University of Illinois at Chicago
Brenneman_Kimber.pdf (1.41 MB)

DNA-based Nanoconstructs for the Detection of Ions and Biomolecules with Related Raman/SERS Signature Studies

Download (1.41 MB)
posted on 2015-11-01, 00:00 authored by Kimber L. Brenneman
The utilization of DNA aptamers and semiconductor quantum dots (QDs) for the detection of ions and biomolecules was investigated. In recent years, there have been many studies based on the use of DNA and RNA aptamers, which are single stranded oligonucleotides capable of binding to biomolecules, other molecules, and ions. In many of these cases, the conformational changes of these DNA and RNA aptamers are suitable to use fluorescence resonant energy transfer (FRET) or nanometal surface energy transfer (NSET) techniques to detect such analytes. Coupled with this growth in such uses of aptamers, there has been an expanded use of semiconductor quantum dots as brighter, longer-lasting alternatives to fluorescent dyes in labeling and detection techniques of interest in biomedicine and environmental monitoring. Thrombin binding aptamer (TBA) and a zinc aptamer were used to detect mercury, lead, zinc, and cadmium. These probes were tested in a liquid assay as well as on a filter paper coupon. Biomolecules were also studied and detected using surface-enhanced Raman spectroscopy (SERS), including DNA aptamers and C-reactive protein (CRP). Raman spectroscopy is a useful tool for sensor development, label-free detection, and has the potential for remote sensing. Raman spectra provide information on the vibrational modes or phonons, between and within molecules. Therefore, unique spectral fingerprints for single molecules can be obtained. SERS is accomplished through the use of substrates with nanometer scale geometries made of metals with many free electrons, such as silver, gold, or copper. In this research silver SERS substrates were used to study the SERS signature of biomolecules that typically produce very weak Raman signals.



Stroscio, Michael A.Dutta, Mitra



Degree Grantor

University of Illinois at Chicago

Degree Level

  • Doctoral

Committee Member

Dutta, Mitra Cho, Michael Mansoori, Ali Theis, Thomas L.

Submitted date



  • en

Issue date


Usage metrics


    No categories selected


    Ref. manager