University of Illinois at Chicago
Browse
Cai_Geping.pdf (21.75 MB)

Closing the In Vitro/In Vivo Gap in Tuberculosis Drug Discovery

Download (21.75 MB)
thesis
posted on 2014-06-20, 00:00 authored by Geping Cai
This study establishes a new anti-M. tuberculosis (M. tb) drug lead screening scheme that integrates in vitro and in vivo methods for early detection of bioactive constituents during the purification of nature-derived extracts. Two in vivo M. tb quantification methods were established: 1) the determination of a Mycobacterium genus-specific cell wall fatty acid, tuberculostearic acid, with GC-MS/MS and 2) determination of M. tb marker RNAs with real-time PCR. Both are efficient, accurate and relatively inexpensive, and adaptable to in vitro and in vivo M. tb growth and inhibition monitoring in anti-M. tb drug discovery programs. The conventional in vitro high-throughput phenotypic screening, the newly designed M. tb bioautography on thin layer chromatography plates, as well as the determination of quantitative purity-activity relationship study all aid in exploring and screening for bioactive principles in a crude state. Two classes of cyclic peptides, hytramycins and a xylamycin, were isolated from the extracts of two different actinomycete strains through bioassay-guided fractionation. The structures were elucidated mainly with LC-MS and 1D/2D-NMR. Both peptides contain unusual amino acid residues in the structural cores, and also exhibit strong anti-M. tb activity in vitro with unique antimicrobial mechanisms of action.

History

Advisor

Franzblau, Scott G.Pauli, Guido F.

Department

Medicinal Chemistry and Pharmacognosy

Degree Grantor

University of Illinois at Chicago

Degree Level

  • Doctoral

Committee Member

Franzblau, Scott G. Jaki, Birgit U. Cho, Sanghyun Seigler, David S.

Submitted date

2014-05

Language

  • en

Issue date

2014-06-20

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC