University of Illinois at Chicago
Browse
- No file added yet -

New Models and Algorithms for Data Analysis

Download (1.65 MB)
thesis
posted on 2018-07-27, 00:00 authored by Benjamin Fish
In this thesis, we introduce and analyze new models and new algorithms for problems in data analysis. Many new challenges and constraints for data analysis have arisen as data analysis has become increasingly important. We tackle a few of these challenges here. First, we explore the challenges that arise when data analysis done adaptively, so that previous inferences guide future analyst’s queries. We give faster algorithms for providing accurate responses to data analyst’s adaptive queries. Secondly, we initiate the study of the theory for learning from label proportions, which captures voting and similar non-standard settings. We compare this type of learning to classical supervised machine learning, and show examples for which learning from label proportions is possible. Finally, we tackle learning social networks from voting data, where individuals communicate in order to decide their votes. We show that modeling assumptions on how votes are influenced by the network can be brittle: a small change to the model may drastically change hardness of learning the network, as well as change the resulting learned networks.

History

Advisor

Reyzin, Lev

Chair

Reyzin, Lev

Department

Mathematics, Statistics, and Computer Science

Degree Grantor

University of Illinois at Chicago

Degree Level

  • Doctoral

Committee Member

Blum, Avrim Mubayi, Dhruv Sloan, Robert Turan, Gyorgy

Submitted date

May 2018

Issue date

2018-04-11

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC