The Treatment Advocacy Program: A randomized controlled trial of a peer-led safer sex intervention for HIV-infected Men who have Sex with Men

David McKirnan, The University of Illinois at Chicago

Marina Tolou-Shams, Brown University

Cari Courtenay-Quirk, Centers for Disease Control and Prevention, Division of HIV/AIDS Prevention

Version date: 2/9/10
Abstract

Objectives: Primary care may be an effective venue for delivering behavioral interventions for sexual safety among HIV-positive men who have sex with men (MSM); however, few studies show efficacy for such an approach. We tested the efficacy of the Treatment Advocacy Program (TAP), a four-session, primary care-based, individual counseling intervention led by HIV-positive, MSM “peer advocates” in reducing unprotected sex with HIV-negative or unknown partners (HIV transmission risk).

Methods: We randomized 313 HIV-positive MSM to TAP or standard care. HIV transmission risk was assessed at baseline, 6, and 12 months (n=251 completed all study waves). We conducted intent to treat analyses using general estimating equations to test the interaction of group (TAP versus standard care) by follow-up period.

Results: At study completion, TAP participants reported greater transmission risk reduction than did those receiving standard care ($X^2 [2, 249]= 6.6, p=.04$). Transmission risk among TAP participants decreased from 34% at baseline to about 20% at both 6- and 12-months: transmission risk ranged from 23% to 25% among comparison participants.

Conclusions: TAP reduced transmission risk among HIV-positive MSM, although results were modest. Many participants and peer advocates commented favorably on the computer structure of the program. We feel that the key elements of TAP – computer-based and individually tailored session content, delivered by peers, in the primary care setting – warrant further exploration.
Efficacy of peer intervention for safer sex among HIV-infected men who have sex with men

Introduction

Many HIV-infected men who have sex with men (MSM) continue to engage in unprotected sex. In some cohorts, up to two-thirds of HIV-infected MSM report unprotected sex with other HIV-positive men, while 30% to 50% report unprotected sex with partners whose status is unknown or HIV sero-negative (Patel et al., 2006; van Kesteren, Hospers, & Kok, 2007). This source of risk may account for the increasing sero-incidence of both HIV and other sexually transmitted infections (STIs) among MSM (CDC, 2005; Wolitski, Valdiserri, Denning, & Levine, 2001). As the life expectancy and quality of life for HIV-infected people have improved (Lohse et al., 2007), the development of effective interventions for HIV risk reduction designed to meet their unique needs has increasingly become a public health priority (CDC, 2003).

A recent meta-analysis suggests that behavioral interventions for sexual safety among HIV-infected individuals can be effective (Crepaz et al., 2006). However, while interventions among HIV-infected individuals may generally be successful, they have proven less so specifically among MSM (Johnson, Carey, Chaudoir, & Reid, 2006). Consistent with this, a large CDC-funded trial of a peer-based counseling intervention for sexual safety among HIV-infected MSM showed only modest, short term effects (SUMIT: Wolitski, Parsons, & Gomez, 2004). The effectiveness of the SUMIT trial may have been limited by its group structure – risky participants may have influenced otherwise safer men – and its inability to modify a key predictor of risk, that of felt responsibility for the protection of partners (O’Leary et al., 2005). In contrast, Morin et al. (Morin, 2007) found an individual cognitive-behavioral intervention oriented toward personal health to reduce HIV transmission risk in a mixed cohort of HIV-infected men and women. We proposed that an individual intervention that employed cognitive-behavioral and motivational interviewing approaches to enhance coping and self-regulation among HIV-positive MSM would be effective in fostering their sexual safety.

This paper reports the results of an efficacy trial of the Treatment Advocacy Program (TAP), a peer-based counseling intervention for sexual safety and general coping among MSM infected
with HIV. This trial was run in conjunction with a sister project testing a version of the TAP intervention for African American, lower socio-economic status men and women (Raja, McKirnan, & Glick, 2007). TAP was a randomized controlled trial of a primary care-based counseling intervention, contrasted with clinic “standard of care”. The use of peer advocates was intended to provide coping models and to decrease the isolation that may accompany an HIV diagnosis. There is considerable evidence of the effectiveness of para-professional peer counseling on health behaviors such as smoking, anxiety and depressive disorders, or coping with HIV among youth (Bettencourt, Hodgins, Huba, & Pickett, 1998; den Boer, Wiersma, Russo, & van den Bosch, 2005; Malchodi et al., 2003), particularly with structured, “manualized” approaches (Bright, Baker, & Neimeyer, 1999; Nielsen, 1995). Additionally, Crepaz et al. (Crepaz et al., 2006) noted that effective interventions for HIV-infected people have tended to be delivered in settings where medical or other services are provided, and tend to address a range of health and coping issues.

Our theoretical model drew on basic coping and self-regulation frameworks (Cooper, Agocha, & Sheldon, 2000; Ewart, 1991; Folkman, Lazarus, Gruen, & DeLongis, 1986; Karoly, 1993; Simoni, Frick, & Huang, 2006). A core task in coping with a chronic disease is self-monitoring the disease state and its behavioral requirements (Miller, Rodoletz, Schoreder, Mangan, & Sedlacek, 1996). Remaining self-aware or “mindful” of difficult behavioral demands – in the case of HIV involving both sexual safety and a treatment regimen – can be emotionally aversive, particularly for those with diminished self-efficacy for coping (McKirnan, Ostrow, & Hope, 1996). The resultant negative affect or cognitive avoidance may compromise both general coping and specific adherence to sexual safety demands. We thus hypothesize that sexual safety among HIV-positive men would be facilitated by self-efficacy and skills for enhancing social support and coping with HIV (O’Leary et al., 2005), modulating negative affect (Bancroft, Carnes, & Janssen, 2005; Bancroft, Janssen, Strong, & Vukadinovic, 2003), enhancing HIV disclosure (Cole, Kemeny, Taylor, & Visscher, 1996; Semple, Patterson, & Grant, 2004), and information and motivation specifically around sexuality (Carey et al., 2000; Fisher, Fisher, Amico, & Harman, 2006). Given the importance of alcohol and drug use to sexual risk and avoidant coping generally (McKirnan, Vanable, Ostrow, & Hope, 2001;
Parsons, Kutnick, Halkitis, Punzalan, & Carbonari, 2005), TAP included content on substance use harm reduction (Friedman et al., 2007).

