Concept Clarification of Neonatal Neurobehavioural Organization

Aleeca F. Bell, PhD, RN, CNM
Doctoral Candidate
University of Illinois at Chicago,
College of Nursing,
845 South Damen, M/C 802,
Chicago, IL 60612,
abell2@uic.edu,
phone (312) 996-7936.

Ruth Lucas, BSN, RNC
Graduate Student
University of Illinois at Chicago,
College of Nursing,
845 South Damen, M/C 802,
Chicago, IL 60612,
rlucas4@uic.edu,
phone (312) 996-7936.

Rosemary C. White-Traut, PhD, RN, FAAN
Professor
University of Illinois at Chicago,
College of Nursing,
845 South Damen, M/C 802,
Chicago, IL 60612,
rwt@uic.edu,
phone (312) 996-7935.

Acknowledgement: This study was supported by scholarships from the University of Illinois at Chicago Board of Trustees and the Irving B. Harris Foundation.
Concept Clarification of Neonatal Neurobehavioural Organization

Abstract

Aim. This paper is a report of a concept analysis of neonatal neurobehavioural organization for healthy full-term infants.

Background. The neonatal period is an opportune time for researchers and clinicians to assess and intervene for optimal neurobehavioural organization. Yet there is inconsistency and lack of clarity in a scientifically grounded definition of neonatal neurobehavioural organization. Clarification of the concept will strengthen research findings that influence practice for optimal infant development.

Method. A concept analysis of the literature between 1939 and 2007 (n = 57) was conducted using Penrod and Hupcey’s principle-based concept analysis and Morse’s concept clarification.

Findings. The concept analysis within and across multiple disciplines revealed: 1) a view of the concept as a holistic phenomenon with multiple dimensions; 2) no agreement on the ideal instrument to operationally define the concept; 3) consistency in implied meaning, but great variability in terminology. Neonatal neurobehavioural organization was defined as the ability of the neonate to use goal-directed states of consciousness, in reciprocal interaction with the caregiving environment, to facilitate the emergence of differentiating, hierarchical, and coordinated neurobehavioural systems, with ever-increasing resiliency and capacity to learn from complex stimuli.

Conclusion. A clear conceptual definition will help the international community to communicate effectively within and between disciplines and to apply evidenced based
research findings. It will encourage the development of valid and reliable instruments to capture the concept’s multiple dimensions and direct attention to the infant’s experience, which sculpts early neurobehavioural organization.

Keywords: behaviour, concept analysis, development, infant, neonate, neonatal neurobehavioural organization, newborn, nursing

Summary Statement

What is already known about this topic

- In the neonatal period (the first 28 days after birth) there is a sensitive and dynamic unfolding of development unique to the neonate.
- This is therefore an opportune time to assess and intervene to promote optimal neurobehavioural organization.
- The policy and culture of many maternal-child units demand clinicians to be task-rather than synchrony-oriented and thus there are missed opportunities to enhance neonatal neurobehavioural organization.

What this paper adds

- Inconsistent terminology, lack of a gold standard measurement, limited understanding of the concept’s interplay between environmental interaction and genetic expression, and limited evidence of the concept’s predictive relationship between the neonatal period and later developmental trajectories were identified in the literature.
Neonatal neurobehavioural organization is the ability of the neonate to use goal-directed states of consciousness, in reciprocal interaction with the caregiving environment, to facilitate the emergence of differentiating, hierarchical, and coordinated neurobehavioural systems.

Maturation of neonatal neurobehavioural organization is evidenced by the neonate’s ever-increasing resiliency and the capacity to learn from complex stimuli.
INTRODUCTION

In the neonatal period (the first 28 days after birth) there is a sensitive and dynamic unfolding of neurobehavioural organization (NBO) unique to the neonate (Blackburn, 2005). NBO is a mature multidimensional construct and includes an individual’s ability to interact with the environment while maintaining internal stability. This internal stability is the foundation from which the neonate is able to socially interact and learn from the environment. The neonatal period offers an opportune time for researchers and clinicians to assess and intervene for optimal infant health. Yet, within and across disciplines, there is inconsistency and lack of clarity in a scientifically grounded definition of neonatal neurobehavioural organization. The aim of this paper is to analyze and clarify the concept of neonatal neurobehavioural organization (NNBO) for healthy full-term infants.

METHOD

Concept analysis method

Principle-based concept analysis by Penrod and Hupcey (2005) is a robust method for the advancement of a concept. Penrod and Hupcey emphasize two distinct elements within concept analysis. First, the existing state of science must be analyzed and clarified using a multidisciplinary approach. Second, advancement of the concept occurs through the synthesis of new insights. Principle-based concept analysis expands upon earlier work of Hupcey et al. (Hupcey et al. 2001, Morse et al. 1996). The analysis is guided by four principles: epistemological, pragmatic, linguistic, and logical. Penrod and Hupcey (2005) describe the epistemological principle as an exploration of what is known about the concept, and whether the concept is well-defined and differentiated from other concepts in the literature. They
describe the pragmatic principle as an evaluation of how well the concept has been operationalized, and whether it is applicable or useful for clinical practice and research. To address the linguistic principle, Penrod and Hupcey ask analysts to assess whether the concept has been used consistently and appropriately, and if the concept becomes more abstract or limited depending upon theoretical context. Finally, they describe the logical principle as an analysis of the integrity of the concept when positioned with similar concepts or elements within the concept. That is, they suggest asking whether the concept allows for multiple relationships without getting lost in translation.

Morse et al. (1996) suggested that concept analysis begins with assessing a concept’s level of maturity. When a concept appears to be mature within a large body of literature, yet is associated with inconsistent and competing assumptions or variables, then quantitative and/or qualitative research may be used effectively in concept clarification. Clarifying a concept requires a thorough familiarization of the literature to recognize underlying values and assumptions common to the concept under review (Morse 1995). Based on these values and assumptions, attributes can then be identified and synthesized.

Data Sources

Selection of data sources for a concept analysis can be driven by an unconsciously assumed theoretical framework or by a consciously identified theoretical framework that is either implicitly or explicitly defined (Paley 1996). We identified an implicit theoretical framework, the infant’s complex behavioural repertoire, to provide structure to the selection of the literature review. Recognition of the infant’s complex behavioural repertoire was developed by experts across multiple disciplines over several decades, but can be first traced
to the 1930s with the publications of McGraw (1939b, 1943) and contemporaries (Gilmer 1933, Pratt 1935). Their views were in contrast to the prevailing theoretical perspective that the infant was a passive recipient of environmental stimuli. It was not until the 1970s that there was an acceptance of infants as active participants in sculpting their NBO. This paradigm shift integrated two approaches to infant assessment: neurological (Andre-Thomas & St.-Anne Dargassies 1960, Prechtl & Beintema 1964) and behavioural (Graham 1956, Rosenblith 1959). This integration in the literature of neurology and behaviour has created a more broad and holistic view of the infant’s NBO.

The literature search was completed in two phases. Initially the search was conducted within the three most appropriate electronic databases (Ovid Medline, CINAHL, and PsycINFO) from 1970 to 2005. The search was limited to the English language and human studies. The keyword ‘neonatal neurobehavioural organization’ was initially used as the search term. This resulted in only a handful of articles; therefore the search was expanded to include various combinations of related keywords: neonatal, newborn, infant, behaviour, organization, neurobehaviour, behavioural response, behavioural competence, state regulation, central nervous system, and development. Papers were deleted if they were limited to a narrow dimension of the concept, such as habituation, or if the concept was used only as a measurement outcome without contributing depth and scope. Additionally, papers were rejected if limited to issues specific to preterm, compromised or pathologically developed infants since the focus was the normal NBO of the healthy, full-term neonate. It became apparent that certain authors were frequently cited for their contribution to
development of the concept of NNBO. Thus, a second literature search phase was refined to include the work of highly influential authors.

The final data set of the literature reviewed included 48 articles and 9 books from 1939 to 2007. Authors of the methodologies used for this concept analysis do not explicitly state a desirable data set size. Rather, Penrod and Hupcey direct that the ‘literature selection must be conceptually driven, not statistically driven’ to accurately represent the state of the science (2005, p. 407). Our literature selection represents a small data set owing to our commitment to include only researchers who contributed to the scope and depth of the concept.

RESULTS

Epistemological Principle

The epistemological principle was analyzed in three ways. First, we synthesized contributions from influential researchers in the fields of psychology, developmental psychology, medicine, and nursing (see Table 1). Second, we summarized the major contributions from each discipline. Exclusive contributions from within a single discipline were difficult to identify, as researchers concurrently and conjunctionally developed the concept. Finally, we extracted shared attributes from the literature using Morse’s method of concept clarification (1995) to provide a clear definition of NNBO.

Summary of each discipline’s contribution to defining the concept

Investigators in the field of psychology and developmental psychology established the foundation of our understanding of NNBO. They have recognized that infants are active participants in their own development. An infant’s individual development is sculpted by
sensory experience and thus intrinsic to NNBO. NNBO unfolds in a hierarchical manner as the infant’s capacity for stability increases in the midst of a constantly changing environment. An individual’s NBO is based on the ability to self-regulate an internal locus of control and reciprocally interact with external environment stimuli.

In contrast to the holistic nature of NNBO found in the disciplines of psychology and developmental psychology, investigators in the field of medicine have emphasized the infant’s neurological integrity as the basis of NNBO. The pediatrician, T. Berry Brazelton, was the first to articulate to the general public that NNBO was a multidimensional holistic phenomenon, and to encourage a multidisciplinary approach to research. Brazelton and colleagues led the paradigm shift towards recognizing the competent infant as a determinant in research and practice.

At the forefront of translational research, researchers in the field of nursing have investigated dimensions of NNBO as they apply to clinical practice. Not only have nursing researchers contributed to the understanding of how altered NBO in at-risk infants has immediate and long-term effects on developmental trajectories, but they have also designed interventions to support optimal NNBO. Interventions have included White-Traut’s (White-Traut & Nelson 1988, White-Traut et al. 2002b) auditory, tactile, visual, and vestibular stimulation; Thoyre, Shaker, and Pridham’s (Thoyre et al. 2005) developmental profile of feeding readiness; Pridham’s (Pridham et al. 2005) guided participation on feeding competencies; Censullo’s (1994, J. A. Horowitz et al. 2001) interaction coaching to promote mother-interaction; and Luddington-Hoe’s (Ludington-Hoe et al. 1991, Ludington-Hoe et al. 2006) research on skin-to-skin contact (i.e. kangaroo care).
Attributes of the concept

Using Morse’s method of concept clarification (1995), we found five attributes that were pervasive throughout the data set. The first attribute is the dynamic nature intrinsic to the concept. There is a reciprocal interchange of information between neonates and their caretaking environment. NNBO is characterized by rapid developmental change. With NNBO, there is never a finished product, but rather an ever-evolving fluid process.

Second, interaction with the environment is not random; therefore there is an attribute of selection and purpose. Neonates seek the stimuli they need to further their neuronal and behavioural development. Neonates influence their caretakers by communicating a wide variety of cues to elicit the behaviour they seek. When the neonate initiates a need and receives the attention desired, cues are sent to the caregiver that may induce a sense of satisfaction; therefore selective biobehavioural feedback loops serve to encourage continued reciprocity between neonate and caregiver.

The third attribute is that the neonate innately coordinates sensory, autonomic, motor, behavioural state regulation, and social interaction systems. Coordination of these systems develops in a hierarchical manner, with an open exchange of information that facilitates more and more complex organization. Social interaction is deemed the highest level of organization whereby the neonate is able to attend and interact with the caregiving environment.

Fourth, the neonate has the ability to recover from the physiological cost of positive and negative stimuli; therefore there is an attribute of resiliency. The neonate responds to
stimuli with states of consciousness that either encourage or discourage interaction. If a stimulus is overtaxing and the neonate’s state discourages interaction, then the neonate must reorganize before a stimulus can be processed effectively. Challenging experiences with new stimuli encourages growth and differentiation of neurons and their synapses.

