observations of the 

real ball every dt, collecting information on it as a data series.  Observations are equivalent to collisions.  For 

example, you cannot see anything until you collide some photons off of the objects to be “seen”.   Such collisions 

digitize otherwise ballistic trajectories.

In the case of modeling the information flow through neurons, at the onset it was not at all obvious what 

constitutes information in continuous space-time.   Lots of things are happening, but some may be noise or not of 

consequent to the output signal.  However, the very effect of digitizing it forces everything to be converted into 

information.   The very act of digitization requires pondering which information is relevant to the model and which 

is not.  Most information is discarded in favor of those necessary and sufficient bits that allow construction of a 

predictive model.   Whether intended or not, digitization results in an (imperfect) extraction (parsimony) of 

information  from a  continuous physical / energetic / informational system.
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When working with strictly the information content, rather than the physicality of the neuron, new and 

interesting relationships may emerge.  Certainly those relationships that persist through both physics and 

information require differing perspectives to extract the desired aspects.  Generally, the informative perspective will 

be the differential of the physical perspective.  Follows is a novel perspective on the informational aspects of 

particles impacting actors and actors impacting particles.  The fact that these relationships constitute a closed loop 

infer the opportunity and indeed the probability that an iterative cycle may be effected.  Cutland in 1980 reduced all 

computation to recursive functions.( 9999226)  This loop might be thought of as a limit cycle, except that 

information is inherently novel, and such novelty will alter the shape of the cycle in unpredictable ways.  

FIGURE 155: EXTRINSIC-INTRINSIC SYMMETRY, PRODUCING INFORMATION ITERATION

As for sources of each of the above processes, motion and collisions were developed in physics; transport and 

bindings are covered in physical chemistry, cytology and pharmacology ; and conformers and their expressions are 

covered in neurophysiology, and molecular dynamics.  However, collisions were elaborated upon in their own right 

by computer graphics.   Bindings are elaborated upon in pharmacology.   Phenostates are developed in genetics, as 

“phenotypes”

Proceeding clockwise:

1) To calculate collisions requires conservation of momentum in three dimensions.  But to detect collisions in a 

digital computer where there is no continuity of space and time requires heuristics.  And it was the field of computer 

graphics that is tackling those heuristics for purposes of physics based animations.  While physicists usually treat 

collisions as elastic scatter, in aggregate, or as hyperbolic orbits, it was  the computer graphics people that took each 
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collision as a whole art unto itself, and explored the nuances of detection and resolution.  One must by their 

processes consider that collisions were transformative and imparted information.  

2) Granting that bindings are inherently a process of chemistry,  the pharmacologists were enamored with the fact 

that a singular molecular binding can effect a fan-out cascade of changes, dynamically complex, that can have very 

large effects upon the whole biologic system.   Witness the power of hormones.

Granting that conformers and enantiomers are a major concern among biochemists, it is the new field of molecular 

dynamics that allows us to see a large molecule go through its motions in a probabilistic fashion over its degrees of 

freedom.  The MD simulations present as movies with molecules  “dancing”.  Their movement sequences imply that 

real information is being conveyed or somehow processed as temporal patterns.  Information is altered by various 

ligand bindings, which bring about different patterns.

3) The modeled molecule requires a set of calculations for its internal state (conformation) and another separate set 

of  calculations for it effects upon its surround.   That is, in the information realm, as opposed to the physical realm, 

these two processes are separate:  reaction with self and reaction with others.   Components of self are fixed in 

number and therefore comprise a matrix of fixed size to represent the atoms and bonds of a given molecular types. 

But when the molecule interacts with its environment, there is no fixed size for the possibilities, as it must respond 

to what ever impacts it from the outside.  The former is a closed system and the latter an open system.  This 

distinction is well exercised in genetics, where the genotype is an intrinsic trait and phenotype is its extrinsic 

expression in its normal environment.   Varying environments may well alter the “expression”.   Just such a concept 

was needed for the digital representation  of the actors, where first the internal state must be determined, and then 

the consequences of that state, if any, upon the external environment can be determined.  For this secondary effect 

was coined the name “phenostate” .  

4) In this subtle progression from conformational changes to the effects of those conformational changes upon the 

environment, the stationary molecule becomes a change agent on the environment. Obviously, an ion channel 

opening can result in a significant shift of concentration and charge on both sides of the membrane.  Transport is 

most intensively studied in kidney, eggs,  neurons, muscle, and lungs, though present in every living cell type. 

Cytology was first to tackle the interplay between structure, function and chemistry of cells.  It eventually branched 

off Cell Physiology which continued the investigation of  transport mechanisms.   The contribution here is that 
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cytological transport is not like a mechanical pump or shovel merely moving commodity.  It is specific to timing, 

ratios, and responsive to conditions.  Such transport is serving more of an informational role than a materiel role. 

For example, one type of pump requires 3Na bound inside  2K bound outside and 1 ATP to provide the energy, to 

perform one pump cycle.  Then there is another pump type  that requires 1Ca bound inside and 3Na bound outside. 

If these two cycle alternately, then 2K move inward and 1Ca moves outward each cycle.  Different combinations 

juggle the ratios of the various ion types.  Ion pumps are as much logical devices as they are physical pumps.  There 

is information in the requisite ratios, and how their comparative speeds result in different tonicities.  Such transports 

are the intrinsics of the large stationary molecules impinging upon the extrinsic of the small mobile particles.  For 

the brief time of transport, there is a marriage between the large molecule and the small particle.  There is a 

transduction of information in this process. 

5) When the conformation changes (due to thermal energy), there may or may not be an expression of that change 

externally.  For example, if an ion channel changes conformation, it may or may not result in the pore opening.  If 

the external effects of the protein are engaged, then the small mobile particles are forced to change states (change 

compartments).  They then resume their motion, albeit in a new location. 

6) For the particles, a change in state is a move to a new compartment.  For the stationary molecules, a change in 

state is a different combination of modulators.  For the particles, motion is the result system energy levels, and 

collisions are the use of that energy to “communicate” to the inside world.  For the stationary molecules, 

conformational changes are the result of system energy levels, and phenostates “communicate” to the outside world.

Therefore, the symmetries are:  

1) Extrinsic motion of the small particles is symmetric to the intrinsic motion of large molecule conformational 

changes.  Both are driven by thermal energy.  Both are modified by charge effects (particles accelerated and actors 

discretized).

2) Small moving particles colliding with the large static molecules are attempting to influence the large static 

molecules.  We can think of this as an “observation”  by the stationary molecule about its surround.  Collisions then 

are an “expression” of particle movement.  Without collisions the small particle movements would go undetected 

and remain unto  themselves.  The symmetry is that the large stationary molecules “express” themselves by 
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impinging upon the particles.  Without this effect the conformational changes would go undetected and remain unto 

the molecules themselves.  

Particle motions are ballistic until they make themselves known by colliding with something.  These “detections” 

may result in a change in status or not (binding, unbinding).  In a sense, the particles are acting as change agents 

upon the stationary molecules.  When they bind with a static large protein, there is for a time a marriage between the 

extrinsic motion of ions in solution with the intrinsic “motion” of conformational changes inside the large 

molecules.  For the duration of the binding while the two become one, there is a transfer of information of the 

particle spatial patterns into the large molecule internal states.  Strictly speaking this is a place code, because the 

location of the particle determines which actor it would bind to.  Then that actor is modified marking the place of the 

particle.  As a marker, it preserves this place code, persisting a while even after the particle may unbind.  Such 

bindings usually cause conformational changes, and also bias the probabilities of various conformational changes. 

Obviously, where actors are widely spaced, the resolution of the place code is low.  But it is more than a place code. 

The type of particle determines the type of modulation that will be imparted to the actor.  This also is a transduction 

of information.  So we have a place code and a type code for the particle, captured within the actor.  

3)  A particle collision with an actor ( stationary molecule ) may result in a binding to that actor.  Such bindings 

usually effect a conformational change in the actor, and as such have a modulating action.  Notice that such bindings 

are initiated by the particle, by virtue of its individual motion.  The symmetry is the that the actors may act to bind 

and transport certain particles, and in so doing effect a state change for the particle.  Notice that such bindings are 

controlled by the actor, by virtue of its mechanism of pumping or channel opening.  Both sides of the symmetry 

appear as bindings, but from an informational point of view,  the controller and controllee are swapped.  

4) We may also note that a) the particle ballistic motions and collisions make up the extrinsic operations;  b) the 

conformations and expressions (phenostates) make up the intrinsic operations; and c) the modulator bindings and 

particle transport  make up the interfaces (conversions) between intrinsic and extrinsic operations.  An operational 

symmetry is present between the differentiation of the moving particles by the stationary molecules, and the 

integration of the stationary molecule modulation states into the flows of particles being transported.
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5) Implicated in this loop is that there is an “inhalation” process, when the extrinsic particle motions are transduced 

into an internal conformational state, followed by an “exhalation” process, when the phenostate is transduced into an 

external change in state for the particles.  This is perhaps a novel perspective of iteratively processed information.

Referring back to the figure above, there are 6 operations that are the necessary and sufficient set to support an 

iteration cycle through them all, to effect a relationship between inside and outside, between self and environment. 

By relationship is meant an ongoing viable “conversation” during which each is being changed by the other.  With 

the potential of iterative sequences, relatively simple processes can effect or create extremely complex patterns in 

space and time.  In this sense, these elements effect a fractal mathematics.  They constitute a generative function.

It may come to fruition that this approach offers a clean, easier way to teach, and to model, the complexities of 

cellular information processing.  Hopefully, such an approach is conducive to perceiving and demonstrating the 

information reception potential, and information generating potential, of membranal systems.

The essential aspect of  neuronal information processing is a highly iterative loop through a differentiation, then a 

pattern recognition, then a pattern generation, then an integration.  This loop, spiral, or network cascade (depending 

on your preferred metaphor) cycle rate may be calculated.  Where the action potential is initiated by voltage 

sensitive Na channels, then the time to propagate along the shortest contiguous path from origin until axonal 

termination, divided by quantity of Na channels along that path, yields the effective cycle time.  The concept of 

cycle time is different for the nodes of Ranvier which employ high concentrations of Na channels in the nodes, and 

are very sparse in between.  In such cases, many of the channels are acting more like a single large unit, rather than 

as a cascade or network of units.  It must be appreciated that to some extent this is also true for other areas of 

membrane where there are high channel densities.   The cycles are present, but in high, overlapping packing 

densities, the propagation wave tends to ride over the actor cycles, the way a school child rides over the rollers in 

that certain kind of play ground “slide” constructed of closely placed rollers all the way down.

Is it possible then that the outputs of close-packed cycles are too slow to alter the leading wave of the propagated 

signal?  Usually not.  The wave speed is directly dependent upon the reaction time of the Na channels to open plus 

the diffusion time to the next channel. That implies full cycle between neighboring channels unless diffusion is 

faster than channel opening.  In that case, the down stream channel is actually responding to the upstream channel, 

with the middle channel only serving to “fortify” the signal.   In transmission lines, where no change in the signal 
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pattern is desired, over-packing the channel density does not change the shape of the action potential.  It simply 

lengthens the stretch of myelinated axon that is feasible by putting out a higher current.  But in graded response 

areas, pattern overlaps might be problematic.  Wherever pattern recognition is desired, channel density needs  to be 

low enough and refractory periods long enough to avoid the creation of muddy signals.  Temporal patterns require 

sufficiently long durations of quietude upon which to overlay their signal without distortion.  Therefore refractory 

periods and cross inhibition are desirable features of such an arrangement.  

12.1.12 ACTOR CONSTELLATIONS IMPLY SPATIAL FUNCTIONS  

Channels and Pumps can be positioned into patterns over the neuron membrane so as to effect specific mathematical 

functions.  Whether one wishes to add, subtract, multiply, divide, exponentiation, integration, differentiation, lag, 

perform second order fits, third order fits, and so forth - merely the positioning of two types of ion channel are 

sufficient to perform any one of these.  It is deemed to be novel that by rearranging the existent set of channels, one 

might be able to cause the neuron to change its function, mathematically and biologically.  The motion of ions in 

aqueous solution over the statically positioned channels and pumps constitutes a convolution process.  

There are,  other ways of accomplishing various mathematical functions.  Shape is highly determinant of the way a 

spatiotemporal input signal will be interpreted. 

Perhaps the easiest way to intuit how this might be so is to consider the slide rule.  One set of relative positions is 

slid over another set of fixed positions.  The convolution of the two positional patterns yields a third pattern, as a 

binary  mathematical operator might do.   The speed of the ionic wash is in play against the speed of the actor state 

changes.  There will be synchrony or asynchrony, depending on the spatial pattern match and the phase match. 

Synchrony can build and sustain the signal, while asynchrony can serve to filter this signal out.  Iterative treatments 

can tune for and select narrow signal patterns, and filter out “almost matching” signals.

The slide rule analogy applies more closely if we treat the center slide as stationary and the two stator bars as the 

moving part.  Then tic patterns above and below are analogous to the dynamic ion positional patterns, and the center 

bar is analogous to the membrane with actors embedded.  The tics on it are equivalent to the fixed actor positional 

pattern, but they do not capture the actor internal states.  Different scales solve different problems, and accordingly, 

different ion patterns can present different problems to be solved.  Merely by moving the tics around we can solve 
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the sin, the log, base conversion, hyperbolic tangent. square roots, etc.  Each scale essentially represents an input to 

output map of values.  And by this means any input curve can be mapped to a different output curve.   

Three pieces of bamboo, with some black marks sprinkled along their lengths were sufficient to do all the 

calculations to deliver men to the moon and back.  And this is a much simpler more limited arrangement of things 

than the patterns of actors and ions, and the dynamics of their intra-actions and interactions.

The neuron has a much larger dimensionality of processing potential than a slide rule.  It has greater computational 

width and greater computational depth.  Rather than a single line that determines the pattern, there is a wrap around 

the circumference of the dendrite, soma and axon, that also constitutes a pattern, be it homogenous or otherwise.  

The ion channels read the ions by binding them.  Depending on the surplus of similarly moving ions, the signal is 

absorbed at this reading (effecting an end of calculation, a transduction of information).  The n-th ion channel 

“writes” a message in code as a temporal sequence, similar to Morse code, via channel openings.  This sets ions off 

on a new wave pattern, on down the line to the n+1th receptive channel.  Thus the computation is iterative. 

Iterations most commonly result in tuning.  For example, a mix of frequencies may be iterated into a pure sine of the 

most dominant frequency.  The digital nature of channel openings allows them to simulate any arbitrary wave shape 

merely by the timing sequence.

The depth of the processing power concerns what order of differential that the actor state transition paths can 

uniquely respond to.  If the arrival of a particular particle initiates a state transition path, and at a certain point along 

that path another modulator arrives to alter the progress of that path, then that actor is responding to a first order 

temporal pattern. Similarly, if the path then continues to a different state which is especially modulated by a third 

timely binding, then that actor is a second order processor of temporal information.   It is not yet known to what 

depth biological actors can process temporal patterns.  It is established herein, however, that such pattern recognition 

is possible at the molecular level in a straight-forward manner. 

With neurons, there must be an interaction between a sheet of ions washing over the actors, a response from the 

actors that eventually forces the ions into a new pattern, which is the “answer” as it washes on against the vesicle 

release mechanisms.  It is far more likely , and necessary, for the neural membrane to work iteratively.  As with a 

continuous audio signal passing through a digital amplifier, the calculations never end.  They are cascading real-time 
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through the system, along prescribed paths.  And as with the audio amplifier, it may not be necessary to effect radial 

changes in the signal, only some conditioning and removal of extraneous bits.  The purpose may be to tune and 

amplify the signal, or to route the signal to the appropriate port.

With the variety of ion types we have several colors of charge carriers making their own individual patterns. 

Although this fact suggests large informational potential, we known that these signals are not orthogonal.  Some 

pairs are complimentary, as K is to Na.  Some act as the parity bit stream, as passive Cl is to Na and K net flux.   It 

may be that the ion colors are sufficiently coupled that there is only one signal after all (one eigenvalue).   

This neural signal is at least  2-dimensional.  It is distinctly more than 2-dimensional in the dendritic arbor, where 

each branch is independent enough of the other branches to necessitate it being treated as a separate degree of 

freedom.  

Continuing the slide rule metaphor to its elastic limit, the ions can be said to be “reading” the ion channels when the 

ion channels open.  This necessarily alters the ion positions and patterns.   Whenever there is a refractory period 

within the channels, then there is an enforced directionality to the wave being propagated.   An “answer” is produced 

whenever a wave makes it all the way to the vesicles, which proceed to release an output signal to the synaptic cleft.

If we insist on looking at one spike at a time, then we can only find one bit of information.  That would be like 

reading a book by focusing only on one letter at a time, with no intention whatsoever to “see” a series of letters as a 

word.   To get the information out we must process long temporal patterns (whole words,  whole sentences,  whole 

paragraphs,  whole chapters. )  Each of these adds an order of depth.  Information is organized thusly, in many layers 

of meaning, built up over time.   A intact paragraph has a much higher information value than a random series of 

letters of the same length because of the nature of the code book.  The uniqueness or surprise value of an entire 

paragraphs can be much higher than the sum of the surprises of guessing what the next letter will be.   This is 

because S, the set of all possibilities, is far greater for the intact paragraph than it is for letter guessing.   This is an 

extrinsic quality, not the intrinsic measure of channel capacity.

In the slide rule, the slider is a set of fixed relationships between tics.  They all move as a unit.  Not so with the ions. 

Every moment they comprise a different pattern.  In fact their current pattern is the problem to be solved by the ion 
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channels.  They all respond according to this pattern, interacting with their previous state, a kind of memory of its 

history.  In this important sense, the ion channels are processing a temporal problem.  

The ions, too, are responding to their previous state, reacting as a function of repulsive forces between like charges, 

inertial effects of mass and attractive forces from across the membrane.  This would amount to straightforward wave 

phenomenon, preserving information as it radiated outward - but for the disruptions going on as channels open. 

Thus ions carry forward the memory of their past, but alter that memory somewhat with every channel opening.  The 

channels may serve to strengthen the original signal (as in action potential propagation); may serve to diminish or 

quench it; or may serve to alter it into an entirely different spatiotemporal curve.  Whenever one curve convolves 

with a second curve to create a third curve - well, that is certainly computation.  An it is reasonable to pursue 

convolutional coding as a method for analyzing the results.

All the channels are simultaneously sampling the messenger and ion pool above and below; and reciprocally, all the 

ions are receiving pulses from the channels.  This is analogous to solving simultaneous equations.  Given that the 

fluid of ions and and the membrane of channels are both 2-d sheets, not 1-d bars, then it is solving a family of 

simultaneous equation sets at once.  It is only the refractory periods which prevent such a system from degrading 

into a noisy feedback whistle saturating everything out.  Such iteration can serve several purposes: tuning 

(sharpening), integrating (as additional branches join in along the line; amplifying (as the risk of some 

spatiotemporal smear; or serial processing step (where the channel mix changes along the line).