This study examined the effects of TAP on sexual HIV transmission risk behavior, including unprotected sex and overall numbers of sexual partners. Given that many HIV-positive men consider sero-concordant sex – even without condoms – a strategy to reduce their risk for transmitting HIV, we hypothesized that overall unprotected anal intercourse [UAI] would lessen only moderately, whereas Transmission Risk – UAI that may transmit HIV to uninfected partners – would show significant intervention effects. We anticipated that intervention effects would be strongest at the 6-month follow-up point and would remain significant at 12 months.

METHODS

Background

The intervention was conducted in three Chicago-area clinics that reflected a range of primary care settings: a well-established gay/lesbian health center (Howard Brown Health Center), a public clinic (Uptown Clinic of the Chicago Department of Health), and a private medical center (Klein, Slotten & French Medical Associates). The Institutional Review Boards of each participating clinic, the University of Illinois at Chicago, and the Centers for Disease Control and Prevention reviewed and approved the study.

The intervention consisted of four 60-90 minute individual counseling sessions, 3-month “check in” telephone calls, and 6- and 12-month coping follow-up counseling sessions. The comparison condition was a 12-month wait list during which participants received standard HIV primary care at their respective clinics. Standard of care for HIV patients was very high at all three clinics, in terms of quality of health care and available social supports. Assessments consisted of 45-minute interviews using an audio computer-assisted self-interviewing (ACASI) instrument at baseline, 6-months, and 12-months. The primary outcome was self-reported unprotected anal sex with HIV-negative or HIV-unknown partners (“Transmission Risk”). Secondary outcomes were self-reports of unprotected anal sex (UAI) over the previous six months, and overall number of anal sex partners.
Participants

Participants were recruited from a screening pool sample of 945 HIV-infected MSM attending the three target clinics over 61 weeks in May 2004 through July 2005. Enrollment criteria consisted of having received an HIV diagnosis at least 3 months prior to screening, enrollment in primary care at one of the target clinics, MSM sexual activity within the previous year. Men were excluded if they intended to move within the next year or did not speak English. The target sample size (n = 225 at follow-up) had 90% power (2-tail, p < .05) to detect a 15% decrease in the percentage of men in the intervention group who report unprotected anal sex at one follow-up wave.

Procedure

Trained research assistants approached all HIV-positive men attending their regular medical provider visits at the target clinics. Project assistants used the same procedures and structured screening form in each of the clinics to assess patients’ interest in the program and the entry criteria. When a patient screened eligible and accepted enrollment, the research assistant scheduled the consent and baseline interview, and called a central research office to receive a randomly assigned participant number. The assigned ID number coded the participant as intervention or comparison.

Informed consent and baseline assessments were generally conducted immediately after enrollment, unless time constraints required that a participant come in for a later visit. Participants were introduced to the ACASI in a private interview room by a research assistant. The Assistant left the room during the actual interview, although remained just outside to provide assistance. After the interview the participant was told his group assignment, and scheduled for his next visit.

Participants received $25 for completing the baseline and 6-month visits, and $40 for the 12-month assessments.

Intervention group participants were scheduled for their TAP sessions at the end of the baseline visit; we attempted to schedule the four TAP visits during the first four to six weeks post-enrollment. The mean number of weeks for session completion was 8. We conducted coping follow-up sessions at 6- and 12- months after enrollment, for which participants received $10 each.
When possible, we attempted to conduct intervention or follow-up sessions during participants’ regular primary care visit.

We contacted all participants in person or by phone at 3- and 9-months to update locator information and encourage continued participation. Participants were scheduled for full ACASI assessments at 6- and 12-months to assess behavioral risk over the prior 6 months. All assessments were conducted prior to counseling visits by trained research assistants and not the participants’ Treatment Advocate. All 12-month follow-up assessments were completed by the end of May 2006.

Measures

ACASI topics included sexual attitudes, alcohol and drug use, sexual risk, and ancillary health areas (exercise, smoking, treatment adherence). All items were from standard instruments in the field, using simple check-boxes or rating scales with appropriate skip patterns. Mean completion time was 41 minutes (SD = 15.26). This analysis focused primarily on the sexual risk outcomes. ACASI behavioral assessments were used for data collection only; treatment advocates did not have access to participants’ responses.

Demographic and Medical Characteristics included standard indicators of ethnicity, age, education, living circumstances, and clinical measures of HIV viral load and CD4 t-cell counts.

For **Sexual Risk** participants separately reported the number of HIV-negative, HIV-positive, and unknown sero-status partners they had insertive and receptive anal sex with, both with and without condoms, over the previous six months. We focused on partner count rather than sexual occasions since it is the strongest predictor of HIV transmission (Buchbinder et al., 2005). We derived three indices: 1) the total number partners participants reported any anal sex with; 2) the number of partners participants had any unprotected anal sex with (UAI; insertive or receptive, with any status partner), and; 3) the number of partners participants reported “transmission risk” with, defined as insertive or receptive unprotected anal sex with a partner whose sero-status was unknown or HIV-negative. The latter is our key outcome, since it reflects behaviors that are more
likely to transmit HIV. Participants also self-reported any diagnosed STI (i.e., syphilis, gonorrhea, or Chlamydia) over the previous year.

We analyzed these risk indices both as binary variables – whether a participant reported, e.g., transmission risk with any partner – and as continuous measures, reflecting the number of partners for each index. Continuous measures were highly skewed. To correct skewness for number of UAI partners we truncated the raw ratings at the 99th percentile (values > 35 partners) and performed a square root transformation, thus lowering skewness from 3.0 to 1.5. Number of transmission risk partners was too skewed to be amenable to a simple square-root procedure, so we transformed the raw values into a 5-level variable reflecting 0, 1, 2 or 3, 4 to 9, or 10+ transmission risk partners, lowering skewness from 4.2 to 1.6. We assessed participants' overall number of anal sex partners as an index of general sexual activity (truncated at 99%, values >50).