The fifth attribute, which builds upon the preceding four, is the recognition that the neonate has an ever-increasing capacity for stability through change. Living systems develop within an optimal range of external and internal conditions that are constantly changing. Thus, as the neonate’s multilevel capacity for stability increases in the midst of changing conditions, developmental maturation is enhanced.

In summary, the shared patterns of attributes for NNBO include (a) a dynamic reciprocal process of neonatal interaction with the caretaking environment, (b) goal-directed behaviour that elicits environmental stimuli to fuel inner neuronal and behavioural development, (c) coordination of multi-systems that emerge in a hierarchical manner, (d) resiliency to recover from the physiologic cost of stimuli, and (e) a maturational capacity for stability through change.

Definition of the concept.

Synthesis of the shared attributes of NNBO may be clarified into one definitional sentence. Neonatal neurobehavioural organization is the ability of the neonate to use goal-directed states of consciousness, in reciprocal interaction with the caregiving environment, to facilitate the emergence of differentiating, hierarchical, and coordinated neurobehavioural systems. Maturation of NNBO is evidenced by the neonate’s ever-increasing resiliency and the capacity to learn from complex stimuli.
Pragmatic Principle

NNBO has been operationally defined in a variety of ways. We found that there was lack of agreement in the literature within and across disciplines on the ideal operational definition. Factors that contribute to the difficulty in the measurement of NNBO include 1) the complexity of neonates as living systems, that interact bi-directionally with their environment, during a period characterized by rapid development; 2) multiple dimensions that are intrinsic to NNBO; 3) uncertain validity of an instrument’s ability to predict meaningful developmental outcomes; 4) lack of a unified view of NNBO. In the past, researchers operationalized NNBO as either the neurologic status (Prechtl & Beintema 1964) or psychological function (Graham et al. 1956) of an infant. Today, many researchers appreciate that NNBO spans a broad behavioural repertoire which includes neurological integrity, learning, perception, and social interaction (Lipkin 2005). While past and current approaches of measuring NNBO are far too extensive to list, some salient approaches have included: 1) behavioural state regulation which serves as a critical antecedent and outcome of NNBO (Wolff 1987); 2) Brazelton’s Neonatal Behavioural Assessment Scale - an excellent descriptor of a broad range of behavioural competencies but criticized for questionable predictive validity (Brazelton & Nugent 1995); and 3) nutritive sucking parameters that were first researched in the 1960s and recently resurfaced as a valid window into NNBO (Kron et al. 1963, Medoff-Cooper & Ratcliffe 2005). Additionally, we identified numerous multi-dimensional instruments specific for evaluating neurobehaviour in the fetus, preterm neonate, developmentally at-risk neonate, and older infant (Als et al. 2005, Amiel-Tison 2002, DiPietro et al. 2002, Einspieler & Prechtl 2005).
Currently, researchers in the fields of nursing, developmental neurology and physiology, physical and occupational therapy, pediatrics, and developmental psychology are contributing to our understanding of NNBO by measuring specific dimensions of this complex concept. Specific dimensions of NNBO include the measurement of sleep and alert states (Holditch-Davis & Thoman 1987, Salisbury et al. 2005, White-Traut et al. 2002a), breastfeeding behaviours (Radzyminski 2005), sucking parameters (Medoff-Cooper 2005), movement patterns (Campbell et al. 2002, Einspieler & Prechtl 2005, Majnemer & Snider 2005), event-related potentials of auditory stimulated brain activity (deRegnier 2005), and heart rate variability (Porges 2007).

Linguistic Principle

The implied meaning of NNBO is consistent among the experts in nursing, developmental neurology and physiology, pediatrics, psychology and developmental psychology. Across disciplines, there was consistency regardless of the population, contextual setting, and independent and dependent variables used to examine the concept. However, as noted in the data source section, the terminology used for NNBO is quite variable within and across disciplines. While NNBO is conceptually bound to the neonatal period, and is the normative criterion for all infants at risk (e.g. preterm), there is coherent integration of dimensions within NBO between the preterm period and neonatal period.