Ion channels are moving, gradually, all the time along the surface of the membrane.  They are also being “pulled” 

and replaced regularly.  The new ones are placed, but optionally may be placed slightly differently than the set 

before. Positional placements do vary over the cell's life cycle phases.  But mightn't they also change with life 

experiences?

Changes in the placement patterns changes the  function of convolution with the ions.  The positional pattern 

determines what kind of math the neuron is doing (trig, logs, etc.).  The rearranging of the pattern of ion channels 

can change the computational operation from add to subtract, multiply, integrate, differential, log10, log2, sine, etc. 

This is true even if nothing else is changed.  It is not required to change the shape, nor the types of channels.  
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The upper and lower ion layers are sliders, and tend to be compliments of each other (resulting from through-the-

membrane transport phenomena).  Because of the complementarity, these two may be acting as a single mathematics 

function.  A stator exists between them, the membrane with a pattern of actors.  The Stator and the slider interact in a 

convolutional manner.  The result is that both are altered by the interaction, but only the slider carries information 

spatially to the next processing station.

12.1.13 GENERAL ACTOR FORMS FOR MODELING PURPOSES ARE FEASIBLE  

Previously, each species of membranal protein required an amount of custom modeling work.  The great variety of 

biological moieties makes standardization of digital representations a challenge.  Provided herein is a method for 

mapping biological information as parametric values in general software representations.  Actors may be Classified 

into Classes, and Classes sub-classified into Types. ( For example,  Actors are divided into the classes of Receptors, 

Channels, Vesicles and Pumps.  Pumps are divided into 8 Types of pump.)  Each type is distinguished by a unique 

set of affinities, bind/unbind kinetics, conformational kinetics, conductivity profile,  and transport equations.  A 

small number of actor forms may populate shaped surfaces so as to mimic thousands of neuron types.   Bindings are 

embodied as stochastic processes, and the binding combinations determine the instantaneous transition probability 

matrices for the conformational kinetics.  Typically, these probabilities are dynamically altered by modulators. 

Transport is in turn determined as a stochastic process as a function of actor state transitions.   

For example, a singular scheme for representing ion pumps, co-transporters and exchangers is presented, which 

can accommodate all of the bio-pumps found described in the literature to date.  The great variations between pump 

types are accommodated by providing for binding and transport poles on each side of the membrane, then binding 

and transport profiles for each pole, including the binding of ATP and release as ADP.  Modulation, as a function of 

binding combinations, which page of kinetics are in effect each dt.  Effects of such modulation include 

reducing/increasing the efficiency of the pump, reversing the flow direction, resetting saturation limit, resetting its 

starvation concentrations, changing the error rate (alternate ion type pumped, pump runs backwards, or the pump 

pumps empty).

In similar fashion, a thorough stochastic treatment of receptors, channels, and the mechanisms of vesicle release, 

yields actor simulations which can be tuned to closely mimic the behaviors of their biological counterparts, over 
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multi-dimensional domains of numerous modulator combinations and high numbers of conformational states.   They 

are not deterministic, so do not repeat same responses to identical stimulus.  Each actor is instantiated in space and 

state individually, at model build time, and the state of each individual actor is re-instantiated each dt. 

  These Forms include binding probabilities across all the particle types present in the system.  They express 

differently for each modulator combination, by altering the internal state transition probabilities.  In complimentary 

fashion, they allow for the particular state of the moment to alter the binding kinetics of the modulator sites.  They 

include a means of tracking which particles in particular are bound, and where.  They include a means of tracking 

which particles are being transported and which pole they are at, therefore assigning particles to new compartments. 

They include a means of assigning each actor to a node on a membranal surface, including orientation.  They include 

a means of instantiating each new state as a function of the prior state and the current modulation combination. 

They include a means to interpret the resulting state for its effect upon the immediate environment (herein called the 

“phenostate”.  They include a means of releasing messengers according to known quantity, ratio and temporal 

patterns and their variances.

  With an appropriately sized dt, this method adequately captures the information content of each actor, but not 

the physicality.  (Molecular dynamics simulations do capture the physicality.)  The effects of varying the value of dt 

are accounted for, noting that increasing the dt in non linear systems at some point results in serious artifacts at wide 

variance from biological performance they portent to represent.  The dt value can be optimized by sensitivity 

analyses on parametric value sweeps.

Note that the actors, by their bindings, select out only a representative few of the particles from the pools of 

particles above and below them.  This is a differentiating function.  The integrated pools of particles are 

differentiated to act as modulators upon the actors.  This process is inherently one of information processing.  And it 

is reversed when the channels open the “valves” to allow ion flux through them.  The valve position is a differential 

to the flux.  And thus the flux is an integration of the channel state.

12.1.14 DIGITAL GENERALIZATION OF ACTORS REQUIRES PHENOSTATES  

Both the Internal and External State of an Actor may be Represented by a Unified Kinetic Scheme.  Though many 

kinetics schemes in the literature are rather mixed internal states and binding states, the modeling of such requires 
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explicit and different treatments for each.  The dimensionality of the internal states is found to be s1xs1xs2, where 

s1 = internal states and s2 = the possible combinations of allosteric binding (external state).  Meanwhile the 

allosteric binding forward and backward reaction rates are altered by changes in the internal conformations.  The 

external state space is found to be s2xs2xs1.  It is therefor possible to join these by an s1xs2 interface into a single 

matrix of the size s1xs2x(s1+s2).    

Whenever the states of an actor are abstracted into nominals, then the effects of such state numbers are arbitrarily 

ascribed by assignment, as pointers to the next function to be executed.  Therefore, the outward impact upon the 

environment, (the output of a point process) is represented digitally not by the state, but by an additional table that 

maps that state into some outward effect.  This secondary table is herein named the phenostate of the actor.

12.1.15 NEURON SHAPES REDUCED TO CONTOURS OF ROTATION  

A method is provided for neuronal shapes to be simplified to contours of revolution while preserving the nearest 

neighbor relationships between actors, and maintaining cross sectional area profiles relevant to the neuronal 

processes.  Radial vanes may be inserted so as to partition the dendritic cone(s) into sectors, creating an effective 

arborization of dendritic bifurcations and branches.   Any bifurcation pattern may be accomplished by this means, 

with some compromise concerning the 3-dimensional pattern of attachment points on the soma (and elsewhere). 

Multiple dendritic cones alleviate this limitation somewhat.  Vane surfaces within the dendritic cone are necessarily 

dead zones with respect to actor placement and transport, unless alternate interstitial spaces are provided that are 

contiguous with the extracellular compartment.  For convenience, planar surfaces are provided to facilitate synaptic 

connections without the need for reshaping the mating surfaces.  

12.1.16 ACTOR POSITIONS MAPPED ONTO ARBITRARY SHAPES  

The plaiding patterns of channels and pumps may be explored and modeled using the 3-dimensional shape 

generators provided herein, which include a homogenous surface of loci for actor placements.  The bio-data may be 

classified into functional zones, such that the distribution data is stored as a contour from the identified start zone 

through to end zone (typically from dendritic synapses to axonal synapses).  This supports the “stretching” of the 

PDF (probability density function) to fit any arbitrary shape so long as that shape specifies equivalent zones.  Each 
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actor type has its own PDF for a given neuron type.  Therefore, a neuron type is defined, in part, by a set of actor 

PDFs.  Once occupancies are instantiated, then measurements can be made to determine nearest neighbors, area of 

membrane serving a capacitance role per actor, equivalent saline resistance to each of the neighboring actors.  It is 

possible to add, subtract or replace actors during the course of a simulation run, according to conditional events or to 

a development schedule.

Each PDF set corresponds to a (possibly unique) transfer function (nonlinear) for the neuron.  It lays out the 

stationary pattern over which the ionic waves will wash and convolve.  It is possible to reverse engineer a PDF set 

into its mathematical function,; or to engineer a desired mathematical function into a PDF set.

12.1.17 DESIGN OF ARTIFICIAL AND THERAPEUTIC  ACTORS  

Channels and Pumps may be Custom Designed to fill specific mathematical operations.  The state transition 

probability matrices may be manipulated to accomplish any number of input patterns mapping to any number of 

output patterns, as stipulated by any combination of modulator bindings.  Any number of internal states may be 

mapped to any form of external expression by those states.  Therefore, in theory, channels, pumps, receptors and 

vesicles can be designed to serve in completely arbitrary custom roles.  In practice the limitation of atom types and 

their fixed physical traits implying limited patterns in chemistry may not always provide for combinations that can 

realize the molecules with the hypothesized transition probabilities.   It is yet to be determined whether nature has 

already exploited the combinatorial possibilities, and that humans will add little else to this list; or whether there are 

many not yet realized computational potentials that can be constructed of liposomes, synthetic channels and pumps, 

and induced synaptic connections between them.  Given that the ocean tonicity was heavily determinant as to what 

was possible in evolving life forms, and that the periodic table offers 92 elements with which to build actors and 

artificial tonicities, that there must surely be untold realizable computing molecules and tonicity profiles for their 

surrounds.

While actors may be engineered at the kinetic scheme level, it will take molecular dynamics to determine which 

ones are feasible, or how close realizable molecules can come to matching the desired states and rates.  A further 

challenge is to map the internal state behaviors to external functional role, such as pumping, catalyzing, releasing or 

gating.  While the digital representations treat the genostates separate from the phenostates, real world 
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implementations make no such distinction.  There, the phenostate is merely emergent from the genostate. 

Anticipating such emergent behaviors by design would require molecular dynamics modeling at a higher level, 

including the surrounding environment as a dynamic (information rich) space.

12.1.18 LIQUID STATE PROCESSORS ARE FEASIBLE  

This Model provides a molecular basis for Liquid State Processors, and finds them feasible as Artificial 

Computational Devices.  Liquid state processors operate by entirely different procedures and processes than those of 

solid state digital processors.  A new investigation of computation is needed to characterize the potentials, limits and 

“programming methods” of such a distinctly different way of computation.  The western world so takes for granted 

its Aristotelian logic, that it does not have a word for any alternatives.  

In an important sense, the solid state lends itself to digital logic.  Positions are fixed and the clock rate is usually 

fixed and synchronized across the gates.  Logic is usually at its weakest when it forces the breaking up of continuous 

gamuts in a finite number classifications.  But in digital machines everything must be made discrete. 

By contrast, liquid state machines as characterized herein employ both continuous space-time and kinetic discrete 

time.  The particle system is an analog space-time processor and the actors are kinetic discrete processors.  Thus, 

liquid state processors are indeed hybrid analog/digital computers.  As such they have the potential to solve problem 

types that digital computers fail at.  

Liquid state computers can operate the analog space-time continuity portion of the computer for free.  That is, it is 

driven by thermal energy acting in elastic collisions that consume no energy.  The result is diffusion and drift. 

Similarly, the discrete portion of the computer is accomplished by conformational changes in the actors, and these 

changes are also driven by free thermal energy, with state changes precipitated by elastic collisions.  However the 

directionality of those state changes imply certain energy injection.  This comes via ATP or concentration gradients. 

Biological systems are found to be exquisitely efficient in their use of such energy sources and usually cascade the 

original transfer of energy into a long series of steps back down to ambient levels.

The liquid state is conducive to relativistic calculations rather than absolute.  All particles are coupled in a liquid.  In 

solid state processors, it is of the essence to decouple every transistor from every other.   Hardware designers would 
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consider any such coupling to be “cross-talk” and a source of error.  In a completely coupled system, however, it is 

the patterned response that is the information, and it is the solution to the problem.  All that is necessary is to arrange 

things so as to mimic some aspect of the outside world for which problem solving of this type provides a useful 

service to the organism.  

In the solid state, due to the complete uncoupling of each bit, any single bit can be arbitrarily more valuable and 

more powerful than other bits.  Precision is created by generating one number to many decimal places of accuracy. 

The bit representing the largest decimal place in the “answer” is in most circumstances a lot more valuable than the 

bit representing the smallest decimal place.  Even stronger contrast can be attained.  The bit that turns the machine 

on an off is a lot more powerful than the bit of one dim pixel in a worthless little advertizement that the user doesn't 

want at all anyway.  Errors therefore can be arbitrarily large, caused by arbitrarily small events, even a single bit 

change.   

The liquid state is not bit-sensitive.  In the liquid state, particles are far more democratic.  Errors are within the 

variance of the normal operating range.  Precision is created by narrowing the bell curve of responses ever tighter; 

accomplished by repetitive feedback.

A digital machine is discrete in time, and  this carries over to the way it “learns”.  It receives a concise set of 

instructions and executes them as perfectly as the machine is capable of, on the first time.  It does so without 

reference to the prior problem and has no innate preferences in how the problem should be solved.  The liquid state 

machine cannot do that.  It begins with poor performance, and more likely reenacts the answer to the prior problem 

more than it does in getting the new problem correct.  Repetitions are necessary to improve performance.  Feedback 

is necessary to determine just what is desired in the response.  

The liquid state is inherently recursive in its design.  The process of signal propagation may be likened to a spiral of 

ion flux down the axon.  What needs to be investigated is the relationship between dendritic signal flow, the 

spiraling of ion flux in the process, and the opportunities from genuine information processing along the way.  Such 

information processing always implied because that ion spiral passes through the kinetics of the actors, which as 

discussed earlier, differentiates, pattern resonates, pattern generates, and integrates back into particle flux.  This is a 

long way from the passive cable equation that is so often referred to as represented what dendrites do. 
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This project has not (yet) incorporated learning as described above, into the model.  Learning can be easily added as 

a model feature, but should not be until all of the verification work for the main diffusion and kinetics engines prove 

out.  Model building requires successful testing at the lowest levels first, progressively working up the complexity 

scale.  This is necessary because if their is any doubt about the based functions, then error at higher levels of 

complexity become nightmares to isolate.  This is that same curve of arbitrary bit power in digital computers. 

However learning can be accomplished by adding algorithms which capture messengers after use so as to count 

them.  They could be captured only as coincidence pairs for Hebbian learning.  The quantities could, via a lookup 

table, translate into changes in the number of actor types at each synapse according to use.   Synaptic plug sizes 

could be made to grow and shrink.  Pumps could be modulated to alter tonicities to support more active areas. 

Pumps could be moved  farther away from the ion channels to induce axial flux.  Various messenger particles could 

be released that alter the kinetics of certain channel types, including shortening their refractory time.  Different 

subunit combinations could be caused to present themselves.  The neuron could grow larger somas, lengthier 

dendrites and axons, form new connections to neighbors.  Each of these is not difficult to add as a feature, to this 

model.  

It is intended that such a modeling approach as this paper presents will support the deep investigation of this 

computational potential of neurons and of liquid state processors in general.

12.1.19 MULTISCALING FROM ION TO WHOLE CELL IS EFFECTIVE  

Multiscaling is effective in reducing Computational Load.  Particle systems that represent a real world cellular 

compartments entail quantities approaching 1E17.  By iterative reduction in particle quantities, and in each step 

comparing the results to the prior larger quantity model, the total quantity of each particle type may be reduced to 

optimal levels for the desired error tolerance.  However, for whole cell models this still may require 1E9 particle 

quantities.

In order to employ these whole cell models in connected networks of say, 100 cells, further reduction in the 

computational load is needed.  The criteria of this project is that the information processing potential must be 

preserved.  And this forbids many if not all of the prior simplification strategies.  
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One solution is to excise representative patches of membrane which contain such ratios and spacings of actors 

that if the patch were cloned and tiled across large expanses of neural membrane, that they would perform similar to 

the original membrane of the same size and location.  This is not merely a problem of actor density; it requires that 

the patterns within the densities be accounted for.  At the extents where such a tiling exercise fails to duplicate 

original behavior then another canonical patch must be introduced.  

Because strict cloning of one patch type results in clone fields stitched together with sharp transitions at their 

boundaries, unrealistic artifacts are thereby created.  This is remedied by creating gradient clones, by a method 

similar to point-to-point interpolation.  Interpolating between patterns is not trivial, however, and the criteria of 

gradations must be chosen in advance.  For example, for some cell types the distance between one channel type and 

another channel type may be fixed.  They may be rafted together as diads or triads.  A gradation pattern would 

therefore adjust the raft densities, but not alter the spacing within the rafts.  This can be formalized by grouping the 

constituent entities of a raft into a single new entity, an ensemble.  In any case verification of the interpolation fields 

across the parametric space via sensitivity analysis is deemed prudent.  

The patch interpolation fields assemble into zones.  Zones are the functionally distinct areas of the neuronal 

membrane.  Zones of course share boundaries, and again, care must be taken not to create artificially sharp 

transitions when they are not biologically present.  

Using two canonical patch types to generate of gradient of patches in between is also at high risk of creating 

unintended non linearities.  In any nonlinear system, stability analysis is prudent to insure against creating nuisance 

artifacts merely for the convenience of short cuts.

If the excised patch is to provide a benefit it needs to yield results in isolation that can significantly reduce 

repeating those computations when large numbers of such patches are in situ in the whole cell model.  This can be 

accomplished by three methods.   

1) To the extent that radial symmetry proves to be redundant around the ring, then only one patch of each ring 

need be calculated.

2) Exercising each patch down to some minimum number of particles that preserves the information processing 

function of course reduces computation.
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3) The main objective of multiscaling is to exercise each patch across its parametric space (which includes all 

possible input signals).  This  allows the entire patch to be collapsed into a look up table.  In other words the 

calculations are pre-performed and the results stored for future reference as look up tables.  If each canonical patch 

is parametrically swept and the results stored, then it becomes possible for the whole cell model to be reduced from 

a computational engine to a grid of look-ups.  Caveats include that conditions going outside of the known response 

domain must trigger yet another intensive patch study; and that interpolations must only be attempted between 

canonical patches sufficiently similar that the interpolation gradients yield realistic outputs.

12.2  NEGATIVE RESULTS  

12.2.1 EVENT BASED ALGORITHMS ARE INEFFICIENT  

Event based dt's are found by many modelers to conserve computational load when collisions are occasional.  It 

was found in large scale particle systems that the overhead to detect events and rank order them in time was equal to 

or greater than the computational cost of a simple fixed dt simulation sufficiently fine to avoid ghosts.  While 

variable dt and dx algorithms, as are common in PDE algorithms and FEM calculations, are certainly more efficient 

and accurate for individual equation calculations, such an approach has so far been found unwieldy for 

asynchronous equations across >1E6 particles and actors.  The older conventional difference equations are not quick 

and are not small, but support processing almost everything within a few very large matrices.  Doing so allows the 

internal algorithms of the compiler to optimize silicon resources.  The models prescribed in this paper are first and 

foremost exploratory, not intended to be commercially efficient.  

Real efficiency will not arrive until hybrid analog/digital processors become available (if ever they do).   A major 

challenge for the future of computation is develop machines that neatly represent the continuity of space-time, as 

well as discrete decision processes.   HAD computers could provide the single greatest improvement is simulation 

performance.
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12.2.2 RESISTANCE-CAPACITANCE GRID REPRESENTATIONS THWART   
NEURONAL FUNCTION

The conventional circuits approach which lays out an R-C grid as a ladder filter proved to misrepresent neuronal 

function, because such configurations over-constrain the flows of ions (from 3-dimensional radiation to 1-

dimensional signals).  Though adequate for predicting axonal transmission, this approach disallows radial 

transmission and resultant wave forms.  In also discounts the mass of the ions, which is a major determinant in 

transmission speed and in the dynamics of capacitance.   It also reforms the capacitance such that the channel pulses 

do not spread evenly around the channel. 

12.2.3 INCOMPLETE STATE TRANSITION TABLES  

Though the biological literature is rich in actor kinetics and state transition data, it has proven to bee very 

difficult, as of 2011, to find a set of transition probabilities compete enough to model actor duty cycles without 

resorting to estimating over missing pieces.   Evidently, the actors possess both phenostates and hidden states.   The 

hidden states much be measured or otherwise derived before the veracity of this model can be established.

12.3 VALIDITY OF THE MODEL  

There are two concepts to prove.  First, that ions in capacitance along a lipid membrane can be disturbed by channel 

opening ion flux in such a way as to initiate a wave that carries information to other actors.  Second, that single 

molecules of protein can detect temporal patterns in such a way as to elicit a distinct output pattern of ion gating.

The existence of charged particle waves radiating out from point disturbances may be proven by instrumentation 

that reflects photons off the surface of the charged layer during a disturbance.  The pattern of reflection, projected 

upon a photon detector grid (e.g. CCD), will reveal the shape of the response to disturbance.  The response found 

may be a Gaussian slump, as predicted by Green's function for processes of diffusion (a first order effect similar to 

the heat equation).  It may be a radiating concentric ring, constituting a traveling wave (a second order effect capable 

of carrying information).  It may be something other than these standard first and second order responses.  Provided 

that the photonic wavelength is short enough (hard x-rays with wavelength less than 0.1 nm) set at a shallow angle 

of incidence for good reflectance, and provided that the grid resolution is fine enough to distinguish a wave pattern, 



881

the reflected image will distinguish between these three possible responses.  The challenge is to remove the saline 

overburden so as to yield a reflective surface near the charged layer of about 3 nm thick on each side of the 

membrane.  Most of the saline might be replaced with oil to create such a surface.  The difficulty lies with the charge 

density profile that decays exponentially from (0.0..3.0) nm away from the lipid membrane.  For bare ions, most of 

the wave action will necessarily take place within the nearest 0.1 nm to the membrane.  Only the tortuosity of the 

lipids, if any, will cause moving ions to “bounce” outward away from the membrane towards the reflective surface. 

Another consideration concerns the size of solvated ions.  With a maximum of five layers of water molecules, their 

size approaches a radius of 0.55 nm.   There is also the matter of undercurrents resulting in surface disturbances. 

How thick can the saline be, and still reveal a detectable disturbance on the surface in response to movement along 

the bottom 1 nm of that saline?

Indirect methods of determining radiating waves include signal analysis received at remote points.  If, say six 

receptors surrounding the source point can detect a pulse following the stimulus of the source point, then we garner 

information on the speed of transmission, and the envelope of the wave (content of second order and first order 

terms).  A planar grid of FET detectors could conceivably map the spread of any disturbances down to the resolution 

of the grid.  As the waves are predicted to travel several microns, that infers an equal radius of the circular wave 

being propagated.  Current technologies should be able to distinguish a radiating wave at some expansion point.  Of 

course, the FET response times must be faster than the pulse rise and decay.  Although the electrons in plasmons 

were clocked at infrared frequencies, solvated ions, due to mass values 100,000 times larger, must exhibit 

frequencies of less than 10 megaHz.

An alternative approach to consider would be a substrate of voltage sensitive dyes, which might detect a growing 

ring of voltage disturbance. There are trade-offs between spatial and temporal resolution in such dyes.  A dye that is 

temporally fast enough to detect an ionic wave is likely to be spatially too course.  Current fluorescent frequencies 

are at 530 and 630 nm, far too long of wavelengths to resolve ion channel activities.  Even if the wave were detected 

along a propagation path of several microns, the image would be crude and unconvincing.

X-rays are too energetic to illuminate the delicate plasmon wave without severe disruption.  However, a series of 

strobe shots can be executed, so as to take one picture per wave, but in a sequence of staggered timing so as to 

reconstruct the sequence of the entire wave.
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Diaconescu B, Pohl K, Vattuone L, Savio L, Hofmann P, Silkin VM, Pitarke JM, Chulkov EV, Echenique PM, Farias 

D, and Rocca M, in Nature v 448, 2007.07.05 presented a proof that the existence of plasmon waves.  They claimed 

that charges on surfaces behave like water on a lake’s surface, and that these waves propagate up to a few microns. 

When a stone is dropped into a still lake, waves spread radially as growing rings. A similar wave can be created by 

the electrons on a metal surface when they are disturbed.  Plasmons are proven to exist on solid surfaces but not yet 

on liquid surfaces because the experiment was performed under high vacuum.  Plasmons have been regarded as a 

viable means of transmitting information, due to the fact that they can support high frequencies where other means 

are very lossy (diffusion degrades signal).  The extension of this effect from electrons on a solid surface to ions on a 

liquid surface requires continuity of principles of dense matter (commonality between liquids and solids) and scaling 

to the mass and size of an ion, which will greatly slow down the velocity and frequency of the wave, but provide 

greater inertia to travel further.  Mass and like charge repulsion predict such waves as a second order phenomenon, 

whenever a grid of like charges is disturbed.  Soft matter physics addresses the superconducting quality of such 

wave phenomena.  The work done to create the initial pulse is finite, yet the propagation effect continues nearly 

infinitely (the more regular the substrate, the greater the propagation distance).  This effect is at the very least a quite 

efficient process, and some describe it as superconducting.

The second issue, protein kinetics, is founded upon the work of Colquhoun D, and Hawkes AG in the 1990's.  They 

established the validity of kinetic schemes as the best available (at the time) representations of protein 

conformational changes, as relevant to channel and pump functions.  The application of standard chemical kinetics 

to large molecules capable of reacting with self, predicts that there will be some quantity of significant 

conformations, usually 5 to 30 in ion channels, that determine the behavior of the actor type in its cytological role. 

As the field of Molecular Dynamics matures, its ability to model every atom and bond comprising an ion channel or 

pump will reveal the conformational processions in response to ambient thermal impingements, and in response to 

modulation events (voltage, bindings, etc.).  

At this time, MD simulation runs are only for a few nanoseconds, despite that exercise of protein duty cycles will 

require milliseconds (a million-fold increase in computational power).  The environment of the molecule being 

simulated is critical to the results.  Workers report that molecular conditions, down to excruciating detail, can 

completely change the behavior of ion channels.  Unfortunately, there is not much wet lab data available on the 
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immediate environment of each protein molecule in vivo.  MD will need the support of such wet lab work to verify 

its assumptions in physics.

Of great interest would be experiments by Molecular Dynamicists that establish: the feasibility of molecular designs 

that require certain temporal patterns of modulation to initiate a duty cycle; the elucidation of molecular mechanisms 

of such protein molecules to generate a temporal output pattern (e.g. channel openings rhythm); and the extent to 

which channels can effect non-reversibility of its duty cycle without the injection of energy to drive its directionality. 

In summary, it will be Molecular Dynamics, with the assistance of super computers, that demonstrate the internal 

workings of the ion channel molecules - given the constraints of the dense net of chemical bonds, given the 

impinging aqueous surround, and to the extent to which such phenomena can be engendered, articulated, and 

harnessed.  This model's potentialities will either be found consistent with, or else disproved, by the physics of 

intramolecular order.  

12.4 CONCLUDING DISCIPLINES  

The evolution of the model led to certain of the initial efforts to dominate while others were found wanting, and 

eventually dismissed.   In this model the complexities of the lipid mix within the membrane was simplified to 

membrane thickness.   The vesicles were overly complicated in structure for their mission of information 

transduction.  The RC circuit grid was overly constrained for representing a charged particle system, and was totally 

replaced by free roaming charged particles in 3-space.  Without such structure the finite element approach was no 

longer needed.  Three specialties were recognized as out of scope but useful for reference and sources:  Computer 

Graphics for collisions detection;  the chemistry of self-assemblying molecules for molecular order; and Molecular 

Dynamics for verification of the kinetic schemes.   The very strong winners stochastic instantiations of actor states 

and binding; and Coulombic forces driving charged particle systems.  
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12.5 FUTURE DIRECTIONS  

12.5.1 COMPLEXITY OF PATTERNS  

Neuronal ionic signal patterns could be observed to determine the extent they are generated by, varied by, and 

made complex by, actors.   This would clarify the extent to which the stochastic conformational changes are 

exploited for their potential to recognize patterns and generate patterns.   Are neurons processing these patterns at 

zeroth order,  first order, second order, third order or more?  Are there subtleties such that as an alternative to 

resonating patterns, actors can also block some patterns (via dissonance)?  How well tuned are these pattern 

recognizers?  Do they respond to anything close to a match or can they be very selective in the pattern they respond 

to?  (equivalent to the Q-factor of electronic tuners)  What are the implications for biology if it were quite possible 

to evolve deep complex pattern responders with in single molecules, but in fact none but simple first order 

FIGURE 156: Disciplinary Map as built
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responders are found in nature?    What are the common-place natural patterns to which neurons would have 

necessarily evolved to detect? 

12.5.2 VALIDITY OF THE MODEL  

There are two concepts to prove.  First, that ions in capacitance along a lipid membrane can be disturbed by channel 

opening ion flux in such a way as to initiate a wave that carries information to other actors.  Second, that single 

molecules of protein can detect temporal patterns in such a way as to elicit a distinct output pattern of ion gating.