Psychosocial & behavioral mediators. We assess four variables hypothesized to mediate the effect of the intervention on sexual risk: substance abuse, self-efficacy for sexual safety, disclosure of HIV status, and depression or negative affect. Substance use was the \(M \) frequency of use of 11 substances over the previous six months, ranging from alcohol to methamphetamine. Self-efficacy for sexual safety and HIV treatment represented 8 items taken from existing efficacy scales (Katz et al., 2002; B. A. Koblin et al., 2003) rated on 5-point scales “agreement” scales (e.g. “I can have safer sex that is satisfying to me,” “I can take my medications exactly as my doctor tells me to”, \(\alpha = .82 \)). HIV disclosure was the mean of six items, three addressing the proportion of immediate family members, closer friends, associates the participant had disclosed to, and three addressing disclosure to HIV negative, positive and unknown sex partners, \(\alpha = .83 \). Negative affect was measured by the \(M \) score on the CES-D, a widely used 20-item index of depression (Radloff, 1977).

The Intervention Design.

Treatment Advocates: Six ethnically diverse, HIV-positive MSM peer counselors (“treatment Advocates”) delivered the intervention at the three clinic sites. Advocates’ education levels varied from high school to post-graduate training, with ages ranging from 24 to 40. Treatment advocates were recruited through providers or case managers, and received 40 hours of training on
motivational interviewing and cognitive-behavioral techniques for sexual safety and HIV coping, non-judgmental communication, confidentiality, research and counseling ethics, and referral resources. Ongoing supervision was provided via weekly meetings with PhD and MA-level licensed therapists. All training and supervision occurred at Howard Brown Health Center. We recorded 20% of sessions to audit them for compliance to key elements of the intervention protocol; protocol compliance averaged over 85% for all advocates.

Intervention approach. Formative work for the intervention represented a collaboration between University researchers and HIV-infected advocates and medical staff at Howard Brown Health Center, and included seven focus groups or community meetings, 12 individual interviews or advocate role-plays, and a complete pilot study (McKirnan, Swanson, Tolu-Shams, Ramey, & Flynn, 2001). Common themes that emerged during formative work included the powerful effect of peer delivery, the virtue of delivering behavioral counseling within the clinical environment, and the need for intervention materials to be both highly structured and flexible enough for individual tailoring.

The need for both structure and flexibility initially led us to a complex tabbed paper manual, then to experiment with a computer-driven manual. The strong positive response of both advocates and patients to the computer format during formative work led us to commit to this approach for this and a related intervention trial (Raja et al., 2007).

All counseling sessions were structured by a menu-driven PowerPoint® program to maximize stimulus value, create clear structure for protocol compliance, individually tailor the sessions to the client and, eventually, to facilitate program dissemination (Kiene & Barta, 2006). This approach was consistent with recent emphasis on using computer technology to structure and disseminate health behavior interventions within the primary care setting (Forkner-Dunn, 2003). Given that HIV patients typically establish a long-term relationship with a care setting for treatment, primary care is a natural setting for recruitment and retention of counseling participants (Klein, Cruz, O'Connell, Scully, & Birkhead, 2005; Myers et al., 2004).

The intervention consisted of one-to-one sessions with Treatment Advocates. Advocates and clients met with a computer open on a desk. Advocates clicked through each intervention
module using text or images as prompts for information, attitude or motivation change, or skills building. Each slide typically began with a “cardinal” question addressing general motivations and goals (e.g., “How has being infected changed your relationship(s) or sex life?) followed by increasingly structured prompts to facilitate specific behavioral plans. The intervention content combined motivational interviewing and cognitive behavioral techniques to motivate men to participate in active health behavior change, and to inculcate skills and self-efficacy in initiating and maintaining behavioral change (Borrelli, Riekert, Weinstein, & Rathier, 2007; Diiorio et al., 2008).

We attempted to increase motivation by presenting risk reduction in the context of overall HIV coping. Both optimism due to ART and simple HIV fatigue have led to complacency about HIV risk (Ostrow et al., 2002; Stolte et al., 2006; Vanable, Ostrow, McKirnan, Taywaditep, & Hope, 2000). In contrast, infected men are intrinsically motivated to make their HIV treatment successful (Remien et al., 2003). Skills and self-efficacy were facilitated by tailored goals and plans, and personal feedback (Brug, Steenhuis, vanAssema, & deVries, 1996; Kreuter & Strecher, 1996). Each module concluded with a specific behavioral planning exercise. The intervention comprised 8 modules: three were used during the initial three sessions, described below. During session 4 the counselor and participant chose one of five “focus” modules. Advocates used structured exercises or probes within each module to “hyperlink” to tailored content within each module, or to open one of the focus modules.

Session 1: HIV Coping and Basic Medication Skills

This module began with information stressing the importance of sexual safety and medication adherence. Advocates then used active dialogue to present the larger intervention model, framing active HIV coping in terms of mindful sexuality and intimacy, drug and alcohol use reduction, regulating negative affect, and social support. The advocate then used cognitive-behavioral techniques to inculcate self-efficacy for basic adherence skills, e.g., the use of cue controls, pill boxes and medication monitoring, automaticity and staying mindful of regimen requirements, and communication with provider.

Session 2: Advanced Medication and Coping Skills.
The advocate helped the participant articulate his values and goals for coping with HIV, assessed current adherence levels, and use cognitive-behavioral strategies to articulate the contexts that challenge adherence goals. Key contexts included periods of negative affect, alcohol or drug use, sexual settings, and challenging social settings. In each context structured probes assessed the participants skills and self-efficacy: advocates entered responses to, e.g., rating scales into the program, which then automatically linked to skills building for “problem” areas. A concluding “coping analysis” was used to develop a written behavioral plan sheet for behavioral rehearsal over the next week.

Session 3: Intimacy & Sexuality.

The advocate first presented systematic information about the continuing risks of unprotected sex for HIV infected men. He then conducted a motivational interview to articulate the participants’ sexual values and goals, current satisfactions and dissatisfactions regarding intimacy and sexuality, and commitment to change areas. This led to a cognitive-behavioral analysis of sexual risks vis-à-vis social settings, high risk partners, moods and feelings, drugs and alcohol, avoidant coping, and communication. “Hot buttons” in each content area linked to skills or coping exercises when appropriate. The Advocate and participant then developed a concrete, written behavioral change plan for each target skill area.

Session 4: Focused Safety Skills.

Session 4 began with an analysis and discussion of behavioral plans: Based on previous sessions and the participant’s current plans, the Advocate linked to one of five “focus” modules: 1) HIV transmission information; 2) basic safety skills; 3) HIV communication; 4) alcohol and drug use; and 5) moods and feelings. The substance use and moods & feelings modules combined motivational enhancement and cognitive-behavioral material consistent with the theoretical approaches underlying Sessions 2 & 3. The most common focus module choices were moods & feelings, followed by substance abuse.

Coping Follow-Up Visits:
Coping follow-up visits were given at the 6 and 12-month visits, after the behavioral assessment. These visits, led by the Treatment Advocate, used the same structure and computer approach as the core intervention. Participants responded to structured probes to report recent sexual risks, adherence to medications, social support, alcohol or drug use, negative affect, and general coping with HIV. Responses indicating difficulties in any area linked the advocate and participant to the appropriate intervention content, typically replicating content from the core intervention modules. Men who were coping well typically took 15 to 20 minutes; for men who identified areas of continued risk or coping difficulties follow-up sessions lasted up to 90 minutes.

Method of analysis

All intervention effects were tested by the General Estimating Equation (GEE) procedure in SAS. We used the Type III Wald χ^2 with an autoregressive correlation structure to test the interaction of group (intervention v. comparison) by follow-up period for each outcome. Interactions were tested with the main effects entered as prior terms in the model. We conducted simple contrasts to test the interactions of group by: baseline v. 6-months, baseline v. 12-months, baseline v. the mean of 6- and 12-months. All these analyses tested linear effects of group differences on risk levels across wave. We also examined quadratic trends, to test whether the groups showed different non-linear trends across waves. For all analyses we entered clinic, age, ethnicity, income, and education as covariates prior to the terms coding group and follow-up period. Secondary analyses were also conducted to test whether the effect of the intervention was attributable to changes in men’s level of sexual activity (rates of abstinence, number of sexual partners) over the course of the intervention.

Core analyses used an intent-to-treat, list-wise missing value procedure, wherein we analyzed all participants who had data for all waves, $n = 251$ (80% of participants), comparison $n = 120$, intervention $n = 131$. We determined these analyses to be appropriate by testing whether data were *missing completely at random*, meaning that the probability of observing a case is independent of the values of any independent or dependent variable. In bivariate analyses testing all demographic measures, all study outcomes, a wide range of psychosocial and behavioral measures
Efficacy of peer-based intervention (e.g., self-efficacy for sexual safety, alcohol and drug use), indicators of clinical health (viral load, CD4 counts, medication status), and intervention v. comparison group membership, the only predictor of loss to follow-up was Hispanic ethnicity (see below). Under these conditions results with missing data are statistically unbiased, although subject to a loss of power (James, 2006; Little & Rubin, 2002).

We compared these results to analyses where we imputed missing values among participants with at least one follow-up wave (n=297, 95% of participants). For continuous outcomes, we used the multiple imputation procedure from SAS; since the data were non-monotonically missing, we used the Markov Chain Monte Carlo (MCMC) procedure. We used all available data regarding demographic status, psychosocial variables, UAI and transmission risk partners to impute missing values on risk outcomes. Missing data correction for binary measures used the previous wave value. This was very conservative, since most missing data were at the 6-month follow-up and were replaced by the baseline value. Mediating analysis used the method prescribed by Baron & Kenny (Baron & Kenny, 1986).

RESULTS

Sample characteristics

The participant flow is given in Figure 1. Of an HIV-infected male patient population of 945 we screened n = 581 (61%), of whom 411 (71% of screening pool) met the eligibility requirements. Seventy-seven percent of these men (n = 317) agreed to enroll and were randomized to the comparison (n = 151) or intervention group (n = 166). Four participants were dropped from the analyses sample due to death during the study, for a final sample of 313 (n=163 intervention; n=150 comparison). Two hundred fifty one participants had data available for all three assessment waves (n=131 intervention; n=120 comparison; see Figure 1). Intervention and comparison groups did not differ in initial enrollment rate or in retention at any wave.

Demographic and other characteristics are given in Table 1. Ninety percent of participants self-identified as “gay”. The sample had a mean age of 42, was diverse in terms of race (32% were African American) and ethnicity (17% were Latino), and were largely of lower socio-economic status.
in terms of education and income. Consistent with the ethnic and socio-economic status diversity of the sample, many participants were not “out” as MSM. Participants had been living with HIV for mean = 8.3 years; 42% had been diagnosed prior to the advent of HAART treatments. Although all participants were in HIV primary care, at baseline 27% had viral loads over log 4.3, and 30% had CD4 counts under 350.

Visit completion rates for intervention participants are given in Figure 1; 95% of intervention participants received at least two sessions. The mean time to complete all 4 sessions was 8 weeks. The intervention and comparison groups did not differ on any demographic or clinical variable at baseline. Mean intervention session length was 65 minutes (SD = 17, range = 30-120 minutes), modal follow-up sessions length was 20 to 30 minutes.

Sixty nine percent of participants were recruited from Howard Brown Health Center, 18% from the public clinic, and 13% from the private clinic. Participants from the three clinics did not differ in sexual risk, HIV medication use, assignment to intervention v. comparison group, or in study retention. Excluding four participants who died during follow-up, retention was 82% at 6 months (122/148 comparison, 133/165 intervention, mean follow-up time = 5.8 months), 93% at 12 months (291/313, mean follow-up = 11.4 months) and 80% (251/313) across either 6 or 12-month follow-up. Neither 6- nor 12-month retention varied by condition. The only significant predictor of 6-month dropout was ethnicity: 31.5% of Latino men were lost to follow-up, versus 10.8% of African Americans and 18.1% of whites, X^2 (2, n= 305) = 10.2, p<.00. No other demographic variable predicted drop-out, nor did drug use, psychosocial measures, clinical health, the sexual risk outcome variables, or time since HIV diagnosis. Retention was not differentially related to any sexual risk index across the intervention and comparison groups.

Over the course of the study – representing 18 months of observation – 82% of participants reported at least one instance of unprotected anal intercourse, 41% reported any transmission risk (UAI with an HIV-negative or unknown partner), and 29% reported a diagnosis of syphilis, gonorrhea, or Chlamydia.
Table 2 shows baseline sexual behaviors assessed over the previous 6 months for the comparison and intervention groups. Differences between groups in baseline UAI and transmission risk were not statistically significant. The strongest demographic predictor of transmission risk was age; younger men were substantially more risky than were older men, Wald $X^2 (1, n=249) = 24$, $p<.001$. In general, riskier participants tended to be younger, white, employed, better educated and more “out” about their MSM activity ($p < .05$).

Intervention effects on sexual risk

Overall Unprotected Anal Intercourse

Participants' reports of any unprotected anal sex (i.e., with any sero-status partner) did not show a statistically significant interaction of time by condition in the 3-wave repeated measures analyses (i.e., Baseline – 6-months – 12-months), $X^2 (2, n=249) = 4.5$, $p = .10$. However, there was a significant effect at the six month follow-up, $X^2 (1, n=249) = 4.02$, $p = .045$, in the predicted direction (see top of Figure 2). These results were similar for participants’ overall number of UAI partners: the overall 3-wave intervention effect was non-significant, $X^2 (2, n=249) = 5.21$, $p=.074$, although the six month intervention effect was statistically significant, $X^2 (1, n=249) = 5.19$, $p=.023$; see Figure 3. All these results were similar, although slightly attenuated, using imputed values for missing observations (data not shown). Thus, intervention participants showed a greater decline in risk levels from baseline to six months than did the control participants, although this effect was not carried through the 12-month follow-up.

Transmission Risk

The key variable for our analyses was transmission risk behavior; unprotected anal sex with HIV-negative or unknown status partners. Results for the binary coding of this variable are given in the bottom of Figure 2, where there was a significant interaction of intervention group by study wave across the 12-months of follow-up, $X^2 (2, n=249) = 6.59$, $p = .037$. The rate of transmission risk among intervention participants went from 33.6% at baseline to about 20% at both 6- and 12-months, whereas transmission risk remained almost constant at approximately 23% among comparison participants.
Intervention effects on transmission risk were reflected in simple contrasts. The intervention group showed a significantly greater decline in risk than did controls from Baseline to 6-months and from Baseline to the mean of 6- and 12-months, $\chi^2 (1, n=249) = 6.57, p = .01$ & $\chi^2 (1, n=249) = 5.47, p = .019$ respectively, although the shift from Baseline to 12-months was not statistically significant, $\chi^2 (1, n=249) = 2.55, p = .11$. In sum, the intervention group showed a significantly greater linear decrease in transmission risk over waves, with the effect remaining significant over 6- and 12-months. These results were slightly attenuated with missing values imputed (data not shown). Intervention effects were not reflected in mean differences between groups at either 6- or 12-months. Rather, the groups differed in their patterns of change over the follow-up periods.

Results for the number of transmission risk partners replicated those for the binary measure, given in Figure 4. Across the three waves mean transmission risk partners among comparison group participants went from .55 at baseline to .43 at 12-months, while intervention participants reported a decline of .74 to .42, $\chi^2 (2, n=249) = 7.16, p = .008$. In simple contrasts the groups differed in changes in mean partners from Baseline to 6-months and from Baseline to the mean of 6- and 12-months, $\chi^2 s (1, n=249) = 7.01, p = .008, & 6.3, p = .012$, although the shift from Baseline to 12-months was not statistically significant, $\chi^2 (1, n=249) = 3.21, p = .073$. As with other analyses, these results were essentially the same for data with imputed means.

The relatively weaker effects of the intervention on UAI versus transmission risk may be partially explained by a trend toward sero-sorting: at baseline, all participants were significantly more likely to report HIV-positive than HIV-negative or unknown partners (53% v. 39%, $p < .01$). Anecdotally, many participants considered UAI in a mutually HIV-positive relationship to be “safe”, thus UAI was less responsive to our behavioral intervention than was transmission risk.

Non-linear trends

We examined group differences in quadratic trends to empirically test the general finding that short-term shifts in risk produced by behavioral interventions do not persist over time (B. Koblin et al., 2004). For both UAI and transmission risk the comparison and intervention groups differed in quadratic trends. Thus, in Figure 2 the intervention group showed a noticeable decline in
unprotected anal sex from baseline to 6 months that leveled out during the 6 to 12 month interval. This contrasted with a more linear trend in the control group, \(X^2 (1, n=249) = 4.31, p = .038\). This effect was replicated in the results for transmission risk (bottom of Figure 2), \(X^2 (1, n=249) = 4.61, p = .032\). These significant quadratic trends indicate that intervention participants’ rate of decline lessened over the follow-up intervals, despite an overall decrease in transmission risk from baseline to 12 months.

Potential mediators of intervention effects

Psychosocial mediators

We tested four potential mediators of intervention effects: Negative affect, HIV disclosure, drug use, and self-efficacy for sexual safety. Each of these are generally important to unsafe sex, and were targeted in the intervention. We tested the effect of these variables on participants’ number of transmission risk partners by framing them as time-varying covariates. Greater negative affect across waves predicted more transmission risk partners, \(X^2 (2, n=249) = 10.8, p=.001\), as did less disclosure of HIV status, drug use, and lower sexual self-efficacy, \(X^2s (2, n=249) > 24, p=.001\).

Negative affect decreased over waves, Wald \(X^2 (2, n=249) = 16.4, p < .001\), and HIV disclosure increased, Wald \(X^2 (2, n=249) = 7.6, p < .001\), although neither showed an effect of the intervention (intervention group by wave Wald \(X^2s (2, n=249) = 0.17 & 2.35\) respectively, n.s.). Substance use decreased over wave, Wald \(X^2 (2, n=249) = 27.6, p < .001\), and tended to decrease more in the intervention than the control group from baseline to six months, Wald \(X^2 (2, n=249) = 3.63, p < .06\). Sexual self-efficacy increased over wave, Wald \(X^2 (2, n=249) = 24.4, p < .001\), and showed a greater increase in the intervention than in the contrast group from Baseline to 12 months and from Baseline to the M of 6 and 12 months, Wald \(X^2s (2, n=249) > 4.5, ps < .05\). Thus, intervention effects on substance use and self-efficacy were consistent with our mediating hypothesis.

The intervention effect on transmission risk partners was \(X^2 (2, n=249) = 7.16, p = .008\). Mediating analyses testing sexual self-efficacy and drug use showed each to lessen this effect, to \(X^2 = 3.93, p = .14\) & \(X^2 = 3.74, p = .15\) respectively. Each of these represented a significant trend
toward mediation, $X^2_\Delta (df = 1) = 3.22$ & 3.42 respectively, $ps = .07$. The joint effect of drug use and sexual self-efficacy significantly mediated the effect of the intervention on number of transmission risk partners, to $X^2 (2, n=249) = 2.94$, $p = .23$, $X^2_\Delta (df = 1) = 4.22$, $p = .04$. Thus, sexual self-efficacy and drug use showed significant intervention effects, and simple mediating analyses showed them to partially underlie the effect of the intervention on participants’ number of transmission risk partners.

Sexual activity as a mediator

We also explored whether the effect of the intervention was attributable to simple changes in men’s level of sexual activity. Rates of “abstinence” (no reported anal sex partners over the previous 6 months) did increase over wave, Wald $X^2 (2, n=249) = 15.6$, $p = .001$, and participants’ number of anal sex partners significantly decreased, Wald $X^2 (2, n=249) = 26.8$, $p = .001$. However, neither “abstinence” nor number of anal sex partners showed any intervention effect, Wald X^2s (2, n=249) < 0.3, n.s., or mediate the effect of the intervention on HIV transmission risk.

DISCUSSION

Complacency or “burnout” over sexual risk appears to be contributing to recent increases in HIV infections among MSM (CDC, 2005; Stockman et al., 2004; Valdiserri, 2004; Vanable, Ostrow, & McKirnan, 2003). We attempted to counter these attitudes by framing sexual safety within a larger coping intervention for HIV-infected MSM. The TAP intervention provided promising evidence that a peer-led, computerized and tailored intervention for HIV-positive MSM may reduce HIV transmission behaviors. These effects were not simply a matter of lessened overall sexual activity, and, by being more pronounced for actual transmission risk, suggested that participants were specifically modifying their most risky behaviors.

Key features of TAP were its delivery by HIV-positive peer counselors, and its use of a computer-driven protocol. Peer-based counseling for HIV risk reduction has shown modest effects among MSM, particularly when using a structured approach (Morin, 2007; Wolitski et al., 2004). Our peer treatment advocates were full or part-time employees who received systematic training and supervision by a Ph.D. or Masters-level clinical psychologist, within a gay & lesbian primary care
setting. This both provided a high skill level and helped prevent advocate “burn-out” from dealing with treatment or sexual issues shared with their clients. The resource base required for this component may not be widely available in primary care settings. However, participants’ very positive responses to the peer advocates both here and in a sister TAP project targeting African American men and women (Raja et al., 2007) suggests that peer involvement should be integral to these interventions.

This is the first study to our knowledge in which peers delivered a computer-based intervention for HIV secondary prevention. The computer protocol was designed to be both highly structured – which increases treatment fidelity, and may be particularly important for peer counselors – and flexible enough to be individually tailored to each participant (e.g., Crits-Christoph et al., 1998; Haug, Sorensen, Gruber, Lollo, & Roth, 2006; Scaturo, 2001). The computer protocol allowed us to include a range of theory-based intervention content, including overall HIV-coping, specific safety techniques, negative affect, drug use, and disclosure skills, tailored to the participant via “hot button” links within each module. Advocates uniformly reported positive responses to the computer protocol, and showed a high level of intervention fidelity within the TAP sessions.

We delivered TAP in the primary care environment. Both the primary care basis and the session content attempted to weave secondary prevention into more general HIV coping, including medication adherence and medical communication. We hoped that this approach would capitalizing on participants’ motivation for successful HIV treatment. While this setting did prove to be effective for recruitment, it may have selected for less risky men: patients who regularly attend their HIV care visits may be more likely to also adhere to sexual safety standards.

We attempted to integrate a treatment advocate session with each primary care visit. However, we found this approach to take substantial clinic cooperation, and many men had moved toward a biannual or even annual primary care visit schedule, which may be too sparse for HIV prevention needs. As a consequence, most follow-up visits were “free-standing” rather than part of a primary care visit, and we could not test the efficacy of true integration of prevention into primary
care. While primary care is an important venue for prevention, community recruitment and follow-up may be important adjuncts for broader scale secondary prevention.

There are significant limitations both to our findings and, potentially, to this intervention approach. One issue is that behavioral interventions may be most effective if begun early after diagnosis. We did not have sufficient statistical power to test that hypothesis here, but anecdotal reports suggested that participants who had been living with HIV – and having characteristic sexual patterns – for many years may have been more resistant to change.

Our range of clinics and patients also limits these results. Our participants were not randomly sampled, and were therefore prey to unmeasurable sampling bias. In particular, our ability to show intervention effects may have been suppressed by lower than expected baseline risk behavior. In addition, the standard of care at the participating clinics was very high, potentially higher than in HIV clinics more generally. Thus, we may have seen stronger effects among riskier, more recently diagnosed men who were being compared to men receiving a more typical standard of HIV care. Future studies need to directly address these sampling issues.

There was a trend for the intervention group participants to report more risk at baseline than did the comparison group. While this group difference was not statistically significant, it does raise the prospect that some of the observed behavioral change in the intervention group was due to a regression to the mean. The randomization procedure was rigorously followed by screening staff and was unlikely to have been biased. Nonetheless, these baseline differences warrant caution in consideration of these results, as the groups could have differed at baseline by chance in ways that were not captured by our randomization checks. The analyses addressed group differences in trajectories of behavior across waves: simple mean risk levels for intervention v. comparison participants did not significantly differ. Finally, the contrast group was “standard of care” at each clinic. While these standards were high, they consisted of less patient contact time than in the intervention group.

Maintenance of initial gains is obviously important, yet is often inadequately addressed in health-behavior interventions (Wing, 2000), including HIV prevention (Herbst et al., 2007). The
relatively quick “decay” of behavioral intervention effects that are typically found were replicated here vis-à-vis significant quadratic effects; relatively strong effects at 6-months attenuated by the 12-month follow-up. We hoped to enhance maintenance by adding preventive counseling to patients’ ongoing primary care; it is possible that our inability to fully articulate the follow-up sessions into the primary care schedule limited the effectiveness of these visits. Of course it is also possible that brief follow-up sessions are not adequate to maintain behavioral changes induced by an initial, more intensive intervention.

Computer assessment and screening tools have been routinely used to collect sensitive sexual and drug-related information (Tideman et al., 2007), and the Internet is increasingly relevant to health promotion and risk reduction among MSM (Bowen, Horvath, & Williams, 2007; Bull, Lloyd, Rietmeijer, & McFarlane, 2004; Rhodes, 2004). Internet-based behavioral interventions have shown efficacy in areas as diverse as cardiac risk (Kuhl, Sears, & Conti, 2006), diabetes management (Albisser, 2005), and adolescent smoking (McDaniel & Stratton, 2006). Programs that combine “live” interactions with computer-based protocols such as TAP may be particularly appealing and familiar to high-risk MSM, and may be easily adapted to the internet. As a follow-up to treatment advocate sessions, an ongoing internet relationship may be efficient in maintaining contact with men with varying treatment schedules, and may assist in longer-term maintenance of behavioral changes. Thus, the combination of “live” and computer-based intervention elements may represent an important area for future health promotion research (Griffiths, Lindenmeyer, Powell, Lowe, & Thorogood, 2006). We feel the results reported here demonstrate the feasibility and initial efficacy of the TAP approach, and justify further research and development.

CDC. (2003). Incorporating HIV prevention into the medical care of persons living with HIV: recommendations of CDC, the Health Resources and Services Administration, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. . MMWR, 52(No. RR-12), 1-24.

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Funding statement: This research was funded by CDC PA# 01190. The study is registered on www.clinicaltrials.gov, trial number NCT0016433.

Acknowledgements: The authors would like to thank the many HIV-positive individuals who participated in this research, all the research staff for their dedication and effort, and the staff of the participating medical clinics for their support.

Figure and Table Captions

Table 1; Treatment Advocacy Program; Demographic characteristics of the baseline sample.

Table 2; Treatment Advocacy Program; Overall sexual behavior at study baseline, by study condition.

Figure 1; Treatment Advocacy Program trial; Participant recruitment and retention flow.

Figure 2; Treatment Advocacy Program; Any unprotected anal intercourse (UAI) and any transmission risk, by group (intervention v. comparison) and study wave.

Figure 3; Treatment Advocacy Program; Mean number of unprotected anal sex (UAI) partners, by intervention group and study wave.

Figure 4; Treatment Advocacy Program; Mean number of transmission risk partners, by intervention group and study wave.
Table 1: Treatment Advocacy Program; Demographic characteristics of the baseline sample.

<table>
<thead>
<tr>
<th></th>
<th>Complete sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 313</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>18 – 29</th>
<th>30 – 39</th>
<th>40 - 49</th>
<th>50+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>13%, n = 41</td>
<td>30%, n = 94</td>
<td>44%, n = 137</td>
<td>13%, n = 41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>African American</th>
<th>Latino</th>
<th>White</th>
<th>Asian / other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity</td>
<td>31%, n = 98</td>
<td>17%, n = 54</td>
<td>47%, n = 147</td>
<td>5%, n = 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education</th>
<th>High school / GED or less</th>
<th>Some college / technical</th>
<th>College degree</th>
<th>Any post college</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>26%, n = 80</td>
<td>39%, n = 121</td>
<td>24%, n = 76</td>
<td>11%, n = 36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Income</th>
<th>< 10K</th>
<th>10K – 20K</th>
<th>21K – 40K</th>
<th>> 40K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>30%, n = 95</td>
<td>27%, n = 84</td>
<td>25%, n = 79</td>
<td>18%, n = 55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“Out” as MSM to social network</th>
<th>Half or less</th>
<th>Most of network</th>
<th>Completely “out”</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Out” as MSM to social network</td>
<td>31%, n = 98</td>
<td>43%, n = 133</td>
<td>26%, n = 82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time since diagnosis</th>
<th>≤ 3 years</th>
<th>4 – 9 years</th>
<th>10+ years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time since diagnosis</td>
<td>32%, n = 100</td>
<td>30%, n = 93</td>
<td>38%, n = 120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical status</th>
<th>On medications</th>
<th>Discontinued medications</th>
<th>Medication naïve</th>
<th>CD4 < 350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical status</td>
<td>72%, n = 225</td>
<td>10%, n = 32</td>
<td>18%, n = 56</td>
<td>30%, n = 94</td>
</tr>
</tbody>
</table>
Table 2; Treatment Advocacy Program; Overall sexual behavior at study baseline, by study condition.

<table>
<thead>
<tr>
<th></th>
<th>Complete sample</th>
<th>Intervention group</th>
<th>Contrast group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 313</td>
<td>N = 165</td>
<td>N = 148</td>
</tr>
<tr>
<td>Any anal sex partner</td>
<td>83%, n=259</td>
<td>85%, n=140</td>
<td>80%, n=119</td>
</tr>
<tr>
<td>Any UAI</td>
<td>48%, n=150</td>
<td>52%, n=86</td>
<td>43%, n=64</td>
</tr>
<tr>
<td>Any transmission risk</td>
<td>29%, n=91</td>
<td>33%, n=54</td>
<td>25%, n=37</td>
</tr>
<tr>
<td>Mean anal sex partners</td>
<td>5.7 (SD=9.10)</td>
<td>6.3 (SD=9.01)</td>
<td>5.3 (SD=9.02)</td>
</tr>
<tr>
<td>Mean UAI partners</td>
<td>3.3 (SD=6.65)</td>
<td>3.5 (SD=6.40)</td>
<td>3.0 (SD=6.41)</td>
</tr>
<tr>
<td>Mean transmission risk partners</td>
<td>1.5 (SD=3.89)</td>
<td>1.6 (SD=3.78)</td>
<td>1.3 (SD=3.78)</td>
</tr>
<tr>
<td>Any STI (past year)</td>
<td>18%, n=55</td>
<td>17%, n=28</td>
<td>18%, n=27</td>
</tr>
</tbody>
</table>

All group comparisons n.s.
All behaviors were reported for a recall period of the past 6 months.
Efficacy of peer-based intervention

Figure 1: Treatment Advocacy Program trial; Participant recruitment and retention flow

Screened for eligibility, n = 581 (61%)

Ineligible, n = 170 (29%)
- not sexually active, 44%
- personal / medical, 22%
- non-English speaking, 10%
- other 24%

Screened eligible n=411
(71% of screening sample)

Randomized n =317
(77% of eligible sample)

Allocated to comparison group, n= 151 (48%)

Allocated to intervention group, n = 166 (52%)

Sessions attended
(of analysis sample)
0 = 1% (n = 1)
1 = 4% (n = 5)
2 = 7% (n = 9)
3 = 14% (n = 18)
4 = 75% (n = 98)

6-month retention, n = 122
(82%)

12-month retention, n = 139
(94%)

Analysis sample n = 120 (81%)
Excluded from analysis, n= 1, died during follow-up.