Logical Principle

Researchers in nursing, developmental neurology and physiology, pediatrics, psychology and developmental psychology tend to view NNBO as a holistic phenomenon encompassing inter-related dimensions, although researchers in medicine are inconsistent in
their view of the integrity of the concept. Investigators in the field of medicine also have reduced NNBO to only physiological dimensions. Predominantly, researchers across disciplines have examined specific dimensions of NNBO that integrate and define the boundaries of the concept.

From this dimension-based analysis, NNBO was determined to be a mature yet inconsistently defined multidisciplinary concept. Through this concept analysis of NNBO we have clarified the common attributes, operational measurements, linguistic terminologies, and conceptual boundaries.

DISCUSSION

Limitations of this concept clarification were identified as inherent in the process of synthesizing a manageable data source. Early researchers, who pioneered the neurological integrity of infants, were not included because of their theoretical framework where infants were viewed as passive recipients of their environment. Animal literature on NBO was not included, as it is extensive and beyond the scope of this analysis. In spite of an effort to maintain scientific rigour in selecting a conceptual driven sample, we recognized that author bias is intrinsic to concept analysis.

Several important gaps in the current state of the science were identified: 1) the unclear influence of fetal exposure to maternal medication during labour on NNBO; 2) the need for stronger evidence of the predictive relationship between NNBO and individual infant developmental trajectories; 3) disagreement, within and across disciplines, on the ideal instrument to accurately measure NNBO; 4) limited understanding of the neurobehavioural
dimensions of NNBO and their interplay on multiple levels, from genetic expression to environmental interaction.

In the 20th century, researchers’ perspectives changed from viewing the infant as passive objects of study to active participants in their own development. As a reflection of this paradigm shift, the opportunity has arisen to revisit the synchronous interplay between internal and external systems owing to a refined conceptual understanding of the dynamic forces that effect development. Additionally, experts have refined the ability to non-invasively capture multiple variables of NNBO, such as vagal tone, event-related potential, sucking parameters, mother-infant synchrony, and electroencephalogram characteristics of sleep-wake cycles. Recent technological advances in ultrasound have further contributed to understanding the continuity of development from fetus to neonate (Salisbury et al. 2005). The implications of the environment and the infant’s unique neurobehaviour on the expression of the individual’s genetic code should be considered in the advancement of this concept (Gottlieb 2001). For instance, Feldman and Eidelman model the advancement of this concept by exploring the dynamic relationship between biological dimensions of NBO and reciprocity of mother-infant interaction and the effect on future cognition (Feldman & Eidelman 2006). The development of effective interventions will be promoted by additional translational research.

Implications for advancement of the concept through clinical practice include the application of evidenced based research findings into everyday plan of care. Unfortunately, policy and culture of many institutional maternal-child units demand nurses to be task-oriented rather than synchrony-oriented (i.e. sleep-wake cycles, feeding readiness cues,
uninterrupted mother-infant skin-to-skin contact, attention-interaction). Clinicians’ ability to augment NNBO by reducing infant stress, maintaining sleep-wake cycles, promoting social-interaction during alert periods, and modifying the environment to maintain social interaction will be strengthened by this concept clarification.