12.5.2.1 Particle System representation  

The existence of charged particle waves radiating out from point disturbances may be proven by instrumentation 

that reflects photons off the surface of the charged layer during a disturbance.  The pattern of reflection, projected 

upon a photon detector grid (e.g. CCD), will reveal the shape of the response to disturbance.  The response found 

may be a Gaussian slump, as predicted by Green's function for processes of diffusion (a first order effect similar to 

the heat equation).  It may be a radiating concentric ring, constituting a traveling wave (a second order effect capable 

of carrying information).  It may be something other than these standard first and second order responses.  Provided 

that the photonic wavelength is short enough (hard x-rays with wavelength less than 0.1 nm) set at a shallow angle 

of incidence for good reflectance, and provided that the grid resolution is fine enough to distinguish a wave pattern, 

the reflected image will distinguish between these three possible responses.  The challenge is to remove the saline 

overburden so as to yield a reflective surface near the charged layer of about 3 nm thick on each side of the 

membrane.  Most of the saline might be replaced with oil to create such a surface.  The difficulty lies with the charge 

density profile that decays exponentially from (0.0..3.0) nm away from the lipid membrane.  For bare ions, most of 

the wave action will necessarily take place within the nearest 0.1 nm to the membrane.  Only the tortuosity of the 

lipids, if any, will cause moving ions to “bounce” outward away from the membrane towards the reflective surface. 

Another consideration concerns the size of solvated ions.  With a maximum of five layers of water molecules, their 

size approaches a radius of 0.55 nm.   There is also the matter of undercurrents resulting in surface disturbances. 

How thick can the saline be, and still reveal a detectable disturbance on the surface in response to movement along 

the bottom 1 nm of that saline?
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Indirect methods of determining radiating waves include signal analysis received at remote points.  If, say six 

receptors surrounding the source point can detect a pulse following the stimulus of the source point, then we garner 

information on the speed of transmission, and the envelope of the wave (content of second order and first order 

terms).  A planar grid of FET detectors could conceivably map the spread of any disturbances down to the resolution 

of the grid.  As the waves are predicted to travel several microns, that infers an equal radius of the circular wave 

being propagated.  Current technologies should be able to distinguish a radiating wave at some expansion point.  Of 

course, the FET response times must be faster than the pulse rise and decay.  Although the electrons in plasmons 

were clocked at infrared frequencies, solvated ions, due to mass values 100,000 times larger, must exhibit 

frequencies of less than 10 megHz.

An alternative approach to consider would be a substrate of voltage sensitive dyes, which might detect a growing 

ring of voltage disturbance. There are trade-offs between spatial and temporal resolution in such dyes.  A dye that is 

temporally fast enough to detect an ionic wave is likely to be spatially too course.  Current fluorescent frequencies 

are at 530 and 630 nm, far too long of wavelengths to resolve ion channel activities.  Even if the wave were detected 

along a propagation path of several microns, the image would be crude and unconvincing.

Diaconescu, in 2007 presented a proof of the existence of plasmon waves on the surfaces of dense matter coated 

with a charge field, and perturbed with a moving point charge. [220]  They claimed that charges on surfaces behave 

like water on a lake’s surface, and that these waves propagate up to a few microns.  When a stone is dropped into a 

still lake, waves spread radially as growing rings.  A similar wave can be created through a field of electrostatic 

charges on a surface, via a point disturbance.  Plasmons are proven to exist on solid surfaces but not yet on liquid 

surfaces because the experiment was performed under high vacuum.  Plasmons have been regarded as a viable 

means of transmitting information, due to the fact that they can support high frequencies where other means are very 

lossy (diffusion degrades signal).  The extension of this effect from electrons on a solid surface to ions on a liquid 

surface requires continuity of principles of dense matter (commonality between liquids and solids) and scaling to the 

mass and size of an ion, which will greatly slow down the velocity and frequency of the wave, but provide greater 

inertia to travel further.  Mass and like charge repulsion predict such waves as a second order phenomenon, 

whenever a grid of like charges is disturbed.  Soft matter physics addresses the superconducting quality of such 

wave phenomena.  The work done to create the initial pulse is finite, yet the propagation effect continues nearly 
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infinitely (the more regular the substrate, the greater the propagation distance).  This effect is at the very least a quite 

efficient process, and some workers describe it as superconducting.

X-rays are too energetic to illuminate the delicate plasmon wave without severe disruption.  However, a series of 

strobe shots can be executed, so as to take one picture per wave, but in a sequence of staggered timing so as to 

reconstruct the sequence of the entire wave.

12.5.2.2 Stochastic Actor representation  

The second issue, protein kinetics, is founded upon the work of Colquhoun D, and Hawkes AG in the 1990's.  They 

established the validity of kinetic schemes as the best available (at the time) representations of protein 

conformational changes, as relevant to channel and pump functions.  The application of standard chemical kinetics 

to large molecules capable of reacting with self, predicts that there will be some quantity of significant 

conformations, usually 5 to 30 in ion channels, that determine the behavior of the actor type in its cytological role. 

As the field of Molecular Dynamics matures, its ability to model every atom and bond comprising an ion channel or 

pump will reveal the conformational processions in response to ambient thermal impingements, and in response to 

modulation events (voltage, bindings, etc.).  

At this time, MD simulation runs are only for a few nanoseconds, despite that exercise of protein duty cycles will 

require milliseconds (a million-fold increase in computational power).  The environment of the molecule being 

simulated is critical to the results.  Workers report that molecular conditions, down to excruciating detail, can 

completely change the behavior of ion channels.  Unfortunately, there is not much wet lab data available on the 

immediate environment of each protein molecule in vivo.  MD will need the support of such wet lab work to verify 

its assumptions in physics.

Of great interest would be experiments by Molecular Dynamicists that establish: the feasibility of molecular designs 

that require certain temporal patterns of modulation to initiate a duty cycle; the elucidation of molecular mechanisms 

of such protein molecules to generate a temporal output pattern (e.g. channel openings rhythm); and the extent to 

which channels can effect non-reversibility of its duty cycle without the injection of energy to drive its directionality. 
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In summary, it will be Molecular Dynamics, with the assistance of super computers, that demonstrate the internal 

workings of the ion channel molecules - given the constraints of the dense net of chemical bonds, given the 

impinging aqueous surround, and to the extent to which such phenomena can be engendered, articulated, and 

harnessed.  This model's potentialities will either be found consistent with, or else disproved, by the physics of 

intramolecular order.  

12.5.3 DEVELOPMENT OF LIQUID STATE PROCESSORS  

Solid state electronics is reaching developmental limits with regard to miniaturization, clock speed, and heat 

dissipation.  Further advancement in hardware will require a new approach.   The miniaturization limitations are 

breached by exploitation of intramolecular order.   The clock speed limitation is breached by asynchronous 

massively parallel processes.  Heat dissipation is solved by avoiding energy consumptive processes, rather powering 

them by ambient thermal energy.   Liquid state information processors combine all of these benefits. 

First  needed  is membrane material suitable for micro-arrays of actors.  The construction of liposomes is a 

known craft, performed by universities and pharmaceutical companies.  The placement of specific types of large 

proteins, e.g. channels, has been accomplished in liposomes.  Is it feasible to tether certain types of actors together 

so to determine inter-actor distances?   Or can they be anchored to fixed structures within the saline?  Where ever 

fixed distances are critical to function, or locational restrictions to certain zones desirable, stationary structure is 

needed nearby.  Expected feasible is the continuous perfusion of ATP so as to drive the system energy cascade 

initiated by Na pump ATPases.   Removal of the ADT is possible by micro-dialysis.  For artificial systems, it may be 

advantageous to move the ATP circuit to the outside of the cell, similar to a battery or fuel cell.  

It is expected to be more challenging to maintain the shape of the extracellular compartments and to establish the 

“proper” relationships between neighboring cells.  It is expected to be difficult to cause liposomes to grow processes 

in some tropic manner so as to develop scheduled synapses according to prescribed connectivity patterns.  Perhaps 

living neurons will need to be enlisted to generate such intricate and specific shapes and connections.  Furthermore, 

each connection will need to be populated with vesicles, receptors and re-uptake pumps.  
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If living cells are to be harnessed for computation services, then a very lengthy list of housekeeping and 

developmental processes are involved.  If artificial non-living compartments are to be used, then the initial 

construction will be challenging and the life span of components is yet to be investigated. 

A theory of processing and programming is needed for this “new” type of processor.  Similar to the challenge of 

quantum computers, there is an analog component and a digital component.  It remains to be investigated if these 

two types of computing machine are in anyway equivalent.

A theory of  programming an integro/analog/differentio/stochastic finite state machine has yet to be developed. 

Until such a theory is developed, programming such machines may necessarily be by machine training sessions.

The liquid state has several significant advantages over solid state processing.   The essence of a liquid is that it 

possesses sufficient thermal energy to break all crystalline bonds (melt) yet maintain sufficient hydrogen bonds to 

render the fluid incompressible.   This constant thermal motion is frictionless.  Else it would cool down even if in a 

perfectly insulated chamber.   This implies energy  is only lent, not consumed.    Thus the heat problem of 

computation is solved.  These processors generate no heat.

For statistical reasons, not every molecule in a thermal mass possesses the same energy.  The momenta are 

distributed widely and dynamically, with each collisions resulting in momenta changes.  This combination of free 

energy and a mix of fast and slow movers allows any molecule the opportunity to filter its collisions, taking the fast 

ones to add more energy, and the slow ones to dissipate energy.  This range of gauging energy in and out of the 

molecule supports the possibility of sequencing state changes up and down an energy “hill”.  Doing so can be 

arranged to give the duty cycle directionality.  That is, a random process can be harnessed to drive a directed graph, 

if the geometry of its constituent transitions acts like a ratchet.   This is possible even if only one of the steps acts as 

a ratchet while all other steps are reversible.  
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The impact force of a particle collision with an actor can easily vary from 0.1 to 0.9 of the energy range.   The order 

of the atoms and bonds within the actor determine what will become of the energy impacts at the various momenta. 

Obviously, a state transition with a high energy requirement must wait, as such rarities arrive less frequently.  Thus, 

the higher the energy requirements of the duty cycle, the slower the average cycle time will be.  

Large molecules are also known to be stores of chemical potential energy ( the Gibbs energy).  This can be 

accumulated more easily (and faster) in a series of several small packets, rather than waiting for that 1 large packet.  

Adding another layer of complexity, the outside world may participate in the the molecule's directed graph.  Well 

timed modulation events can shift the state path to another route which may be more or less favorable to completion 

of the duty cycle.    All of this is running on the free energy of the ambient thermal motion.  Duty cycles, pattern 

recognizers, and pattern generators all may be designed to run on ambient thermal energy.   Generally, information 

processing may be made to run on non-consuming ambient exchanges, but work requires energy.  

Wait states are very common in digital processors because they are intrinsic to the process of central command.  But 

in stochastic processors, all actors are running all the time.  Such stochastic engines need no clock.  They run 

asynchronously and constantly.  The fact that they are not perfectly uniform nor deterministic grants them the ability 

to statistically fill in a graded response curve .  The Hodgkin Huxley curves were smooth exponentials generated by 

a group of on-off gates.  It is only the statistics of their state changes that ergodically generates the smooth response 

curves, quite accurately.   

FIGURE 157: Boltzmann distribution



891

The fact that all actors are processing streaming inputs in parallel means that the information throughput is high 

despite the relatively slow cycle times (kiloHz rather than gigaHz).   

Finally, the miniaturization barrier is breached by abandoning the fight against randomness, and rather embrace it. 

The Humberto Fernandez Moran  11 nm size limit, where all conductors go unreliable will never be reached by 

digital computers, because the error rate is already becoming intolerable at 25 nm.  Yet, once the stochastic nature of 

molecules is understood and harnessed, very complicated pattern recognition devices can be built at resolutions 

below 10 nm.   The entire machinery of a pattern recognizer and pattern generator lives in the 10 nm space that 

would not even make a servicable conductor in the silicon device.  The price paid for such efficient use of space is 

redundancy.  The stochastic pattern recognizing cochlea of the ear suggests that a redundancy of 8 is adequate, as it 

uses about 8 cells in parallel per tunable frequency.  This is not a sacred number - redundancy varies with the 

tightness of the kinetic scheme and the system requirements for accuracy.

The graded response of entities that live in the space-time continuum possess some of the processing promise of 

quantum computing.    Quantum computers are being built of 25 nm quantum dots sitting on solid pedestals.  But 

they leak away their information and require elaborate error correction algorithms that cannot fix all errors.  The 

biological approach is to take an active stance, to treat all data as flows.  Errors are compensated for by adjusting the 

flows.  There are multiple opportunities to adjust the data values along the course of the neuron.

12.5.4 LEARNING MECHANISMS, LIQUID STATE INFORMATION PROCESSORS  

Learning mechanisms, though beyond the scope of this project, are the next logical step in model development.  

The current model can assist in significant ways towards this end by developing a successful static model of the pre-

trained condition, then developing a successful static model of the post-trained condition.  It is the difference 

between these two that requires a dynamic conversion mechanism.  Such physical conversion may be accomplished 

by any of a number of methods:  chronic modulation; relocation of pumps, relocation of channels, addition of more 

channels of certain types, replacement of one channel type with a different type, or removal of certain channels.
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12.5.5 SYSTEMIC MODELS FOR CHANNELOPATHY THERAPIES  

The nuances of channel function are sometimes detected  by their absence in diseases.  Channelopathies are 

numerous and responsible for many serious diseases.  Huber in 2002 listed 49 such diseases.[218]   These provide 

motivation to develop channel therapies, and provide insight into how channels work by the process of elimination.

As the specific kinetics the the R and Q matrices become filled in either by wet lab work or by Molecular Modeling, 

this model may serve to simulate tests of modifications and substitutions to channels and other actors for purposes of 

disease therapies.  
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15 APPENDIX  A:  CODE 

A.  LIBRARY

1. TypeP: Physics.data
2. TypeA: all actor types and their traits: receptor+shuttles, channels, vesicles, pumps
3. TypeB: all ion types and their traits: monotomic, polyatomic, ligands, messengers
4. TypeC: all shape types: box, cones, cylinders, disks, perforations, spheres, tori, vanes, contours of 

revolution
5. TypeP:  physics constants and conversions
6. DistA:  pdf's for actor placements
7. DistB:  particle velocity distributions; commonly found concentrations
8. DistC:  commonly used shapes and their relationships
9. DistP:  physical param sets for experiments , dt,qt,kelv,clip,sf, Fexpon, spreadsheetpointers
10. paths, filenames, sheetnames
11. get spreadsheet functions, spreadsheet pointers
12. TC:   Import compartment types   (may be as spreadsheet: Mem,Van,Plu,Act,Com)
13. Switch between cylindrical and cuboidal, (How about  polygon x-sect of N sides?)

Cuboid specified by [y z x1 x2 … xn],  where odd #s = saline thk, even #s = lipid thk
14. TB:   Import particle types from spreadsheet
15. TA:   Create a cell structure from all actor type data: Affinity, bind/unbind, conformers, 

phenostate,conductivity, transport equations
16. TCico:   Import icon data for compartments
17. TBico:   Import icon data for particles
18. TAico:   Import  icon data for actors
19. plot params
20. hardware params

B. DESIGN
21. CT:    select compartment types to be used; get Cdimension.data;   based upon neuron type
22. BT:    select particle types to be used.  determine which traits are needed
23. AT:    select actor types to be used.  determine which traits are needed
24. DCinit:   specify dimensions of compartments, with scaling factors
25. DBinit:   Import particle concs from spreadsheet    > N per unit volume
26. DAinit:   Import actor distributions  > N per unit area
27. ScalingFactor.data
28. Switch.data
29. SigGen:   signal to be run during simulation
30. DFscaled:  time, space, quantity, charge, particle radius, affinities, 
31. DCscaled:  final size and shape of compartments, envelopes, plugs
32. DBscaled:  final quantities, radii, and charges on each particle, locations of start boli
33. DAscaled:  final densities of each actor type, kinetic rates, affinities
34. Shape concatenation
35. Metrics, checks:  volts, currents, gradients, divergence, curl
36. Experimental Design Package: lists all sources, choices and param values

C. BUILD
37. BuildC:  from primitives: membranes, compartments, surfaces, volumes
38. BuildA:  place actors, instantiate receps, channels, shuttles, vesicles, pumps
39. BuildB:  place particles, free, bound, sequestered
40. CB:   Create compartments boundary EQs from piecemeal boundaries:  DC > CB.
41. CN:   Create nodal grid on membrane surfaces from boundary EQs:   CB > CA
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42. BT:   Create user choice short list of particles from menu   TB > BT. 
43. B1:   Instantiate ions and messengers from menu, position and velocity as boli:   TB > B.
44. AT:   Create user choice of actors from menu   TA > AT.  Cell structure of: 

   { Affinities,  Bind kinetics, Conformation kinetics, Phenostates, Conductivities, transport EQ} 
45. AC:  Position actors on membrane via DIST using randomizer to density, with orientation
46. Ainit:  initialize all actor states as a function of environment
47. B2:   Instantiate B types that begin as bound to actors (neurotransmitters, hormones, ATP, etc) 
48. BAinit:   Position all fixed particles, as function of affinities and concentrations
49. BCinit:   create boli of all particles
50. Aicons
51. Bicons
52. Aaff:   affinity matrices
53. AR: actor binding matrices
54. AQ: set up actor state transition matrices
55. AO: state to phenostate mapping
56. Aerg  actor energetics
57. Aeff  actor messenger emissions
58. Ax  actor transport rules
59. growth structures and functions

D. RUN
       D1.  accelerations
60. BBd = distances between particles and particles/actors/compartments
61. BBf = forces between particles and  particles/actors/compartments
62. Bacc = accelerations
63. Bvisc = viscosity effects

D2.  velocities
64. BB:   Method of colliding particles, tracks paired hits, momentum xfer, reflection angles
65. BC:   Method for reflecting particles, as table of hits, reflection angles
66. BW:  particles to water collisions

D3.  bind/unbind
67. AB:   Actors affinity hemisphere occupants,  bindings and transport
68. BA:   Method of binding and unbinding particles to actors, as paired hits and releases

D4.  modulation 
69. RUN  dB, particles for steady state to establish realistic concentrations
70. AS2:  Actor binding sites to individual particles
71. ASinit:  Initialize the states of the actors 

D5.  state transitions
72. AQ:  Actor transition probabilities
73. AS1:  Actor conformational state

D6.  transport
74. AO:  Actor phenostate opening and transport function
75. BF:  force calculations yield:  Bacc, V, V gradients, conc gradients
76. AX:  Method for processing transport EQ

D7. Param Change
77. temperature functions, growth functions

D8.  time loop
78. RUN dB, dA1:  particles and pumps
79. RUN dB, dA2:  particles, pumps, channels
80. RUN dB, dA3:  particles, pumps, channels, receptors, vesicles, SigGen
81. RUN dB, dA4:  particles, channels, receptors, SigGen, NO pumps

