File(s) under embargo

60

days

19

hours

until file(s) become available

Probing Phase Transformations in Lithium Ion Cathode Materials Using X-ray Imaging

thesis
posted on 01.02.2019 by Brian M May
This thesis explores the development and application of tools in X-ray imaging and mapping to probe the chemical processes that occur within cathode materials for Li-ion batteries and the insight achieved. Li-ion batteries are governed by redox reactions for which the mechanisms are non-trivial to describe. Achieving a thorough understanding of the function of these materials through oxidation and reduction can reveal intrinsic properties that may ultimately be used to improve battery operation. In this thesis I present synthetic methods employed to prepare samples that conform to the requirements of each analysis tool utilized. Using a hydrothermal setup and high temperature annealing, LiNi0.80Co0.15 Al0.05 O2, a cathode material of significant interest, was synthesized paying special attention to particle size, morphology, and crystallographic orientation, while maintaining electrochemical properties that mimic those of commercial material. Using X-rays for diffraction mapping of individual particles is also presented. Performing diffraction mapping on the nanoscale revealed a behavior in the chemical phase transformation within LiFePO4 primary particles that had never been observed before experimentally. It also provided microstructural maps of the particle, from which chemistry and mechanics were correlated. Finally, operando X-ray diffraction mapping revealed that phase transformations do not occur concurrently for individual secondary particles of LiNi0.80Co0.15 Al0.05 O2and that the rate of reaction within particles changed during the charge-discharge cycle. There is not a known precedent for this behavior, and highlights the necessity for studying phase transformations with high spatial, chemical, and temporal resolution.

History

Advisor

Cabana, Jordi

Chair

Cabana, Jordi

Department

Chemistry

Degree Grantor

University of Illinois at Chicago

Degree Level

Doctoral

Committee Member

Snee, Preston T. Jiang, Nan Cologna, Stephanie Borkiewicz, Olaf J.

Submitted date

December 2018

Issue date

10/09/2018

Exports

Categories

Exports