CONCLUSION

Neonatal neurobehavioural organization is a global phenomenon that captures the essence of healthy full-term neonatal function as resilient, individualized, complex, experiential, and holistic. A clear conceptual definition will aid the international community 1) to communicate effectively within and between disciplines, 2) to apply evidenced-based research findings, and 3) encourage the development of valid and reliable instruments to capture the multiple dimensions of NNBO. Clarification of NNBO directs attention to the infant’s experience, which facilitates sculpting of early NNBO. Nursing and allied health professionals who influence neonates’ initial unfolding of NNBO must be aware of the potential impact on their future developmental trajectories. Further analysis of NNBO with premature or medically-fragile infants would add to our understanding of compromised infants’ ability to respond and recover from environmental stimuli. Thus development of the concept in this vulnerable population would advance clinical practice across disciplines.
<table>
<thead>
<tr>
<th>Influential researchers and their disciplines</th>
<th>Epistemology</th>
<th>Pragmatic</th>
<th>Linguistic</th>
<th>Logistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychology (Aitken & Trevarthen 1997, Trevarthen & Aitken 1994).</td>
<td>At birth, the neurobiology of the brain supports the intrinsic motivation to communicate and interact, which is a critical process for furthering human development. Developing observable literature to the brain’s neurobiology.</td>
<td>Grounded observable behaviour literature to the brain’s neurobiology.</td>
<td>Used a related concept, Intrinsic Motive Formation (neonate’s motivation to communicate and promote self-development).</td>
<td>The concept of Intrinsic Motive Formation is a dimension of NNBO.</td>
</tr>
<tr>
<td>Psychology (Als 1982, 1991, Als et al. 2005).</td>
<td>Distinct subsystems of NNBO (autonomic, motor, state organizational, attentional-interactive, and self-regulatory) emerge in a hierarchical pattern through internal, dynamic, continuous interplay.</td>
<td>Developed the Synactive Model of Neonatal Behavioural Organization and Assessment of Preterm Infants Behaviour. Clinical significance is to modify the environment to stabilize the premature infant’s initial emerging subsystems. Goal is to support the continued emergence of organization, culminating in social interaction.</td>
<td>Consistency in meaning and use of NNBO.</td>
<td>The concept holds its boundaries in preterm and neonatal periods.</td>
</tr>
<tr>
<td>Nursing (Anderson 1977, 1991, Gill et al. 1988).</td>
<td>Early work viewed sucking opportunities as facilitating neuromuscular coordination and behavioural state organization. Later work viewed skin-to-skin contact as supporting the coordination of physiological systems (i.e. autonomic system) and mother-infant reciprocity.</td>
<td>Translational application of NBO. Supporting mother-infant reciprocity facilitates breastfeeding in term and Kangaroo Care in preterm infant.</td>
<td>Implicit use of NNBO.</td>
<td>Coherent conceptual integration between mother-infant reciprocity and behavioural state organization.</td>
</tr>
<tr>
<td>Nursing (Barnard 1973, Barnard et al. 1984, Sumner et al. 1984).</td>
<td>Reinforced current knowledge base that premature infants have immature NBO. By ‘Keys to Caregiving’ is an educational intervention to improve behavioural state</td>
<td>Consistency in meaning and use that is maintained in varied contexts.</td>
<td>Coherent conceptual integration between mother-infant contingency</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>al. 1999)</td>
<td>manipulating the environment, the term and preterm infant is better able to regulate states, which then improves contingency patterns of communication between mother and infant/child.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediatric medicine (Brazelton 1978, 1979, Brazelton & Nugent 1995)</td>
<td>Pivotal in recognizing NNBO as a holistic phenomenon, with the neonate as an active and competent participant in shaping his/her NNBO. Integrated and translated prior work on the infant’s neurological integrity, competency in state regulation, and reciprocal interaction with social and environmental stimuli.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychology (Feldman 2006, Feldman & Eidelman 2006, Feldman et al. 1999)</td>
<td>Disrupted periods of sensitive development in the preterm can be supported through positive mother-infant interaction. Aspects of NNBO (state organization, cardiac vagal tone, orientation, and arousal) are predictive of mother-infant synchrony.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing (Holditch-Davis 1990, Holditch-Davis et al. 2003, Holditch-Davis & Thoman 1987)</td>
<td>The preterm infant has attenuated NBO. Supporting sleep-wake cycles facilitates self-regulation and long-term development.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurobehavioural Organization and NNBO</td>