D9.  SigGen    
82. input signal series.  patterns, musics, visual, spatiotemporal

E. REPORT
83. Capture data:  Bpos, Astates, V, A 
84. Plot routines (get icons, pos data)
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85. Play Movie
86. Generate Report

FUNCTIONS

Functionalized process steps are as follows:  

Ion tonicities are initialized to steady state concs in each compartment (tonicity profile), via:

Ccreate;           % create the shapes and position them 
Cvolumes;        % calculate surfaces, volumes, and addressable nodes
Bquant;             % convert particle concentrations to specific quantities for each compartment and bind 
site
Ccenter;            % identify bolus injection sites free from membranes
Bplace;              % instantiate particles at boli, with velocities

ion diffusion in water, in each compartment – with charge, acceleration and collisions

Bmove;             % pos + vel
Bcollide;           % detect collisions   B x ABC
Breflect;            % execute detected collisions via basis change and momentum transfers

ligands concs initialized to steady-state concs in each compartment   (modulation profile)

Bquant; 
Ccenter; 
Bplace;

ligands are released into synaptic clefts per input signals from pre-synaptic cells (or SigGen)

SigGen;           % converts temporal multi-channel signal so as to drive vesicle releases at synapses
SynLink1;         % maps outputs of neuron units to inputs of other neuron units
VesRelease;    % stochastic process to release vesicle contents per empirical distributions

ligands diffuse in water, in each compartment (3-d diffusion)

Bmove;  
Bcollide;  
Breflect;

actor affinity profiles activated,  for ligands and other modulators (e.g. voltage)

Cnodes;           % takes metrics on nodes to determine if sufficient to implement actor densities in sum
Adist;               % maps general densities onto specific shapes
Aplace;            % instantiates actor placements to available nodes, including orientation
Ann;                 % finds nearest neighbors to each actor
Acap;               % determines fair share capacitance around a channel or pump, via voronoi areas
Ares;                % determines equivalent electrical resistance to each nearest neighbor

ligand bindings to receptors, kinetics as func of concs and Q-modes

Aaffinity;          % as a function of actor state, was is each binding site's affinity for each particle type?
Abinding;         % D x B has a forward reaction rate as a function of actor state
actor Q-matrix changes mode per modulator combo
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Volt2mod           % certain voltage ranges switch the page in the Q matrix
Amod;             % the present combination of binding site occupancies determines the page in the Q matrix
Asubstantiate;  % actor state changes, per dt

phenostate type = {GatingFunction TransportFunction MessengerRelease VesicleRelease }

Aphenostate;    A transport;

ligand unbindings from actors kinetically per concs

Aunbinding;       % D (binding sites)  have backward dissociation rates as a function of actor state

ligand “reuptake” pumps restore ligands to original positions, kinetically, per concs

Aaffinity;  
Abinding;  
Amod;  
Ainstantiate;  
Aphenostate;  
Atransport;

receptors release second messengers upon ligand bindings (1:1 ... 1:200 leverage ratio)

Aload;  
Arelease;   (same as:  Abind;  Aunbind;  Bbind;  )

second messengers migrate along membrane (2-d diffusion)

ShuttleMove;        % indexes shuttle through cycle

second messengers bind to cyclases kinetically, as a func of concs

ShuttleBind;   
ShuttleReset;

cyclases enzymatically produce phosphates ( rate = by the hundreds /msec)

ShuttleRelease; 

phosphates diffuse in water (3-d diffusion)

Bmove;  
Bcollision;  
Breflect;

phosphates may bind to ion channels (phosphorylation) kinetically per concs

Aaffinity;  
Abinding;  
Bbinding;

modulation combos (including voltage) > Q-matrix change, Ion Channels

Amod;

actor state change, per dt
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Asubstantiate;

instantaneous conductivity of ion channel  G = channel gating function * conductivity profile 

Agenotype;   
Atransport;

Nernst potential + concentration potential drive flux:   I = (E+C)*G

Nearnst1;      % partial voltage of one ion type as it impinges on an individual actor
Nearnst2;

ion affinities to ion channels vary with gating function

Aaffinity;  
Abinding;           % 
Bbinding;           % bookkeeping for particles being bound, store old velocity, set new velocity to zero  
Amod;               % 

ions transported through channels per I

Atransport;        % 
Aflux;                % 
Bcurrent;          %
Bcapacitance;  % 

ions diffuse out of ion channels

Bunbind;          % 
Bmove;            % 

change in local ion concs (and by implication, change in local charge density)

Bflux;               %   metrics on grad, div, curl  of each particle type

change in Nernst voltages

Bvoltage;         % 

change in Vm as weighted sum of Nernst voltages

GHKboltage;    %  GHK voltage is of limited use due to its steady state validity in a very dynamic 
environment
CoulombicVoltage  % use this whenever possible, valid in dynamic case, and is temperature invariant

dV > change in capacitance charge > current in and out of capacitance  I = C*dV/dt

CapCurrentV;     % calculate or observe how many ions went in and out of capacitance, per unit area
CapCurrentH;       % measure how many charges moved horizontally; depict as a topology

saline resistances between voxels  result in ion currents:  I12 = (V2-V1)*(1/R12)

SalineCurrent;   % extracted from drift data

horz flux changes Nernst voltages and capacitance charges
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NodalSums;      % 

vesicles bind Ca++ as a modulator, kinetically, per conc

Aaffinity; Abind; Bbind; Amod; 

vesicles change state per mods

Asubstantiate;

vesicles release ligands kinetically into synaptic cleft

Bunbind;  

vesicles reset their state (recycling sequence)

pump affinity1 profiles,  per mode

Aaffinity;  

pump bind1 staging, kinetically

Abind; 

pump bind1 state alters Q-mode,  also mods and concs may alter Q-mode

Amod; 
 
pump state change kinetically, may transport across membrane (forward) or unbind (backward)

Atransport;

pump offload at side2 after transport

Aunbind;

pump affinity2 profiles, per mode

Aaffinity;

pump bind2 staging, kinetically

Abind;

pump bind2 state alters Q-mode, also mods and concs may alter Q-mode

Amod;

pump state change kinetically, may transport across membrane (forward) or unbind (backward)

Atransport;

pump offloads side2 after transport

Aunbind; Bunbind; Bconvert;
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Over 1300 functions have been written for this project.  Some are prototypes designed to exercise a concept.  Some 

are test routines.  Some are generalized forms.  Others are fast lean specialized work horses.  Follows is a few of the 

more interesting algorithms in code.

Code is available upon approval for use.
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Support Functions:
DESIGN standard functions

Load TypeShuttle TypePhysic physics and chemistry basics

Load TypeComp shape-family library

Load TypeRecep defines each type of receptor, ligands, kinetics, 

Load defines each type of G-protein shuttle, by ligand, speed, mods

Load TypeChan defines each type of channel by G profile, mods, kinetics

Load TypePump defines each pump type by action, states, kinetics, poles, attractor

Load TypeVes defines each vesicle type by sizes, contents, modulators

Load TypeIon Types of monatomic ions: atomic number, mass, radius, charge, …

Load TypeIon2 Types of polyatomic ions

Load TypeLigand Types of ligands, neurotransmitters, messengers, etc

BUILD standard functions  

Load DistPhysic physics and chemistry parametric values for this run

Load DistComp compartment dimensions specified for this run

Load DistRecep locations of each Receptor by type by PDFs

Load DistShuttle locations of specific shuttle types, pole to pole

Load DistChan locations of each type of channel by PDFs

Load DistPump locations of each type of pump by PDFs 

Load DistVes locations of each type of vesicle

Load DistIon initial positions and velocities of each type of monatomic ions

Load DistIon2 initial positions and velocities of each type of polyatomic ions

Load DistLigand initial positions and velocities of each type of ligand

DisplayBuild Check all data syntax, then Display results of Build  (static 3-D model)
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RUN standard functions

RunTime sets up dx, dt  and time loop, with data capture

SigGen temporal release/reuptake of presynaptic Ligands (Neurotransmitters)

Attractor adds acceleration factors to Vel per actor poles

Forcer adds acceleration factors to Vel per voltage and concentration gradients

Mover adds new velocity values to PosIL, then tests for collisions

TagMgr manager tags each particle according to its compartment and binding

Collider performs momentum conserving particle collisions

Reflector performs elastic bounces off membranes, or probabilistic absorptions

Binder performs probabilistic-binding of particles to poles

Modulator checks mod concentrations near poles and alters kinetics accordingly

StateTrans  checks for Actor state change conditions, changes stat probabilistically

Releaser probabilistically releases bound particles after transport, assigns vel

Transporter indexes shuttles, pumps, channels, vesicles along parametrized paths

Conductor reads Q matrix and instantiates openings and closings

ConcUpdate after all particles moved and transported, eval voxel concs

NernstUpdate altered concs cause altered Na nernst, per voxel

ChargeUpdate Na flux causes eval of charge imbalance, per voxel

ChargeForce  Calculate forces due to charge balance for Forcer, per particle

ConcForce Calculate forces of diffusion due to conc gradients for Forcer, particle

CapCharger altered Vm changes charge to nodal capacitor, per Voronoi

Resistor altered Vm causes saline resistance grid to alter neighboring Vms

CurrentSummer Na flux plus changes in capacitive charge = current

VoltageUpdate calculate nodal Vm as a func of I , G and Cm

ModUpdate eval new mod locations and values

VesInventory  sets probabilities of available ves as a func of replenishment rate

CaptureFrame capture all position and state data
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REPORT

group1 set report options

group2 PLAY movie 

group3 plot implicit variables wrt time
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