Show simple item record

dc.contributor.authorPappalardo, Carmine M.
dc.date.accessioned2018-06-26T21:14:28Z
dc.date.available2018-06-26T21:14:28Z
dc.date.issued2017-09
dc.identifier.bibliographicCitationPappalardo, C. M., Wang, T. F. and Shabana, A. A. Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dynamics. 2017. 89(4): 2905-2932. 10.1007/s11071-017-3635-6.en_US
dc.identifier.bibliographicCitationPappalardo, C. M., Wang, T. F. and Shabana, A. A. Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dynamics. 2017. 89(4): 2905-2932. 10.1007/s11071-017-3635-6.
dc.identifier.bibliographicCitationPappalardo, C. M., Wang, T. F. and Shabana, A. A. Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dynamics. 2017. 89(4): 2905-2932. 10.1007/s11071-017-3635-6.
dc.identifier.bibliographicCitationPappalardo, C. M., Wang, T. F. and Shabana, A. A. Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dynamics. 2017. 89(4): 2905-2932. 10.1007/s11071-017-3635-6.
dc.identifier.issn0924-090X
dc.identifier.other10.1007/s11071-017-3635-6
dc.identifier.urihttp://hdl.handle.net/10027/22449
dc.descriptionPost print version of article may differ from published version. The final publication is available at springerlink.com; DOI: 10.1007/s11071-017-3635-6en_US
dc.description.abstractIn this paper, methods for developing isoparametric tetrahedral finite elements (FE) based on the absolute nodal coordinate formulation (ANCF) are presented. The proposed ANCF tetrahedral elements have twelve coordinates per node that include three position and nine gradient coordinates. The fundamental differences between the coordinate parametrizations used for conventional finite elements and the coordinate parametrizations employed for the proposed ANCF tetrahedral elements are discussed. Two different parametric definitions are introduced: a volume parametrization based on coordinate lines along the sides of the tetrahedral element in the straight (un-deformed) configuration and a Cartesian parametrization based on coordinate lines directed along the global axes. The volume parametrization facilitates the development of a concise set of shape functions in a closed form, and the Cartesian parametrization serves as a unique standard for the element assembly. A linear mapping based on the Bezier geometry is used to systematically define the cubic position fields of ANCF tetrahedral elements: the complete polynomial-based eight-node mixed-coordinate and the incomplete polynomial-based four-node ANCF tetrahedral elements. An element transformation matrix that defines the relationship between the volume and Cartesian parametrizations is developed and used to convert the parametric gradients to structure gradients, thereby allowing for the use of a standard FE assembly procedure. A general computational approach is employed to formulate the generalized inertia, external, and elastic forces. The performance of the proposed ANCF tetrahedral elements is evaluated by comparison with the conventional linear and quadratic tetrahedral elements and also with the ANCF brick element. In the case of small deformations, the numerical results obtained show that all the tetrahedral elements considered can correctly produce rigid body motion. In the case of large deformations, on the other hand, the solutions of all the elements considered are in good agreement, provided that appropriate mesh sizes are used.en_US
dc.language.isoen_USen_US
dc.publisherSpringer Verlagen_US
dc.subjectFlexible multibody system dynamicsen_US
dc.subjectabsolute nodal coordinate formulationen_US
dc.subjectBezier tetrahedral patchen_US
dc.subjectisoparametric ANCF tetrahedral finite elementsen_US
dc.subjectposition and gradient continuity conditionsen_US
dc.titleDevelopment of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structuresen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record