Show simple item record

dc.contributor.authorSett, S
dc.contributor.authorKarakashev, SI
dc.contributor.authorSmoukov, SK
dc.contributor.authorYarin, AL
dc.date.accessioned2016-02-03T16:30:35Z
dc.date.available2016-02-03T16:30:35Z
dc.date.issued2015
dc.identifier.bibliographicCitationSett, S., Karakashev, S. I., Smoukov, S. K. and Yarin, A. L. Ion-specific effects in foams. Advances in Colloid and Interface Science. 2015. 225: 98-113. DOI:10.1016/j.cis.2015.08.007en_US
dc.identifier.issn0001-8686
dc.identifier.urihttp://hdl.handle.net/10027/20104
dc.descriptionThis is the author’s version of a work that was accepted for publication in Advances in Colloid and Interface Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Advances in Colloid and Interface Science. 2015. 225: 98-113. DOI: 10.1016/j.cis.2015.08.007.en_US
dc.description.abstractWe present a critical review on ion-specific effects in foams in the presence of added salts. We show the theoretical basis developed for understanding experimental data in systems with ionic surfactants, as well as the nascent approaches to modelling the much more difficult systems with non-ionic surfactants, starting with the most recent models of the air-water interface. Even in the case of ionic surfactant systems, we show methods for improving the theoretical understanding and apply them forto interpretation of surprising experimental results we have obtained on ion-specific effects in these systems. our own. We report unexpectedly strong ion-specific effects of counter-ions on the stability and the rate of drainage of planar foam films from solutions of 0.5 mM Sodium dodecyl sulfate (SDS) as a function of concentration of a series of inorganic salts (MCl, M=Li, Na, K). We found that the counter-ions can either stabilize the foam films (up to a critical concentration) or destabilize them beyond it. The ordering for destabilization is in the same order as the Hofmeister series, while for stabilization it is the reverse Therefore, the strongest foam stabilizer (K+), becomes the strongest foam destabilizer at and beyond its critical concetration, and vice versa. Though the critical concentration is different for different salts, by calculating the critical surfactant adsorption level one could simplify the analysis, with all the critical concentrations occuring at the same surfactant adbsorption level. Beyond this level, the foam lifetime decreases and films suddenly start draining faster, which may indicate salt-induced surfactant precipitation. Alternatively, formation of pre-micellar structures may result in slower equilibration and fewer surfactant molecules at the surface, thus leading to unstable foams and films.en_US
dc.description.sponsorshipEuropean research council (ERC) grant EMATTER (#280078) to S.S., as well as COST action “Smart and Green Interfaces” (MP1106) for STSM funding. Stoyan Karakashev thanks the Bulgarian National Science Fund Grant DDVU 02/54 and FP7 project Beyond Everest.en_US
dc.publisherElsevier Inc.en_US
dc.subjectIon-Specific Effectsen_US
dc.subjectFoamsen_US
dc.subjectFoam Filmsen_US
dc.subjectCritical Micelle Concentrationen_US
dc.subjectFoam Film Drainageen_US
dc.titleIon-specific effects in foamsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record