<td>regulation and mother-infant interaction. Content consists of feeding interaction, state modulation, and infant state, behaviour and cues.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popularized the term NNBO. Consistent in use and meaning of NNBO.</td>
<td>Consistent in meaning and use of NNBO.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical outcome of a holistic perspective on the neonate as an open evolving living system in dynamic reciprocal interaction with its internal and social environment.</td>
<td>Coherent conceptual integration between the mother-infant synchrony and NNBO.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistently in meaning and use of NNBO.</td>
<td>Coherent conceptual integration between the mother-infant’s sleep-wake organization and NNBO.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Neurobehavioural Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediatric psychology (Lester 1983, Salisbury et al. 2005).</td>
<td>Emphasized the developmental concept of integrity through continuous change. Infants demonstrate individual adaptive capacities. NBO originates in the fetal period.</td>
<td>Researched psychometrics of Brazelton’s NBAS, NICU Network Neurobehavioural Scale, and pilot studies of Fetal Neurobehavioural Coding Scale.</td>
<td>Consistent in use and meaning of neurobehaviour as the interface between brain and physiology.</td>
<td>The concept holds its boundaries in the context of fetal, preterm and neonatal periods.</td>
</tr>
<tr>
<td>Nursing (Medoff-Cooper 2005, Medoff-Cooper & Ratcliffe 2005, Medoff-Cooper & Ray 1995).</td>
<td>Described the longitudinal development of sucking organization in the preterm and full-term infant as a reflection of NBO.</td>
<td>Nutritive sucking organization (e.g. coordinated patterns of sucking pressure, number of sucks and bursts, suck duration, suck-burst ratio, and interburst width) is a valuable research outcome.</td>
<td>Consistency in meaning and use of sucking organization as a variable of NBO.</td>
<td>Intrinsic relationship between sucking organization and NNBO.</td>
</tr>
<tr>
<td>Medicine (Einspieler & Prechtl 2005, Prechtl, 1974).</td>
<td>Neurological integrity is the physiological basis of NBO.</td>
<td>Developed standardized neurological assessments. Used physiological outcome measures of respiration, eye movement, vocalization, and general movement.</td>
<td>Consistent in meaning of the neurological dimension of NBO.</td>
<td>Coherent conceptual integration between neurological integrity and NBO.</td>
</tr>
<tr>
<td>Psychology (Sameroff 1975a, 1975b, Sameroff & Mackenzie 2003).</td>
<td>Challenged the mechanistic view of human development. Introduced that development occurs within a continuous reciprocal interchange between the individual and environment.</td>
<td>Applied his Transactional Model of Development as a continuous transaction between infant/child, caretaker, and environment.</td>
<td>Consistency in meaning and use that is maintained in varied contexts.</td>
<td>The concept holds its boundaries beyond the neonatal period.</td>
</tr>
<tr>
<td>Developmental psychology (Thoman 1975, Thoman et al. 1987, Thoman & Whitney 1990).</td>
<td>Behavioural states reflect the competency of CNS, and are a window into NBO. States are an antecedent, mediator, modulator, and elicit of environmental interaction.</td>
<td>Originally described 11 states, that were later synthesized into 6 states, which are frequently used by researchers: State I: Quiet sleep State II: Active sleep State III: Drowsy State IV: Quiet alert State V: Active alert State VI: Fussy-Crying.</td>
<td>Consistency in meaning and use of behavioural state, but did not use the term NNBO.</td>
<td>Clearly defined relationships between states and NBO.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Implications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developmental psychology</td>
<td>Infants emotionally communicate within a reciprocal feedback system with the environment. They regulate their state in relation to internal goals (emotional and physiological homeostasis) and external goals (interaction with animate and inanimate environment).</td>
<td>Detailing the infant’s emotional communication informs clinical practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing</td>
<td>Early sensory experience modulates NBO. Preterm infants exhibit attenuated NBO, therefore early multisensory interventions strengthen the autonomic nervous system and facilitate the emergence of hierarchical neurobehavioural development.</td>
<td>Translational application of NBO. Auditory Tactile Visual Vestibular intervention was developed to improve NBO in preterm and at-risk infants. Improved NBO enhances mother-infant interaction and feeding.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: NNBO = neonatal neurobehavioural organization, NBO = neurobehavioural organization.
References