Analysis sample n=131, (79%)
Excluded from analysis, n = 3, died during follow-up.
Figure 2: Treatment Advocacy Program; Any unprotected anal intercourse (UAI) and any transmission risk, by group (intervention v. comparison) and study wave.
Figure 3: Treatment Advocacy Program; Mean number of unprotected anal sex (UAI) partners, by intervention group and study wave.
Figure 4; Treatment Advocacy Program; Mean number of transmission risk partners, by intervention group and study wave.
CONSORT Statement 2001 Checklist

Treatment Advocacy Program:

Efficacy of a peer intervention for safer sex among HIV-infected Men who have Sex with Men

<table>
<thead>
<tr>
<th>PAPER SECTION And topic</th>
<th>Item</th>
<th>Descriptor</th>
<th>Reported on Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE & ABSTRACT</td>
<td>1</td>
<td>How participants were allocated to interventions (e.g., "random allocation", "randomized", or "randomly assigned").</td>
<td>6</td>
</tr>
<tr>
<td>INTRODUCTION Background</td>
<td>2</td>
<td>Scientific background and explanation of rationale.</td>
<td>3</td>
</tr>
<tr>
<td>METHODS Participants</td>
<td>3</td>
<td>Eligibility criteria for participants and the settings and locations where the data were collected.</td>
<td>6</td>
</tr>
<tr>
<td>Interventions</td>
<td>4</td>
<td>Precise details of the interventions intended for each group and how and when they were actually administered.</td>
<td>9</td>
</tr>
<tr>
<td>Objectives</td>
<td>5</td>
<td>Specific objectives and hypotheses.</td>
<td>5</td>
</tr>
<tr>
<td>Outcomes</td>
<td>6</td>
<td>Clearly defined primary and secondary outcome measures and, when applicable, any methods used to enhance the quality of measurements (e.g., multiple observations, training of assessors).</td>
<td>7, 8</td>
</tr>
<tr>
<td>Sample size</td>
<td>7</td>
<td>How sample size was determined and, when applicable, explanation of any interim analyses and stopping rules.</td>
<td>6</td>
</tr>
<tr>
<td>Randomization -- Sequence generation</td>
<td>8</td>
<td>Method used to generate the random allocation sequence, including details of any restrictions (e.g., blocking, stratification)</td>
<td>6</td>
</tr>
<tr>
<td>Randomization -- Allocation concealment</td>
<td>9</td>
<td>Method used to implement the random allocation sequence (e.g., numbered containers or central telephone), clarifying whether the sequence was concealed until interventions were assigned.</td>
<td>6</td>
</tr>
<tr>
<td>Randomization -- Implementation</td>
<td>10</td>
<td>Who generated the allocation sequence, who enrolled participants, and who assigned participants to their groups.</td>
<td>6</td>
</tr>
<tr>
<td>Blinding (masking)</td>
<td>11</td>
<td>Whether or not participants, those administering the interventions, and those assessing the outcomes were blinded to group assignment. If done, how the success of blinding was evaluated.</td>
<td>7</td>
</tr>
<tr>
<td>Statistical methods</td>
<td>12</td>
<td>Statistical methods used to compare groups for primary outcome(s); Methods for additional analyses, such as subgroup analyses and adjusted analyses.</td>
<td>12</td>
</tr>
<tr>
<td>RESULTS Participant flow</td>
<td>13</td>
<td>Flow of participants through each stage (a diagram is strongly recommended). Specifically, for each group report the numbers of participants randomly assigned, receiving intended treatment, completing the study protocol, and analyzed for the primary outcome. Describe protocol deviations from study as planned, together with reasons.</td>
<td>13 & Figure 1</td>
</tr>
<tr>
<td>Recruitment</td>
<td>14</td>
<td>Dates defining the periods of recruitment and follow-up.</td>
<td>6</td>
</tr>
<tr>
<td>Baseline data</td>
<td>15</td>
<td>Baseline demographic and clinical characteristics of each group.</td>
<td>11 & Table 1</td>
</tr>
<tr>
<td>Numbers analyzed</td>
<td>16</td>
<td>Number of participants (denominator) in each group included in each analysis and whether the analysis was by "intention-to-treat". State the results in absolute numbers when feasible (e.g., 10/20, not 50%).</td>
<td>13 & Figure 1</td>
</tr>
<tr>
<td>Outcomes and estimation</td>
<td>17</td>
<td>For each primary and secondary outcome, a summary of results for each group, and the estimated effect size and its precision (e.g., 95% confidence interval).</td>
<td>15-18, Figures 2 & 3</td>
</tr>
<tr>
<td>Ancillary analyses</td>
<td>18</td>
<td>Address multiplicity by reporting any other analyses performed, including subgroup analyses and adjusted analyses, indicating those pre-specified and those exploratory.</td>
<td>15-18</td>
</tr>
<tr>
<td>Adverse events</td>
<td>19</td>
<td>All important adverse events or side effects in each intervention group.</td>
<td>Does not apply</td>
</tr>
<tr>
<td>DISCUSSION Interpretation</td>
<td>20</td>
<td>Interpretation of the results, taking into account study hypotheses, sources of potential bias or imprecision and the dangers associated with multiplicity of analyses and outcomes.</td>
<td>18</td>
</tr>
<tr>
<td>Generalizability</td>
<td>21</td>
<td>Generalizability (external validity) of the trial findings.</td>
<td>20</td>
</tr>
<tr>
<td>Overall evidence</td>
<td>22</td>
<td>General interpretation of the results in the context of current evidence.</td>
<td>21</td>
</tr>
</tbody>
</table>